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Light quarks in the instanton vacuum at finite baryon density
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We consider the finite density, zero-temperature behavior of quark matter in the instanton picture. Since the

instanton-induced interactions are attractive in bothq̄q andqq channels, a competition ensues between phases
of matter with condensation in either or both. It results in chiral symmetry restoration due to the onset of
diquark condensation, a ‘‘color superconductor,’’ at finite density. Also possible is a state with both manners
of condensation; however, such a phase is at best metastable for any chemical potential. The properties of
quark matter in each phase are discussed, with emphasis on the microscopic effects of the effective mass and
superconducting energy gap.@S0556-2821~99!05711-2#

PACS number~s!: 11.15.Tk, 11.30.Rd, 21.65.1f
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I. INTRODUCTION

The idea that the QCD partition function is dominated
instanton fluctuations of the gluon field, with quantum osc
lations about them, has successfully described much of w
we know about the zero-temperature, zero-density hadr
world ~for a review, see Refs.@1,2#!. Instantons have bee
reliably identified in lattice simulations~for a review, see
Ref. @3#!, which demonstrate their relevance to hadronic o
servables@4#. From the theory side, the instanton vacuu
constructed from the Feynman variational principle@5,6#
gives an example of how the necessary ‘‘transmutation
dimensions’’ occurs in QCD, meaning that all dimension
quantities can be expressed through the QCD scale pa
eter,LQCD. It can be added that in the solvableN52 super-
symmetric version of QCD, instantons are sufficient to rep
duce the expansion of the exact Seiberg-Witten prepote
@7#.

More relevant to this paper, the instanton vacuum p
vides a reasonable and phenomenologically satisfy
mechanism of spontaneous chiral symmetry breaking
QCD ~for a review, see@1#!. In addition, it has recently
gained support from direct lattice studies@8#. Therefore, an
expansion of instanton ideas to a new frontier, in this cas
nonzero matter density, seems to be well justified.

The key point is that instantons induce interactions t
are attractive not only in theq̄q channel~leading to the spon-
taneous chiral symmetry breaking! but also in theqq channel
~potentially leading to diquark condensation!. Quark pairing
was originally investigated as resulting from single glu
exchange in Ref.@9#, and was later considered nonperturb
tively in Ref. @10#. Both situations have been recently di
cussed in the literature by various authors. In the special c
of two colors (Nc52) and two light quark flavors (Nf52),
the phenomenon becomes particularly clear. H
the instanton-induced interactions possess not a gl
SU(2)3SU(2) symmetry, as would be for anyNc.2, but a
larger SU(4) symmetry@11# ~often referred to as the Paul
Gürsey symmetry!. At Nc52 the attraction in theq̄q andqq
0556-2821/99/60~1!/016004~14!/$15.00 60 0160
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channels are exactly equal. For this reasonq̄q and qq con-
densates belong in fact to one phase: one condensate c
rotated to another along the Goldstone valley@11#.1

Switching in a nonzero chemical potentialm violates ex-
plicitly the global SU(4) symmetry of theNc52 world, the
degeneracy of the five-dimensional Goldstone valley
lifted, and one can ask which of the condensates beco
preferred. In Ref.@13# arguments have been given that it
the diquark condensate. In a previous publication@14# we
have confirmed this expectation by direct calculations;
also below. It should be noted that atNc52 singlet diquarks
are nothing but the colorless ‘‘baryons’’ which happen to
bosons, and their condensation does not break the color s
metry.

In the opposite limit,Nc→`, the diquark interaction is
suppressed by a factor of;1/Nc as compared to theq̄q one,
and so is the diquark condensate. The question is then, is
world with Nc53 closer toNc52 or Nc5`?

The possibility of diquark condensation at anyNc , as
induced by instantons, has been studied in Ref.@15#. Con-
trary to the case ofNc52, a diquark condensation atNc
>3 would inevitably spontaneously break the color symm
try, similarly to the Higgs breaking of the SU(2) gauge sym
metry of electroweak interactions. For that reason the~pos-
sible! symmetry breaking of the color SU(Nc) has been
named ‘‘dynamical Higgs mechanism’’ in Ref.@15#, and a
parallel with the superconductivity has been drawn. T
presently used term is ‘‘color superconductivity,’’ to whic
we shall adhere.

1In the original paper@11# a general case of the SU(4) breakin
has been considered, leading to nine Goldstone particles. A cl
inspection shows, however, that the instanton-induced interact
possess an additional degeneracy, leading to only five Golds
particles, instead of nine which would be the general case. Ins
tons apparently ‘‘know’’ about the Vafa-Witten theorem whic
guarantees that the symmetry-breaking pattern atNc52 corre-
sponds to five Goldstone particles@12#.
©1999 The American Physical Society04-1
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G. W. CARTER AND D. DIAKONOV PHYSICAL REVIEW D60 016004
For the zero chemical potential only a metastable diqua
condensed state has been found atNc>3 @15#. Furthermore,
at Nc53 the scalar diquark already appears to be unboun
the vacuum, indicating that our world is in a sense close
the idealizedNc→` than to theNc52 world. Parametri-

cally, the diquark mass is;1/r̄;1 GeV wherer̄ is the
average instanton size as explained below. This means t
scalar diquark correlation function should decay with the
ponent corresponding to the ‘‘constituent’’ quark thresho
2M (0)'700 MeV, which seems to be supported by rec
lattice measurements@16#. Nevertheless, it has been su
gested in Ref.@15# that qq condensates could be found
metastable states in heavy-ion collisions and in astrophys

More recently it has been argued by the Princeton-M
and Stony Brook groups@13,17#, both using instantons as
framework, that taking nonzero fermion density shifts t
balance in favor of the diquark condensation, and that a
certain critical chemical potentialmc there should be a phas
transition from the usual broken chiral phase to the co
superconducting state.2 Avoiding some of the unnecessa
approximations made in the works of those before
@13,17,19#, we arrive essentially at the same conclusio
@14#. Our results share with these previous studies their
mary feature, which is a competition between phases wh
spontaneously break different symmetries of QCD.

In this paper we study the competition between vario
quark channels in a more systematic way than in our pr
ous publication@14#. Since ‘‘color superconductivity’’ im-
plies color symmetry is broken, one can imagine seve
phases with chiral symmetry broken or restored for quark
different colors. We explore these possibilities using w
amounts to a virial expansion in the instanton density, a
carrying out detailed calculations to first order. This trunc
tion effectively constrains us to working in a densit
independent instanton background, an approximation wh
loses validity for a quark chemical potential around 6
MeV @20#. Beyond this point one expects the instantons to
suppressed and perturbative QCD to become applicab
asymptotically high density. Thus our intent is to consid
phenomena which occur at a chemical potential of a f
hundred MeV.

The chiral broken phase is characterized by a nonz
order parameter̂q̄q&Þ0 or, equivalently, by a nonzero dy
namical or ‘‘constituent’’ quark mass which in fact is mo
mentum dependent. We find that, as far as one remains
side this phase, the quark occupation numbern(p) is a
perfect Fermi step function, despite strong energy a
momentum-dependent interactions between quarks. It sh
be contrasted to the color superconducting phase with^qq&
Þ0 but ^q̄q&50. In this case the quark occupation numb
n(p) is distorted near the Fermi surface and is of a typi
BCS type.

In our numerics we use the standard characteristics of

2See the Proceedings of the International Workshop of QCD
Finite Baryon Density~Bielefeld, Germany!, where these matter
have been extensively discussed@18#.
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instanton ensemble. They lead to very reasonable value
the quark condensate and of the constituent quark mas
zero chemical potential. However, the same instanton c
acteristics lead inevitably to a very early transition to t
superconducting state: it occurs at quark densities less
the normal nuclear density; after the system jumps into
superconducting phase the density appears to be about t
the nuclear density. Taken literally, it suggests that the o
nary nuclear matter is a ‘‘boiling’’ mixture of the two phase
@19#, however, it most probably contradicts the lore of co
ventional nuclear theory.3 To ‘‘save’’ the nuclear matter, one
would probably need to go beyond the mean-field appro
mation actually used in this paper.

II. QCD INSTANTON VACUUM

The construction of the QCD instanton vacuum has b
reviewed in previous publications@1,14#, therefore here we
simply review the main steps.

The use of the Feynman variational principle applied
instantons leads to the stabilization of the grand canon
instanton ensemble, with the main characteristics of the
stanton medium, namely, the average four-dimensional
stanton density,N/V51/R̄4, and the average instanton siz
r̄, expressed through the only dimensional quantityLQCD.
The two-loop calculations performed in@5,6# give

r̄5Ar 2̄'
0.48

LMS̄

, R̄'
1.35

LMS̄

. ~1!

Taking LMS̄5280 MeV one finds r̄'0.35 fm, R̄

'0.95 fm, r̄/R̄'1/3. This small ratio has been prev
ously suggested on phenomenological grounds by Shu
@21#. The smallness of ther̄/R̄ ratio implies that the packing
fraction of instantons in the vacuum, i.e., the fraction of t
4d volume occupied by the balls of radiusr̄, is quite small:

f 5
p2

2
r̄4

N

V
5

p2

2

r̄4

R̄4
;

1

10
. ~2!

Though the packing fraction~2! is but numerically small,
one can treat it as a formal algebraic parameter, and dev
a perturbation theory in it. Taking nonzero matter dens
and/or nonzero temperature can only decrease the ratior̄/R̄.

When one switches in light quarks on top of the instan
ensemble, the existence of the small packing fraction par
eter enables one to separate contributions of high and
fermion eigenmodes. The high-frequency part is controlla
factorizable into contributions from individual instanton
This part can be seen to renormalize somewhat the o
instanton weight or instanton ‘‘fugacity.’’ The low
frequency part is dominated by the would-be zero modes
individual instantons. The normalized~that is localized! zero

at
3We take an opportunity to thank G. Brown and K. Langanke

an instructive discussion of this point.
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LIGHT QUARKS IN THE INSTANTON VACUUM AT . . . PHYSICAL REVIEW D 60 016004
modes in the background of individual instantons exist b
in the vacuum (m50) @22# and atmÞ0 @23,20#, see the
Appendix. In the ensemble of instantons and anti-instant
they cease to be exactly zero modes~that is why we call
them the ‘‘would-be zero modes’’!. The spectral density o
the Dirac operator at small eigenvalues is obtained thro
the diagonalization of the matrix made of the overlaps of
would-be zero modes belonging to individual instantons a
anti-instantons@24#. A nonzero spectral density at zero Dira
eigenvalue signals chiral symmetry breaking: it is actua
due to the delocalization of the would-be zero modes ow
to the ‘‘hopping’’ of quarks from one instanton to anoth
@25#.

In fact, three seemingly different but actually equivale
methods have been developed to describe chiral symm
breaking by instantons at zerom: ~i! diagonalization of the
random matrix made of the would-be zero modes’ overl
@24,26#; ~ii ! finding the quark propagator in the random i
stanton ensemble@25,27#, which exhibits the appearance of
momentum-dependent quark mass;~iii ! derivation of the ef-
fective low-momentum theory for quarks with instanto
induced interactions@1,28#.

The three approaches underline different sides of
physics involved, though mathematically they prove to
equivalent. It is straightforward to generalize them to t
case of the nonzero chemical potential. In this paper we
only the third method, it being the most economical.

III. EFFECTIVE FERMION ACTION
FOR FINITE DENSITY

With the instanton solution representing a domina
stable fluctuation of the gauge field, the original strategy
computing quark observables in the QCD vacuum was
calculate the quantity in the presence of a random instan
background and then average over an ensemble of such
configurations. However, the analysis here calls for a m
transparent manifestation of the effects from instantons
order to resolve the possible mechanisms for symm
breaking. This is obtained by first averaging over the
semble of instanton and anti-instanton configurations to
mulate an effective theory in terms of interacting quar
where explicit instanton effects are absorbed into the form
the interaction.

This evidence of averaged instantons is retained in
interaction through the would-be fermion zero modes, o
for each flavor. Thus the consequent interaction is a ve
involving 2Nf quarks, commonly cited as a ’t Hooft intera
tion after the first author to specify their proper quantu
numbers@22#. For two flavors, it may be cast to resemble t
Vaks-Larkin or Nambu–Jona-Lasinio~NJL! model which
has long been a popular model for quark and hadron p
nomenology.

The field of a single instanton–anti-instanton determine
particular solution for the gauge fieldAI

m , and in the absence
of quantum fluctuations the zero modeF(x,m), is simply the
solution of the Dirac equation with zero eigenvalue:

~ i ]”2 img42A” I !F~x,m!50•F~x,m!50. ~3!
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The exact solution for nonzerom was found by Abrikosov
@23# and is written in the Appendix. It can be decompos
into chiral components as

F~x,m!5FF Ī ~x,m!

F I~x,m!
G , ~4!

meaning that a~right! left-handed zero mode is generated
an ~anti-! instanton. This is a result of the instanton sol
tion’s structure and the self-dual equations from which
comes. WithF̃ I ( Ī ) we will denote the conjugate zero mod
which takes the chemical potential argument of the oppo
sign: F̃ I(x,m)5F I

†(x,2m), where the dagger means th
Hermitian conjugate. This is a direct consequence of
non-Hermiticity of them dependence which arises in th
Dirac operator.

This solution is not physically realizable, since the QC
background is not modeled by one but many~a ‘‘liquid’’ of !
instantons. Localized around each there is a would-be z
mode, from which the effective action is constructed. T
action is determined by building a low-momentum partiti
function, the foundation of which is the Green function for
quark in the field of one instanton. It can be expressed a
sum over the complete set of eigenfunctions, and appr
mated as

SI~x,y![^c~x!c†~y!&52(
n

cn~x!cn
†~y!

ln1 im

'2
F~x!F̃~y!

im
1S0~x,y;m!. ~5!

At low momenta this propagator is dominated by the ze
modes while at large momenta it is essentially reduced to
free one,S0(x,y;m). Therefore, Eq.~5! can be regarded a
an interpolation of the true propagator in the field of o
instanton. It becomes exact both at large,p@1/r̄, and small,
p!1/r̄, quark momenta.

The partition function which produces the necess
propagator~5! is of the form

Z5E Dc Dc† expF(
f
E c f

†~ i ]”2 img4!c f G
3S YNf

1

V
D N1S YNf

2

V
D N2

. ~6!

The pre-exponential factors contain the instanton-induced
teractions between fermions, and forNf flavors are the spe
cific nonlocal 2Nf-fermion vertices

YNf

6 @c,c†#5~2 !NfE d4z dU)
Nf E d4x d4ycL,R

† ~x!

3~ i ]2 im!7F Ī ,I~x2z!F̃ Ī ,I~y2z!

3~ i ]2 im!6cL,R~y!. ~7!
4-3
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G. W. CARTER AND D. DIAKONOV PHYSICAL REVIEW D60 016004
Here we use the notationx65xmsm
6 , where the 232 matri-

cessm
65(6 isW ,1) decompose the Dirac matrices into chir

components, and it is understood thatm written as a four
vector isma5(0W ,m). Note that the zero mode in the field o
an ~anti! instanton couples to that of a~right-! left-handed
quark, and the effective range of the interaction is the av
age instanton sizer̄.

It should be stressed that correlations between instan
induced by fermions are inherent in this approach; as to
relations induced by gluons, they are effectively taken c
of by the use of the variational principle@5,6# resulting in the
effective size distribution. For simplicity we freeze all th
sizes at the average valuer̄, but average explicitly over ran
dom position~z! and orientation~U! variables.

Fermion operators in the pre-exponent are not conveni
these operators can be raised into the exponent with the
of a supplementary integration over a pair of Lagrange m
tipliers, denotedl6 :

Z5E dl1 dl2E Dc Dc† expH E d4x c†~ i ]”2 img4!c

1l1YNf

1 1l2YNf

2 1N1S ln
N1

l1V
21D

1N2S ln
N2

l2V
21D J . ~8!

Indeed, integrating overl6 by the saddle-point method on
recovers Eq.~6!. Notice that the saddle-point integration b
comes exact in the thermodynamic limit:N6 ,V→` with
N/V fixed. Through this procedure we obtain a purely exp
nential integrand which is the required effective action.

Two important consequences follow and should be e
phasized. First, the coupling constant of the 2Nf-fermion in-
teraction, whose role is played byl6 , is not fixed once and
forever; its value is found from minimizing the free ener
after integration over fermions is performed. Therefore, t
strength of the interaction depends itself on the phase
fermion system assumes. Second, the saddle-point valu
l6 is not proportional to the instanton density, as one mig
naively think. For example, in the case of chiral symme
breaking it behaves asl;(N/V)12Nf /2 @28#. Both circum-
stances are due to the peculiarity of the instanton-indu
interactions dominated by the existence of the zero mo
Would these modes remain zero, the fermion determin
would be zero, thus suppressing the presence of instan
themselves. It is this intricate fermion self-supporti
mechanism which makes the instanton-induced interact
different from a more naive NJL model where the strength
the effective four-fermion interactions are chosen once
forever. As will be shown below, this is the mechanism
which chiral symmetry is restored at the large chemical
tential in the case of two flavors.

For practical applications it is favorable to use t
Fourier-transformed expressions of the quark zero mo
which are written explicitly in the Appendix. These comple
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functions of the four-momenta and chemical potential de
mine the~matrix! form factors attached to each fermion le
of the vertex:

F~p,m!5~p1 im!2w~p,m!1,

F †~p,2m!5w* ~p,2m!2~p1 im!1. ~9!

With such definitions, the interaction terms may be written
momentum space,

Y1@c,c†#5E dU E )
f

Nf F ~d4pf d4kf !

~2p!8 G ~2p!4d4

3S ( ~pf2kf ! D)
f

Nf

@cL fa f i f

† ~pf !

3F~pf ,m!kf

i f ekf l fUl f

a fUb f

†ofenfof

3F †~kf ,2m!pf

nfcL
f b f pf~kf !#, ~10!

with a similar form for Y2 which carries right-handed
quarks. The first indices on the fermion operators refer
flavor, the Greek to color (1, . . . ,Nc), and the last denote
spin (1,2). This formulation of the effective interaction r
tains the full p and m dependence of the zero modes,
opposed to the approximate treatments in other recent w
@13,17#. At the same time this formalism enables one to
duce the problem of determining the phase structure to a
braic equations where the coefficients are given by cer
integrals over the form-factor functions~9!.

IV. ONE LIGHT FLAVOR „A PEDAGOGICAL ASIDE …

In the case of one flavor, the effective action assume
relatively simple and hence instructive form. The form fa
tors combine and appear as an effective mass term. The
teraction remains nonlocal, thus one finds an induced m
M with a specific momentum dependence:

SINT52l1E d4p

~2p!4E dU cLa i
† ~p!F~p,m! j

i

3e jkUk
aUb

†lemlF †~p,2m!n
mcL

bn~p!2l2~L↔R!

5M~p,m!c†~p!c~p!, ~11!

where

M~p,m!5l~p1 im!a~p1 im!awb~p,m!wb~p,m!.
~12!

At finite m the form factors are complex, since the ze
modes are solutions of Eq.~3!. This interaction is sufficient
to spontaneously break chiral symmetry. However, the c
pling constantl has here been introduced as a Lagran
multiplier in order to obtain a manageable form for the e
fective action, and is, in principle, an integration over
possible coupling strengths. This simplifies to a saddle-po
approximation which becomes exact in the thermodyna
4-4
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LIGHT QUARKS IN THE INSTANTON VACUUM AT . . . PHYSICAL REVIEW D 60 016004
limit of N,V→`. Such an evaluation of the integral als
naturally connects the instanton density to this coupling
that the resulting ‘‘gap’’ equation is

N

V
54NcE d4p

~2p!4

M~p,m!2

~p1 im!21M~p,m!2
. ~13!

This equation is a direct generalization of the gap equa
found form50 in Ref.@25#. AlthoughM and them term are
complex, one finds that the imaginary part of the integran
odd in p4 and hence vanishes under energy integration. T
is equivalent to the statement that while individual eigenv
ues of the Dirac operator are imaginary, their product
mains real. By preserving the exact form of the zero-mo
solution, this property becomes manifest in our treatme
Through solving this equation self-consistently, one obta
a solution for thel at any given quark chemical potentialm.
This in turn is proportional to an effective mass evaluated

the zero momentum limit,uM(0,m)u5(2pr̄)2l/Nc .
To first order inl, this procedure amounts to averagin

the effects of every instanton and anti-instanton wh
modify the quark propagator. In principle, the instanton d
sity N/V is modified by a finite quark density. It scales wi
the fugacity,x[Z(m)Z(0)21, asx4/b, whereb is the Gell-
Mann-Low coefficient of QCD. Fugacity not equal to uni
simply arises from the change withm of the fermion deter-
minant in the partition function. Upon a systematic expa
sion of this determinant inl one finds the first-order term
vanishes, for this is exactly the saddle-point condition of E
~13!. Thus modifications of the instanton background app
only when the determinant is expanded to orderl2, which is
beyond the scope of this work.

Without a first-order effect onN/V, there exists no
mechanism in the theory to surppress the instanton b
ground and modify the form of the gap equation abo
While a finite quark chemical potential can and does mod
the coupling strength and hence the effective mass, the
pling is never forced to zero. Therefore, chiral symme
remains broken at any finite baryon density. This result
of course change when effects of higher order in the ins
ton density are taken into account. The picture is also ra
cally altered with more than one flavor, as possible qu
pairing offers an alternative mechanism for chiral symme
restoration.

V. TWO LIGHT FLAVORS

The remainder of this paper investigates the case of m
lessNf52, corresponding to a system of chiral up and do
quarks. Furthermore, we will assume theCP invariant case
of u50, which requiresN15N25N/2 and hencel15l2

5l. With the definitions and notation of Eqs.~9! and ~10!,
the interaction terms may be written in momentum space
01600
n

n

is
is
l-
-
e
t.
s

n

h
-

-

.
r

k-
.
y
u-

n
n-
i-
k
y

s-
n

lY15lE d4p1 d4p2 d4k1 d4k2

~2p!16
~2p!4d4~p11p22k12k2!

3E dU cL1a1i 1
† ~p1!F~p1 ,m!k1

i 1 ek1l 1

3Ul 1

a1Ub1

†o1en1o1
F †~k1 ,2m!p1

n1cL
1b1p1~k1!cL2a2i 2

† ~p2!

3F~p2 ,m!k2

i 2 ek2l 2Ul 2

a2Ub2

†o2en2o2

3F †~k2 ,2m!p2

n2cL
2b2p2~k2!, ~14!

with a similar form forlY2.

A. Gap equations

Since the instanton-induced interactions~14! support both
q̄q andqq condensation, it is necessary to consider the t
competing channels simultaneously. This means that
must calculate both the normal~S! and anomalous~F! quark
Green functions. A color-flavor-spin ansatz compatible w
the possibility of chiral and color symmetry breaking is

^c f a i~p!cgb j
† ~p!&5dg

f db
aS1~p! j

i for a,b51,2,

^c f a i~p!cgb j
† ~p!&5dg

f db
aS2~p! j

i for a,b.2,

^cL
f a i~p!cL

gb j~2p!&5^cR
f a i~p!cR

gb j~2p!&

5e f geab[g]e i j F~p!, ~15!

where @g# refers to some generalized direction~s! in color
space, and it is this set ofNc22 indices which signals the
breaking of color symmetry. In the particular case ofNc
53, where the color symmetry is broken as SU(
→SU(2)3U(1) and our ansatz considers the 3¯channel@9#,
we will by convention take@g#53; for Nc54 one can take
@g#534 and so forth. In the event of color symmetry brea
ing, the standard propagators~and ensuing condensates! will
lose their color degeneracy and the separation ofS(p) into
S1(p) and S2(p) becomes necessary; otherwise t
Schwinger-Dyson-Gorkov equations do not close.

Written in the chiralL,R basis, the 434 propagators
S1,2(p) are of the form

S~p!5F G~p!1 Z~p!S0~p!1

Z~p!S0~p!2 G~p!1 G . ~16!

Here the off-diagonal, bare propagatorS0(p)65@(p
1 im)7#21 is modified by the scalar functionsZ1,2(p), and is
augmented on the diagonal by the scalarG1,2(p) which, if
nonzero, break chiral symmetry.

Using the instanton-induced interaction~14! one can build
a systematic expansion for theF,G Green functions in the
1/Nc and r̄/R̄ parameters. In the leading order in both p
rameters we restrict ourselves to the one-loop approxima
shown in Fig. 1. It corresponds to a set of self-consist
Schwinger-Dyson-Gorkov equations. An importantm depen-
4-5
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dence enters through the form factors in Eq.~14!. With
F̄(p)5F* (p) these diagrams lead to the set of five algebr
equations for the scalar Green functionsZ1,2, G1,2, andF:

Z1~p!512G1~p!A~p,m!M122F~p!B~p,m!D,

Z2~p!512G2~p!A~p,m!M2 ,

G1~p!5Z1~p!wa~p,m!wa~p,m!M1 ,

G2~p!5Z2~p!wa~p,m!wa~p,m!M2 ,

F~p!52Z1~2p!wa~p,m!wa~2p,m!D. ~17!

The constantsM1 , M2, andD will be defined below and the
functions

A~p,m!5~p1 im!a~p1 im!awb~p,m!wb~p,m!,

B~p,m!5~p21m2!wb~p,m!wb~2p,m!

1~p1 im!awa~p,m!~p2 im!bwb~2p,m!

2~p1 im!awa~2p,m!~p2 im!bwb~p,m!,

~18!

are the form factors which arise from the zero modes~see the
Appendix!. At m50 we haveA(p,0)5B(p,0), but for any
finite m the direction of the momentum flow through ea
vertex leg is critical.

FIG. 1. Schwinger-Dyson-Gorkov diagrams to first order inl,
corresponding to five scalar equations in the text. The first is for
off-diagonal and the second for the diagonal components ofS1 and
S2, the third is the anomalous diquark propagator.
01600
c

The condensatesg1 , g2, and f are the closed loops con
tributing to the quark self-energy. They are found by in
grating the appropriate Green function, modified by the v
tex form factors, over an independent momentum:

g1,25
l

Nc
221

E d4k

~2p!4
A~k,m!G1,2~k!,

f 5
l

Nc
221

E d4k

~2p!4
B~k,m!F~k!. ~19!

The quantitiesM1,2 and D are linear combinations of the
condensatesg1,2 and f:

M15S 52
4

Nc
Dg11S 2Nc251

2

Nc
Dg2 ,

M252S 22
1

Nc
Dg112~Nc22!g2 ,

D5S 11
1

Nc
D f . ~20!

The M1,2 are measures of chiral symmetry breaking, whi
act as an effective mass modifying the standard quark pro
gation. On the other hand, the diquark loop 2D plays the role
of twice the single-quark energy gap formed around
Fermi surface. The Fermi momentum, in the absence of
ral symmetry breaking, will remain atpf5m regardless of
the magnitude ofD. It should be noted that the effectiv
massesM1,2 exhibit different behavior inNc than the super-
conducting gapD: the former areNc times larger than the
latter. Although, one can of course express a solution
terms of (g1 ,g2 , f ) as one in (M1 ,M2 ,D), we will retain
both notations in the following text. The reason is the distin
physical interpretations for the two variable sets: the fi
quantifies the symmetry breaking by channel while the s
ond measures its effects on the quark states with partic
color.

After determining the five scalar functions through so
ing Eqs.~17! and inserting these solutions into Eqs.~19!, we
find the coupled equations for the condensates themselv

e

g15
lM1

Nc
221

E d4k

~2p!4

a~p,m!@124b~p,m!D21a* ~p,m!M1
2#

@11a~p,m!M1
2#@11a* ~p,m!M1

2#216b~p,m!2D4
,

g25
lM2

Nc
221

E d4k

~2p!4

a~p,m!

11a~p,m!M2
2

,

f 5
2lD

Nc
221

E d4k

~2p!4

b~p,m!@124b~p,m!D21a~p,m!M1
2#

@11a~p,m!M1
2#@11a* ~p,m!M1

2#216b~p,m!2D4
, ~21!
4-6
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where yet another pair of functions has been introduced

a~p,m!5A~p,m!wa~p,m!wa~p,m!,

b~p,m!5B~p,m!wa~p,m!wa~2p,m!.
~22!

Note that whileb is real, the functiona is complex. Al-
though the integrands above are complex, all imaginary p
are odd inp4 and thus vanish under integration. As usual
gap equations, there is the possibility of a solution wh
some~or even all! of the condensates vanish.

The magnitudes of these condensates are not yet d
mined, as this requires fixing the coupling constantl. This is
done through minimizing the partition function~8! and leads
to the saddle-point condition onl, replacing the integration
with

N

V
5l^Y11Y2&. ~23!

On the left-hand side is the instanton density, which we w
here take to be fixed at its vacuum value, although in p
ciple it will have some correction due to the finite qua
density. Evaluating the right-hand side requires calculat
the one-vertex contributions to the free energy, which in t
case includes two-loop, figure-eight-type diagrams form
by joining the four fermion legs into two pairs as shown
Fig. 2. This can be written concisely in terms of the cond
sates:

N

V
5l^Y11Y2&5

4~Nc
221!

l

3@2g1M11~Nc22!g2M214 f D#. ~24!

As with the single flavor case, we are quenching by trunc
ing our perturbative treatment inl, and thus the instanton
denisty on the left is held fixed. This equation forl and the
definitions of the condensates~21! comprise a system o
equations which can be solved for all quantities. It follow
from Eqs.~20!, ~21!, and~24! that the mass and energy ga
M1,2 andD are proportional to thesquare rootof the instan-
ton densityN/V, while the saddle-point value ofl is, to the
first approximation, independent ofN/V.

Once these quantities are found the chiral condensate
be calculated, being a trace over the quark propagator.
is distinct from the effective massesM1,2, as it does not
contain contributions from the form factors present in t

FIG. 2. Contributing diagrams toV at orderl1.
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loops from which the effective masses are computed. Pre
instead, is the solution for the propagator, in particular
diagonal elements:

2^c̄c&Mink5 i ^c†c&Eucl5 i E d4p

~2p!4
Tr@S~p!#

54E d4p

~2p!4
@2G1~p!1~Nc22!G2~p!#.

~25!

As with the previous integrals, the integrand reflects inp4

such that the result is guaranteed real.

B. Thermodynamic competition

As a consequence of having two different modes of qu
condensation, one obtains multiple solutions for the char
teristics of the quark medium at any fixed chemical potent
Specifically, there will be a competition between the follow
ing phases.

~0! Free massless quarks: g15g25 f 50.
~1! Pure chiral symmetry breaking: g15g2Þ0, f 50.

This is the standard vacuum scenario.
~2! Pure diquark condensation: g15g250, f Þ0. This is

the ‘‘color superconducting’’ phase, and leaves quarks
color @g# free, since they neither participate in the diqua
formation nor exhibit broken chiral symmetry.

~3! Mixed symmetry breaking: g1Þg2Þ0, f Þ0. In fact,
one need not have finiteg1, since it corresponds to chira
symmetry breaking by the quarks of transverse color to
diquark condensate; however, such a phase requires
there at least be chiral breaking in the parallel-color
quarks.

Phase~0!, with all symmetries restored, would mean th
the average four-fermion vertex,̂Y11Y2&, is zero. It
would imply, via Eq.~8!, that the saddle-point value ofl is
infinite. Being substituted into Eq.~23!, infinite l means that
the fermion determinant vanishes. Consequently, the wh
instanton vacuum is severely suppressed, which mean
large loss in the free energy. One can put it in another w
if the density of instantonsN/V is considered fixed, there i
no solution to the combined Eqs.~20!,~21!,~23! with all con-
densates being zero, at least in the one-loop approximatio
the Schwinger-Dyson-Gorkov equation we are considerin

To resolve between the remaining, symmetry-break
solutions the free energy is minimized. Consistent with
evaluation of the Green functions, it is calculated to fi
order inl. Repeating the calculation of figure-eight diagram
and recalling the explicit dependence onl in Eq. ~8! we
obtain the free energy
4-7
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V

V3
52

1

bV3
ln Z

5
V0

V3
2

N

V
lnS N

lVD1
N

V
2

4~Nc
221!

l

3@2g1M11~Nc22!g2M214 f D#. ~26!

Here V3 is the three volume, whileV is the Euclidean four
volume, andV0 is the free energy for a gas of free quark
The last two terms are precisely the quantity which m
vanish under the saddle-point determination ofl, and thus
we have

V

V3
5

V0

V3
1

N

V
lnS l

N/VD . ~27!

Thus, the phase which features thelowestcouplingl is the
thermodynamically favored one.

If we first concentrate on a competition between the t
phases of simple chiral or color symmetry breaking, ph
~1! and~2!, the former is marked by nonzerog[g15g2 and
the latter by nonzerof. Each case leads to its own value ofl
through solving Eq.~24! for any givenm. For the first, the
gap equation reduces to

l5
8~Nc

221!2g2

N/V
, ~28!

while for the second one finds

l5
16~Nc

221!~Nc11! f 2

Nc~N/V!
. ~29!

At certain value ofm5mc these solutions forl cross; this is
the point where the phase transition occurs. This poin
defined by the condition

f ~mc!

g~mc!
5ANc~Nc21!

2
. ~30!

When the ratio between the condensates is less than the
stant on the right, phase~2! is favored; otherwise it is chira
symmetry that is spontaneously broken in phase~1!. How-
ever, the phase structure is not so simple in general, con
ering the possible presence of phase~3!. Calculations were
carried out forNc52 andNc53, taking the values forN/V
andr̄ specified in Sec. II. From Eq.~30! one observes that a
largeNc it becomes increasingly difficult to get to the col
superconducting phase.

VI. TWO COLORS

In this case it is obvious that color symmetry is not br
ken by diquark formation, which here corresponds to col
01600
.
t

o
e

is
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id-

-
-

singlet ‘‘baryons,’’ and hence there is only one possible c
ral condensateg15g. Not so obvious is that atm50 the
color and flavor SU(2) groups are arranged into the hig
SU(4) symmetry. So no mixed phases exist; the theory
only one symmetry. The instanton vacuum accounts for
@11#, and in the context of the analysis here this correspo
to f 21g2 being the only discernible quantity in the ga
equations~21!. Numerically, we findAf 21g25147 MeV.

At finite m, however, the SU(4) symmetry is explicitl
broken and there is a thermodynamic competition betw
phases of pure chiral or diquark condensation. For all fin
chemical potentials, numerical calculations reveal thatf de-
creases faster thang. Since in this case the critical ratio o
Eq. ~30! is unity, we conclude that for any finite density th
Nc52 world prefers diquark condensation to chiral symm
try breaking. This finding is in agreement with the reason
of Ref. @13# and the lattice results of Ref.@29#.

VII. THREE COLORS

With three colors, the more relevant case for QCD,
phase structure is richer due to the possible appearanc
phase~3!. Furthermore, the physics is naturally complete
different, since here any diquark formation will spontan
ously prefer a particular color. This dynamical conseque
mimics the Higgs mechanism as a spontaneous breakin
the SU(Nc) gauge group.

A. Numerical results

The system of gap equations is comprised of all three
Eq. ~21!, which are accompanied by the condition~24!. For a
givenm a set of solutions can be obtained numerically, ea
of which corresponds to a phase of the quark matter cha
terized by the mass or energy gaps formed.

In the vacuum, wherem strictly vanishes, there exist so
lutions for all three symmetry-breaking phases. The therm
dynamically favored is one of spontaneous chiral symme
breaking, and hence the equilibrium description of t
vacuum in the instanton picture is recovered. Numerical c
culations show that the constituent quark mass isM[M1
5M25346 MeV, corresponding tol (1)50.311. Two meta-
stable states are also present, these being manifestatio
phases~2! and ~3!. They featurel (2)50.674 and l (3)

50.673, and are thus clearly only local minima of the fr
energy. It is noteworthy that the diquark gap in the me
stable state is quite large:D5220 MeV. This is in agree-
ment with that found form50 in Ref. @15#.4

Although it is an unstable state in vacuum and remains
asm is increased, the phase of mixed symmetry breaking
worthy of attention. It is marked by nonzero condensatesg2
andf, which leads to not only a superconductivity energy g
but also finite and distinct effective quark masses,M1 and
M2. The magnitudes of these gaps are plotted as a func

4In that work the notationmc52D was used.
4-8
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of chemical potential in Fig. 3. In effect here is a separati
between the phenomenology of quarks of different colo
Quarks orthogonal in color to the diquark condensate~colors
1 and 2! do not conspire to break chiral symmetry~so g1
50), and rather condense in color-asymmetric pairs. T
leaves the quarks color parallel~color 3! to the diquark 3̄to
spontaneously break chiral symmetry in the usual man
(g2Þ0). Thus, they acquire an effective mass due to se
interaction and bestow a mass upon the other two qua
through a similiar interaction. Since the SU~3! color symme-
try has been broken, these masses need not be equiva
and in fact one finds that

M15
5

3
g2 , M252g2 . ~31!

In the vacuum,M15220 MeV andM25260 MeV. As the
chemical potential increases, the coexisting diquark and c
ral condensates compete for the coupling strength; this is
condition of Eq. ~24!. We find that at relatively lowm,
around 80 MeV, this limited resource becomes entirely co
sumed by the diquark. This is demonstrated in Fig. 3, whe
one notes the chiral condensate in the color-3 chan
abruptly vanishes and the diquark condensate assume
value of phase~2!. Thus this solution is not only strictly a
local minimum, but is also short-lived in density.

The remaining thermodynamic competition is thus b
tween the two phases of pure chiral or color symmetry brea
ing. For three colors, the critical ratio of the condensates~30!
is A3. At m50 we find f /g5165 MeV/65 MeV.A3. It
means that at low values ofm the coupling constantl is
smaller in the chiral broken phase, hence this phase is e
getically preferred. Furthermore, this is thel which leads to
a reasonable effective quark mass ofM5346 MeV, as well
as a chiral condensate of^c̄c&52(255 MeV)3. We thus
recover the standard chiral symmetry breaking at low bary
density.

FIG. 3. Chiral and diquark gaps as a function of chemical p
tential in the phase of mixed symmetry breaking,~3!. The dashed
line is the phase~2! solution of the diquark energy gap.
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With increasing chemical potential bothf and g conden-
sates in their respective phases are reduced, however,m
surpasses the effective quark massM around 300 MeV, the
chiral-breakingg stabilizes while the color-breakingf contin-
ues to decrease in phase~2!. At m.340 MeV, condition
~30! is reached, and therefore for this and greater chem
potential chiral symmetry is restored and the ‘‘color sup
conducting’’ phase is realized. At the transition point, t
quark gap isD5115 MeV and slowly decreasing with ris
ing density. Numerical results for the characteristic quan
ties of each phase are plotted in Fig. 4. It is noteworthy t
the chiral condensatêc̄c& is distinct from the effective
quark massM, in that while the latter decreases withm the
former remains practically at its vacuum value. Form.mc
they both vanish.

We note that other authors using different methods h
found first-order chiral symmetry restoration at appro
mately the same chemical potential. One previous work
tained this via the same mechanism of diquark condensa
in the context of the Nambu-Jona-Lasinio model@19#, while
others have found similar results when only analyzing
chiral sector@34,32#.

B. Properties of quark matter

The chemical potential is a useful concept only in tha
constrains the particle number or density, the physical qu
tity we actually need to compute. The four-fermion intera
tions we are dealing with are somewhat unusual in that t
are dependent on the energy, a consequence of using
zero-mode Green functions as the seed of the interaction

For this reason we carefully define the density as

n5E d4x j4~x!, ~32!

and note that in this case one does not have the simple f
j m5c†gmc for the current which carries the conserved p
ticle number. In our notation this corresponds to the curr

-

FIG. 4. Condensates forNc53 as a function ofm. Shown are

the effective quark massM, the quark condensate2^c̄c&1/3, and
the diquark energy gap per quarkD.
4-9
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of the high-momentum quarks, which without the ze
modes would imply that the correct normalization is not p
served. We find the applicable current is

j m~q!52 ic†~q!gmc~q!1 ilE d4p1 d4p2 d4k1 d4k2

~2p!16

3 ~2p!4d4~p11p22k12k2!

3E dUcL1a1i 1
† ~p1!ek1l 1Ul 1

a1Ub1

†o1

3en1o1
cL

1b1p1~k1!cL2a2i 2
† ~p2!ek2l 2

3Ul 2

a2Ub2

†o2en2o2
cL

2b2p2~k2!
]

]qm

3 @F~p1 ,m!k1

i 1F †~k1 ,2m!p1

n1F~p2 ,m!k2

i 2

3F †~k2 ,2m!p2

n2#1~L↔R!, ~33!

where the bracketed momentum derivative is understoo
be a sum of four terms, each with one form factor differe
tiated with respect to its momentum argument.

Although there has been some rearrangement, this is
sentially the vertex~14! in which the form factors have bee
differentiated with respect to the momentumqm . One can
verify this current is conserved by considering the Dir
equation, written here for the left-handed, flavor-1 comp
nent:

@~p1 im!2# j
i cL

1a j~q!2lE d4p2 d4k1 d4k2

~2p!12
~2p!4

3d~q1p22k12k2!E dUF~q,m!k1

i Ul 1
a Ub1

†o1en1o1

3F †~k1 ,2m!p1

n1cL
1b1p1~k1!cL2a2i 2

† ~p2!F~p2 ,m!k2

i 2 ek2l 2

3Ul 2

a2Ub2

†o2en2o2
F †~k2 ,2m!p2

n2cL
2b2p2~k2!50. ~34!

Acting on this withqmcL1
† (q)(]/]qm), and with similar op-

erations on similar equations for the other components,
recovers the requiredqm j m(q)50.

For three colors we have found two phases which spe
the stable equilibria, each having one broken symme
Phase~1! denotes spontaneously broken chiral symme
and it competes with phase~2! which breaks color symme
try. As an intermediate step in calculating the density,
first examine the quark occupation numbers for the t
states,n(p) where in this contextp[upW u, which is obtained
via a p4 integration and precisely defined as

n52 i E d3p

~2p!3
n~p!. ~35!
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With this definition we have not separated the quark a
antiquark distribution functions, since the phases we ana
do not necessarily retain these as basic degrees of freed

The conserved current written above is a sum of t
parts. The first is computed with the Green functions o
tained through a self-consistent solution of the Schwing
Dyson-Gorkov equations, and to the density it contribute

E d4p

~2p!4
@2c†~p!g4c~p!#

52 i E d4p

~2p!4
Tr@S~p!g4#

52 i E d4p

~2p!4 F p41 im

~p1 im!2G @2Z1~p!1~Nc22!Z2~p!#.

~36!

The scalar functionsZ1,2(p) are complex, and for a given
solution set (M1 ,M2 ,D) become

Z1~p!

5
11a* ~p,m!M1

224b~p,m!D2

@11a~p,m!M1
2# @11a* ~p,m!M2

2#216b~p,m!2D4
,

Z2~p!5
1

11a~p,m!M2
2

. ~37!

The functionsa(p,m) and b(p,m), as defined previously
arise as combinations of the form factors evaluated with
appropriate momentum arguments. In general, the firs
complex while the second is purely real and always positi
a consequence of this being the expression which accom
nies the diquark propagation. Through pairing quarks,
complications due to the non-Hermiticity of the single-qua
Dirac operator are avoided.

In the current’s second term the form factors have be
differentiated with respect top4. The expectation values
were computed to the sameO(l1) as followed for the Green
functions, and this generates another siblingg(p,m) in our
family of functions.

g~p,m!5~p1 im!a~p1 im!awb~p,m!wb~p,m!wl

3
]wl~p,m!

]p4
. ~38!

Combining the two pieces, the density reads
4-10
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n52 iN fE d4p

~2p!4 H F p41 im

~p1 im!2G @2Z1~p!1~Nc22!Z2~p!#

2
8

wa~p,m!wa~p,m! F p41 im

~p1 im!2
a~p!1g~p!G

3F S 52
4

Nc
DG1~p!g11~Nc22!2G2~p!g2

1S 2Nc251
2

Nc
D „G1~p!g21G2~p!g1…G J . ~39!

The functionsG1,2(p) can be deduced from Eqs.~17! and
~37!. The integrand here is complex, however, underp4 re-
flection we note thata(2p4)5a* (p4) and g(2p4)5
2g* (p4). This follows from our preserving the non
Hermitian contributions exactly, again we note that uponp4
integrate we recover purely real occupation numbers
hence quark density.

We now consider the two phases individually. Wh
phase~1! is assumed, andD50, the density expression~39!
simplifies to a form where the integrand contains a deno
nator of the form (p1 im)21M(p,m)2. A chiral effective

FIG. 5. Occupation numbern(p) vs p in phase~1!, wherem
5318, 360, and 600 MeV. The correspondingpF545, 170, and
450 MeV, respectively.
01600
d

i-

mass is clearly present, which upon evaluation of E
~21!,~24! satisfies the same gap equation as in theNf51
case, Eq.~13!.5 The effective mass shifts the Fermi surfac
which for free quarks is atpF5m, to the solution ofpF

5Am22M(pF ,m)2. This, as shown in Fig. 5, is the onl
modification of the standard fermionic step function~of mag-
nitude 2NfNc512) due to chiral symmetry breaking.

The occupation numbers are more interesting when
quarks fall into the color superconducting state. As is kno
in BCS theory, Cooper pairing of quarks spreads the Fe
surface as fermions pair with momenta above and below
chemical potential. As demonstrated in Fig. 6, this is p
cisely the result for the two quark colors which participate
the diquark. Quarks of the parallel color are unaffected
the energy gap, and furthermore, since chiral symmetry
been completely restored, appear as massless fermions w
degeneracy of 2NF . This is the origin of the discontinuity a
p5m, since the Fermi momentum remains at this point
these free quarks. Thus the plot should be considered a c
bination of a smooth distribution of Bose-condensed
quarks added to a simple step function of magnitude 4. To
explicit, Eq. ~39! can be rewritten as

n(2)5
2Nf~Nc22!

6p2
m312NFE d4p

~2p!4

3
m~p4

21m22p2!

@p4
21~p2m!2#@p4

21~p1m2!2#

3F 1

114b~p!D2G . ~40!

The first term is the density forNc22 free quarks, the sec
ond’s a contribution from the remaining degrees of freed
which are no longer properly described as single quarks

Performing the integration over all momenta, we arrive
the density as a function of chemical potential. In Fig. 7 t
is shown for the equilibria states, demonstrating the la

5In fact the same gap equation applies to orderl1 for any number
of flavors @28#.
er,
FIG. 6. Occupation numbern(p) vs p in phase~2!, wherem560, 360, and 600 MeV. The plot on the left is for all three colors togeth
the right for the two which participate in the bosonic diquark condensate.
4-11
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discontinuity at the phase transition, where the dashed l
are the metastable continuations in each phase. Since
constituent mass of a quark in the chiral breaking phase
mains near 300 MeV, no density is amassed below
chemical potential. This is consistent with our finding a v
tually constant chiral condensate below the critical chem
potential, in that the absence of physical quark den
should leave the physical condensate unchanged from
vacuum value. Soon after the point at which the Fermi s
face moves from zero and physical states begin to be fil
the onset of the phase transition has been reached. Thu
pure quark matter in this simple mean-field treatment,
maximum density of a purely chiral-broken phase is a rat
small n50.062 fm23. Taking a naive saturation density fo
quark matter as three times that for nuclear matter, we h
n050.445 fm23, which lies within the coexistence line be
tween the two phases. It is only above a density ofn
51.05 fm2352.53n0 where one finds the pure superco
ducting phase. For reference, the density of free quark
this m would be 2.25n0, somewhat lower than that which i
found in the pairing scenario where the states are in so
sense compressed through bosonic condensation.

This extremely low density for the onset of chiral rest
ration suggests that in the core of heavy nuclei quarks e
in some transitional, ‘‘boiling’’ state@17#. However, we have
disregarded certain effects which could modify these resu
Considering an extended mean-field ansatz of more than
three channels we consider, would likely result in additio
interquark forces, which could lead to enhanced repuls
and extend the stability of the chiral-breaking phase to hig
density@30#. We have also not taken into account the bindi
energy of the quarks within a nucleon, which would n
modify our results at the quark level but could lead to so
differences between quark and nuclear matter.

Another possibility is to vary the parameters of o
theory. In particular, one can change the instanton pack
fraction which has been fixed atr̄/R̄51/3 in all calculations
described here. This in turn scales the strength of the indu
interaction. However, taking values from half to twice o
choice does not lead to qualitative differences in the den

FIG. 7. Quark density as a function of chemical potential. T
solid line denotes the equilibrium state of quark matter, the das
lines the metastable continuations. Naive quark matter satura
density lies at'0.45 fm23.
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results; in every case chiral symmetry is restored at dens
which are a small fraction of that for saturation.

The near-zero transition density also arises when diqu
condensation is neglected and chiral symmetry is restore
other means@31,32#. These authors have undertaken analy
of extended mean-field possibilities@30# and interpolative
models of quark and hadronic matter@33#.

Finally, we note that the strong prediction one can ma
from this and similar treatments is the presence of a fi
order transition which restores chiral symmetry. It is a co
clusion which is shared by other recent works which co
sider chiral symmetry breaking at the quark level.
particular we note that the density discontinuity which w
find at this transition,Dn'2.4n0, is close to that found in the
NJL-type treatment of Berges and Rajagopal (Dn'1.5n0
22n0) @19# as well as the chiral random matrix mod
(Dn'2.5n0) @34#.

VIII. CONCLUSIONS

We have formulated the effective low-energy action f
two light fermions induced by instantons at nonzero che
cal potential. In the resulting fermion vertex we have r
tained the full dependence on both momentum and chem
potential, which arises from the would-be zero modes. T
overall interaction strength is given by a dynamically det
mined coupling, which is a consequence of the fact that
instanton weight itself is proportional to the fermion dete
minant. In these respects we differ from other studies suc
the random-matrix model, Nambu-Jona-Lasinio models,
alternative instanton approaches.

In general, introduction of the fermion chemical potent
leads to complications due to the resulting nonhermiticity
the Dirac operator. This is particularly pronounced throu
the complex nature of the quark interaction, induced by
zero-mode solution of the complex eigenvalue problem.
retaining the exact functional forms without simplification
we are able to avoid any complications from individu
imaginary eigenvalues. This is an advantage over vari
numerical techniques, and should persist for all orders in
instanton density. The formalism outlined in this paper
lows one to make such an expansion in a systematic wa

The effective action leads to a competition between t
phases, one of chiral symmetry breaking and another cha
terized by diquark condensation. It was studied by solvin
coupled system of gap equations to first order in the inst
ton density. For two massless flavors and three colors
simple ansatz allowed us a detailed study of the vari
types of symmetry breaking. Although we did recover
interesting case of mixed condensation which broke b
chiral and color symmetries, it was found to be thermod
namically disfavored. Considering the remaining possib
ties, we find that spontaneously broken chiral symmetry
restored through a first-order phase transition, replaced
color breaking due to the formation of a diquark condensa
With our ‘‘standard’’ choice of the instanton ensembl
N/V51 fm24 and r̄/R̄51/3, we find the critical chemica
potential is.340 MeV, where the superconducting ener

d
on
4-12
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gap is 115 MeV and decreasing with risingm. This translates
into the onset of chiral restoration at very low density
quark matter. Indeed, the criticalmc5340 MeV corresponds
to the quark density of 0.14n0 in the chiral broken phase
and to the density of 2.53n0 in the superconducting phas
wheren050.445 fm3 is the quark density corresponding
the standard nuclear matter. Taken literally, it suggests
the deep interior of heavy nuclei are in a boiling mixture
the two phases, as suggested earlier in Ref.@17#. It should be
kept in mind however, that our calculations were to only fi
order in the instanton density and that we neglected the b
ing of constituent quarks into nucleons. Both circumstan
might shift the critical density somewhat.

Restricting our discussion to the quark level, we co
puted the fermion occupation numbers in the two disti
phases which explicitly demonstrate the physics in each
tem. In the chiral broken phase, the reduced Fermi rad
illustrates the effective mass, whereas in the diquark ph
BCS-type behavior is demonstrated by the lack of a sh
Fermi surface.

It is expected that for large chemical potential high
order corrections will self-consistently reduce the instan
background@20# and thus suppress the nonperturbative
fects. At very high quark density, pairing has been predic
due to the perturbative attraction from single gluon excha
@9,35#.

Finally, we note that our primary result, a first-order re
toration of chiral symmetry at a chemical potential near 3
MeV, basically agrees with calculations performed pre
ously using simpler models both with@17,13,19# and without
@31,32,34# color superconductivity. These more schema
models of spontaneous symmetry breaking did not incl
some of the microscopic degrees of freedom retained in
instanton model used here. The general uniformity in pred
tions from these different approaches suggests our more
tailed instanton calculations validate the formulation of the
models which are designed to describe the dominant p
nomena of nonperturbative QCD.
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APPENDIX: FOURIER TRANSFORMS OF FERMION
ZERO MODES

The use of the exact fermion zero modes in the mom
tum space tremendously simplifies all calculations. The st
ing point is the exact fermion zero mode in the field of o
~anti-!instanton inx space@23,20#, which we cite for arbi-
trary instanton positionz, size r, and orientation given by
rectangularNc32 matrix U. In the spinor representation fo
the Dirac matrices the zero modes are two-component W
spinors which can be written as
01600
f

at
f

t
d-
s

-
t
s-
s

se
rp

-
n
-
d
e

-
0
-

c
e
e
-
e-
e
e-

-

-
t-

yl

@FR,L~x2z!#a i5
r

A2p
em(x42z4)AP~x2z!]m

3S e2m(x42z4)D~x2z,m!

P~x2z! D ~sm
6! j

i e jkUk
a .

~A1!

The single instanton solution is apparent in the functions

P~x!511
r2

x4
21r 21r2

,

D~x,m!5
1

x4
21r 2 Fcos~mr !1

x4

r
sin~mr !G . ~A2!

The Fourier transform is defined as

F~p,m!5 i E d4x e2 ip•xF~x,m! ~A3!

and has the structure

FR,L~p,m!a i5wm~p,m!~sm
6! j

i e jkUk
a . ~A4!

Lorentz symmetry is broken at finitem, and the components
become

w4~p4 ,p;m!5
pr2

4p
$~p2m2 ip4!@~2p41 im! f 12

1 i ~p2m2 ip4! f 22#1~p1m1 ip4!

3@~2p41 im! f 112 i ~p1m1 ip4! f 21#%,

w i~p4 ,p;m!5
pr2pi

4p2 H ~2p2m!~p2m2 ip4! f 121~2p1m!

3~p1m1 ip4! f 111F2~p2m!~p2m2 ip4!

2
1

p
~m1 ip4!@p4

21~p2m!2#G f 22

1F2~p1m!~p1m1 ip4!1
1

p
~m1 ip4!

3@p4
21~p1m!2#G f 21J , ~A5!

where the scalarp5upW u, the spatiali 51 –3, and the func-
tions
4-13
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f 165
I 1~z6!K0~z6!2I 0~z6!K1~z6!

z6
,

f 265
I 1~z6!K1~z6!

z6
2

~A6!

are evaluated atz65 1
2 rAp4

21(p6m)2. With these expres-
95
,

I

H

.

v.

01600
sions it is explicitly verified that the normalization conditio
holds for anym:

15E d4p

~2p!4
F̃ I~p,m!F I~p,m!

5E d4p

~2p!4
@w4* ~2m!w4~m!1wW * ~2m!•wW ~m!#.

~A7!
l
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@2# T. Schäfer and E. Shuryak, Rev. Mod. Phys.70, 323 ~1998!.
@3# P. van Baal, Nucl. Phys. B~Proc. Suppl.! 63, 126 ~1998!.
@4# T.L. Ivanenko and J.W. Negele, Nucl. Phys. B~Proc. Suppl.!

63, 504 ~1998!; J.W. Negele, hep-lat/9810053.
@5# D. Diakonov and V. Petrov, Nucl. Phys.B245, 259 ~1984!.
@6# D. Diakonov, M. Polyakov, and C. Weiss, Nucl. Phys.B461,

539 ~1996!.
@7# N. Dorey, V.V. Khoze, and M.P. Mattis, Phys. Lett. B390,

205 ~1997!.
@8# P. de Forcrand, M. Garcia Perez, J.E. Hetrick, and

Stamatescu, Nucl. Phys. B~Proc. Suppl.! 63, 549 ~1998!.
@9# D. Bailin and A. Love, Phys. Rep.107, 325 ~1984!.

@10# R.G. Betman and L.V. Laperashvili, Yad. Fiz.41, 463 ~1985!
@Sov. J. Nucl. Phys.41, 295 ~1985!#.

@11# D. Diakonov and V. Petrov, inQuark Cluster Dynamics, Lec-
ture Notes in Physics, edited by K. Goeke, P. Kroll, and
Petry ~Springer-Verlag, Berlin, 1992!, p. 288.

@12# A. Smilga and J. Verbaarschot, Phys. Rev. D51, 829 ~1995!.
@13# R. Rapp, T. Scha¨fer, E.V. Shuryak, and M. Velkovsky, Phys

Rev. Lett.81, 53 ~1998!.
@14# G.W. Carter and D. Diakonov, Nucl. Phys.A642, 78c ~1998!.
@15# D. Diakonov, H. Forkel, and M. Lutz, Phys. Lett. B373, 147

~1996!.
@16# M. Hess, F. Karsch, E. La¨rmann, and I. Wetzorke, Phys. Re

D 58, 111502~1998!.
@17# M. Alford, K. Rajagopal, and F. Wilczek, Phys. Lett. B422,

247 ~1998!.
,

.

.

@18# F. Karsch and M.P. Lombardo, Nucl. Phys.A642, 1 ~1998!.
@19# J. Berges and K. Rajagopal, Nucl. Phys.B538, 215 ~1999!.
@20# C.A. de Carvalho, Nucl. Phys.B183, 182 ~1981!.
@21# E. Shuryak, Nucl. Phys.B203, 93 ~1982!.
@22# G. ’t Hooft, Phys. Rev. D14, 3432~1976!; 18, 2199~E! ~1978!.
@23# A.A. Abrikosov, Jr., Nucl. Phys.B182, 441 ~1981!; Yad. Fiz.

37, 772 ~1983! @Sov. J. Nucl. Phys.37, 459 ~1983!#.
@24# D. Diakonov and V. Petrov, Phys. Lett.147B, 351 ~1984!.
@25# D. Diakonov and V. Petrov, Zh. E´ ksp. Teor. Fiz.89, 361

~1985! @Sov. Phys. JETP62, 204 ~1985!#; 89, 751 ~1985! @62,
431 ~1985!#; Nucl. Phys.B272, 457 ~1986!.

@26# Yu.A. Simonov, Phys. Rev. D43, 3534~1991!.
@27# P. Pobylitsa, Phys. Lett. B226, 387 ~1989!.
@28# D. Diakonov and V. Petrov,Spontaneous Breaking of Chira

Symmetry in the Instanton Vacuum, Report LNPI-1153~1986!,
published~in Russian!, in Hadron Matter under Extreme Con
ditions, Kiev, 1986, p. 192; see also D. Diakono
hep-ph/9802298.

@29# E. Dagotto, F. Karsch, and A. Moreo, Phys. Lett.169B, 421
~1986!.

@30# M. Buballa and M. Oertel, Nucl. Phys.A642, 39 ~1998!.
@31# M. Buballa, Nucl. Phys.A611, 393 ~1996!.
@32# J. Berges, D.-U. Jungnickel, and C. Wetterich, ‘‘The Chir

Phase Transition at High Baryon Density from Nonperturb
tive Flow Equations,’’ hep-ph/9811347.

@33# J. Berges, D.-U. Jungnickel, and C. Wetterich, ‘‘Quark a
Nuclear Matter in the Linear Chiral Meson Model,
hep-ph/9811387.

@34# M.A. Halasz, A.D. Jackson, R.E. Shrock, M.A. Stephanov, a
J.J.M. Verbaarschot, Phys. Rev. D58, 096007~1998!.

@35# D. T. Son, Phys. Rev. D59, 094019~1999!.
4-14


