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Light quarks in the instanton vacuum at finite baryon density
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We consider the finite density, zero-temperature behavior of quark matter in the instanton picture. Since the
instanton-induced interactions are attractive in tn_mmndqq channels, a competition ensues between phases
of matter with condensation in either or both. It results in chiral symmetry restoration due to the onset of
diquark condensation, a “color superconductor,” at finite density. Also possible is a state with both manners
of condensation; however, such a phase is at best metastable for any chemical potential. The properties of
guark matter in each phase are discussed, with emphasis on the microscopic effects of the effective mass and
superconducting energy gqi50556-282199)05711-2

PACS numbgs): 11.15.Tk, 11.30.Rd, 21.65f

I INTRODUCTION channels are exactly equal. For this reagnnand gg con-

. " L . densates belong in fact to one phase: one condensate can be
The idea that the QCD patrtition function is dominated byrotated to anothger along the Gopldstone valieg].!

instanton fluctuations of the gluon field, with quantum oscil- Switching in a nonzero chemical potentjalviolates ex-
lations about them, has successfully described much of WhatIiCitIy the global SU(4) symmetry of thdl,=2 world, the
we know about the zero-temperature, zero-density hadronigegeneracy of the five-dimensional G(gldstone \;alley is

th).rlgl(fo.; a r_(;._wgvy, slee_ Ref{l,zl])._lnstantons h_ave been lifted, and one can ask which of the condensates becomes
reliably identified in lattice simulationgior a review, see preferred. In Ref[13] arguments have been given that it is

Ref.[3]), which demonstrate their relevance to hadronic 0bihe diquark condensate. In a previous publicati®d] we

servableg4]. From the theory side, the instanton vacuumpaye confirmed this expectation by direct calculations; see
constructed from the Feynman variational princip®6] 550 below. It should be noted thatig=2 singlet diquarks
gives an example of how the necessary “transmutation ofre nothing but the colorless “baryons” which happen to be
dimensions” occurs in QCD, meaning that all dimensionalposons, and their condensation does not break the color sym-
quantities can be expressed through the QCD scale pararetry.

eter,Aqcp- It can be added that in the solvatte=2 super- In the opposite limit,N.—o, the diquark interaction is

symmetric version of QCD, instantons are sufficient to reprosyppressed by a factor f1/N,, as compared to tth one,
duce the expansion of the exact Seiberg-Witten prepotentiglnq so is the diquark condensate. The question is then, is our
[7]. . ) world with N.=3 closer toN.=2 or N,=="?

More relevant to this paper, the instanton vacuum pro- tpe possibility of diquark condensation at ahl, as
vides a reasonable and phenomenologically satisfying,qced by instantons, has been studied in RE5]. Con-
mechanism of _spontaneous chirall_symmetry breaking irirary to the case oN,=2, a diquark condensation &,
QCD (for a review, seg[1]). In addition, it has recently = 3"yould inevitably spontaneously break the color symme-
gained .suppo_rt from dlrect lattice studigs. 'The.refo.re, an v similarly to the Higgs breaking of the SU(2) gauge sym-
expansion of mstanto_n ideas to a new fron'Fler,_|_n this case tﬂwetry of electroweak interactions. For that reason (thes-
nonzero matter density, seems to be well justified. sible symmetry breaking of the color SM{) has been

The key point is that instantons induce interactions thaf,;meq “dynamical Higgs mechanism” in R&fL5], and a
are attractive not only in theq channelleading to the spon-  parallel with the superconductivity has been drawn. The
taneous chiral symmetry breakingut also in thegqchannel  presently used term is “color superconductivity,” to which
(potentially leading to diquark condensatio@uark pairing we shall adhere.
was originally investigated as resulting from single gluon
exchange in Ref9], and was later considered nonperturba-
tively in Ref. [10]. Both situations have been recently dis-

cussed in the literature by various authors. In the special ca%e'n the original papef11] a general case of the SU(4) breaking

_ - - as been considered, leading to nine Goldstone particles. A closer
of two colors N.=2) and two light quark flavorsNy=2), inspection shows, however, that the instanton-induced interactions

:Ee _pr;enf)me_ngn (S)e.cc:mest. particularly Cletar. I-||etr)e ossess an additional degeneracy, leading to only five Goldstone
€ Instanton-induced nteractions possess not a glo articles, instead of nine which would be the general case. Instan-

SU(2)x SU(2) symmetry, as would be for amy.>2, but & tons apparently “know” about the Vafa-Witten theorem which
larger SU(4) symmetry11] (often referred to as the Pauli- gy arantees that the symmetry-breaking patterNat2 corre-
Gursey symmetry. At N.=2 the attraction in thgq andqq  sponds to five Goldstone particlgs2].
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For the zero chemical potential only a metastable diquarkinstanton ensemble. They lead to very reasonable values of
condensed state has been foun®lgt3 [15]. Furthermore, the quark condensate and of the constituent quark mass at
atN.=3 the scalar diquark already appears to be unbound iero chemical potential. However, the same instanton char-
the vacuum, indicating that our world is in a sense closer t@cteristics lead inevitably to a very early transition to the
the idealizedN.— than to theN.=2 world. Parametri- Superconducting state: it occurs at quark densities less than
the normal nuclear density; after the system jumps into the

cally, the diquark mass is-1/p~1 GeV wherep is the superconducting phase the density appears to be about twice

average instanton size as explgmed below. This means thattlfi‘e nuclear density. Taken literally, it suggests that the ordi-
scalar diquark correlation function should decay with the ex-

ponent corresponding to the “constituent” quark thresholdnary nuclear matter is a "boiling” mixture of the two phases
. 19], however, it m r I ntradi he lore of con-
2M(0)~700 MeV, which seems to be supported by recen 9], however, ost probably contradicts the lore of co

lattice measurementil6]. Nevertheless, it has been sug- entional nuclear theoryTo “save” the nuclear matter, one
gested in Ref[15] that qq condensates could be found as would probably need to go beyond the mean-field approxi-

. ) o . > mation actually used in this paper.
metastable states in heavy-ion collisions and in astrophysics. y pap

More recently it has been argued by the Princeton-MIT
and Stony Brook groupkl3,17], both using instantons as a IIl. QCD INSTANTON VACUUM

framework, that taking nonzero fermion density shifts the The construction of the QCD instanton vacuum has been
balance in favor of the diquark condensation, and that at @eviewed in previous publicatior{d,14], therefore here we
certain critical chemical potential. there should be a phase simply review the main steps.
transition from the usual broken chiral phase to the color The use of the Feynman variational principle applied to
superconducting stafeAvoiding some of the unnecessary instantons leads to the stabilization of the grand canonical
approximations made in the works of those before usnstanton ensemble, with the main characteristics of the in-
[13,17,19, we arrive essentially at the same conclusionsstanton medium, namely, the average four-dimensional in-
[14]. Our results share with these previous studies their pri—tanton densityN/V=1/§4 and the average instanton size
mary feature, which is a competition between phases whicfk ’ . . .

p, expressed through the only dimensional quantitycp.

spontaneously break different symmetries of QCD. , i
In this paper we study the competition between variousThe two-loop calculations performed i6,6] give
guark channels in a more systematic way than in our previ-
ous publication[14]. Since “color superconductivity” im- ;: p2%%3 R~ 1_35 )
plies color symmetry is broken, one can imagine several Aws A vis
phases with chiral symmetry broken or restored for quarks of
different colors. We explore these possibilities using whatraking A;s=280 MeV one finds ;~0_35 fm, R
amounts to a virial expansion in the instanton density, and_g g5 fm, p/R~1/3. This small ratio has been previ-

carrying out detailed calculations to first order. This trunca—ous|y suggested on phenomenological grounds by Shuryak
tion effectively constrains us to working in a density-

independent instanton background, an approximation Whic[‘?l]'.-rhe smallness Of. the/R ratio |mp!|es that the packlng
loses validity for a quark chemical potential around 600fractlon of instantons in the vacuum, |.elthe fraction of the
MeV [20]. Beyond this point one expects the instantons to betd volume occupied by the balls of radigs is quite small:
suppressed and perturbative QCD to become applicable at 5 5
asymptotically high density. Thus our intent is to consider f 1—4H_ -
phenomena which occur at a chemical potential of a few —2P VT2

hundred MeV.

The chiral broken phase is characterized by a nonzero Though the packing fractiof®) is but numerically small,
order parametefqq)#0 or, equivalently, by a nonzero dy- one can treat it as a formal algebraic parameter, and develop
namical or “constituent” quark mass which in fact is mo- a perturbation theory in it. Taking nonzero matter density
mentum dependent. We find that, as far as one remains ifmd/or nonzero temperature can only decrease the g&fio
side this phase, the quark occupation numbép) is a When one switches in light quarks on top of the instanton
perfect Fermi step function, despite strong energy an@nsemble, the existence of the small packing fraction param-
momentum-dependent interactions between quarks. It shoulster enables one to separate contributions of high and low
be contrasted to the color superconducting phase (gtf)  fermion eigenmodes. The high-frequency part is controllably
#0 but(gq)=0. In this case the quark occupation numberfactorizable into contributions from individual instantons.
n(p) is distorted near the Fermi surface and is of a typicalThis part can be seen to renormalize somewhat the one-
BCS type. instanton weight or instanton “fugacity.” The low-

In our numerics we use the standard characteristics of thisequency part is dominated by the would-be zero modes of

individual instantons. The normalizéthat is localized zero

X

1
2~ 10" )

Py,

2See the Proceedings of the International Workshop of QCD at
Finite Baryon Density(Bielefeld, Germany where these matters  3We take an opportunity to thank G. Brown and K. Langanke for
have been extensively discusdd@]. an instructive discussion of this point.
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modes in the background of individual instantons exist bothThe exact solution for nonzera was found by Abrikosov

in the vacuum f=0) [22] and atu#0 [23,20, see the [23] and is written in the Appendix. It can be decomposed
Appendix. In the ensemble of instantons and anti-instantonsto chiral components as
they cease to be exactly zero modésat is why we call

them the “would-be zero modes!’ The spectral density of DX, u)
the Dirac operator at small eigenvalues is obtained through D)= g (X, p0)
the diagonalization of the matrix made of the overlaps of the A
would-be zero modes belonging to individual instantons a”%eaning that dright) left-handed zero mode is generated by
anti-instanton$24]. A nonzero spectral density at zero Dirac an (anti) instanton. This is a result of the instanton solu-
eigenvalue signals chiral symmetry breaking: it is actuallyjjos structure and the self-dual equations from which it

due to the delocalization of the would-be zero modes owin% Withd, il denote th gat d
to the “hopping” of quarks from one instanton to another omes. With®, ) we will denote the conjugate zero mode,

[25] which takes the chemical potential argument of the opposite

In fact, three seemingly different but actually equivalentSign: ®(x,u)=®{(x,— u), where the dagger means the
methods have been developed to describe chiral symmetfyermitian conjugate. This is a direct consequence of the
breaking by instantons at zepo: (i) diagonalization of the ~non-Hermiticity of the . dependence which arises in the
random matrix made of the would-be zero modes’ overlapdirac operator.

[24,26]; (ii) finding the quark propagator in the random in-  This solution is not physically realizable, since the QCD
stanton ensembl@5,27], which exhibits the appearance of a background is not modeled by one but maay‘liquid” of )
momentum-dependent quark ma&i) derivation of the ef-  instantons. Localized around each there is a would-be zero
fective low-momentum theory for quarks with instanton- mode, from which the effective action is constructed. This
induced interactionfl,28. action is determined by building a low-momentum partition

The three approaches underline different sides of thdunction, the foundation of which is the Green function for a
physics involved, though mathematically they prove to beduark in the field of one instanton. It can be expressed as a
equivalent. It is straightforward to generalize them to thesum over the complete set of eigenfunctions, and approxi-
case of the nonzero chemical potential. In this paper we us@ated as
only the third method, it being the most economical.

, 4

Un(X)P(Y)
Sxy) =) (y)y=—> ~Tm
IIl. EFFECTIVE FERMION ACTION n n

FOR FINITE DENSITY ~
P(x)P(y)

With the instanton solution representing a dominant, ~ T TSy )
stable fluctuation of the gauge field, the original strategy for

computing quark observables in the QCD vacuum was G o momenta this propagator is dominated by the zero
calculate the quantity in the presence of a random instantop,,qes while at large momenta it is essentially reduced to the

background and then average over an ensemble of such fiefthe e So(x,y; ). Therefore, Eq(5) can be regarded as
configurations. However, the analysis here calls for a more, jnerpolation of the true propagator in the field of one
transparent manifestation of the effects from instantons in

order to resolve the possible mechanisms for symmetry1 —
breaking. This is obtained by first averaging over the enP<1/p, quark momenta. .

semble of instanton and anti-instanton configurations to for- The partition function which produces the necessary
mulate an effective theory in terms of interacting quarks Propagator(s) is of the form

where explicit instanton effects are absorbed into the form of

the interaction. Z:f D¢D¢Tex;{2f fﬂ(iﬁ—mn)wf}

This evidence of averaged instantons is retained in the
Y,‘\ﬁf N+ Yﬁf N_
~ ! \~ - (6)

stanton. It becomes exact both at large; 1/p_, and small,

for each flavor. Thus the consequent interaction is a vertex

involving 2N; quarks, commonly cited as a 't Hooft interac- X
tion after the first author to specify their proper quantum
numbers22]. For two flavors, it may be cast to resemble theyg e _exponential factors contain the instanton-induced in-

Vaks-Larkin or Nambu-Jona-LasinitNJL) model which o 5ctions between fermions, and ef flavors are the spe-
has long been a popular model for quark and hadron pheﬁific nonlocal N;-fermion vertices

nomenology.

The field of a single instanton—anti-instanton determines a Ny
particular solution fpr the gauge fiely*, and in th_e absence Yﬁf[w lpT]:(_)NfI d*zdU]] [ d*% d4Y¢E,R(X)
of quantum fluctuations the zero modéx, u), is simply the
solution of the Dirac equation with zero eigenvalue:

interaction through the would-be fermion zero modes, one
\Y \Y

X(i9—ip) " D7 (x—2)D7(y—2)
(i0—ipys—A)P(X,u)=0-®(x,u)=0. (3) X (id—ip)™ g g(Y)- @)
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Here we use the notatioerx“alf , Where the X2 matri-  functions of the four-momenta and chemical potential deter-
cessz(iiE,l) decompose the Dirac matrices into chiral Mine the(matrix) form factors attached to each fermion leg

components, and it is understood thatwritten as a four °f the vertex:

vector isu,=(0,u). Note that the zero mode in the field of Flp,u)=(p+ip) e(p,u)’,
an (anti) instanton couples to that of @ight-) left-handed
quark, and the effective range of the interaction is the aver- Flp,—pw)=¢*(p,—u) (p+in)". (9)

age instanton sizg. ) L . . . .
It should be stressed that correlations between instanton/ith such definitions, the interaction terms may be written in
induced by fermions are inherent in this approach; as to coromentum space,

relations induced by gluons, they are effectively taken care Ny 4
of by the use of the variational princip|8,6] resulting in the Yy w‘r]:J du f I1 (d”py dky) (2m)45*
effective size distribution. For simplicity we freeze all the ' (2m)8

sizes at the average valpe but average explicitly over ran- N
dom position(z) and orientationU) variables. ( ) +
X ) . X -k ;
Fermion operators in the pre-exponent are not convenient; 2 (pki) H [¥Lta (1)
these operators can be raised into the exponent with the help e o
of a supplementary integration over a pair of Lagrange mul- X F(ps ,,u)k'fé f fU,foﬁff
tipliers, denoted\ .. :

€njoy
< F ke, = )y oy P ko), (10

z:f d)”d)‘*j Dt//Dz,bTexp{f d*x YT (id—ipmys) v with a similar form for Y~ which carries right-handed
guarks. The first indices on the fermion operators refer to
flavor, the Greek to color (1..,N;), and the last denote
) spin (1,2). This formulation of the effective interaction re-
tains the fullp and x dependence of the zero modes, as
opposed to the approximate treatments in other recent works
: (8)  [13,17). At the same time this formalism enables one to re-
duce the problem of determining the phase structure to alge-
braic equations where the coefficients are given by certain
Indeed, integrating ovex.. by the saddle-point method one integrals over the form-factor functior9).
recovers Eq(6). Notice that the saddle-point integration be-
comes exact in the thermodynamic limit. ,V—o with IV. ONE LIGHT FLAVOR (A PEDAGOGICAL ASIDE )
N/V fixed. Through this procedure we obtain a purely expo-
nential integrand which is the required effective action.
Two important consequences follow and should be em
phasized. First, the coupling constant of thé;Zermion in-
teraction, whose role is played hy. , is not fixed once and
forever; its value is found from minimizing the free energy
after integration over fermions is performed. Therefore, the d*p
strength of the interaction depends itself on the phase the g T:_)\+f du lﬂzai(P)]‘—(P#)}

FALYE HA_Yg +N |N—*—1
+ Nf - Nf + n)\+v

+N I—Nf 1
|

In the case of one flavor, the effective action assumes a
relatively simple and hence instructive form. The form fac-
tors combine and appear as an effective mass term. The in-
teraction remains nonlocal, thus one finds an induced mass
M with a specific momentum dependence:

fermion system assumes. Second, the saddle-point value of (2m)*

M\~ is not proportional to the instanton density, as one might iy yp (Hl " m Bn

naively think. For example, in the case of chiral symmetry X" UiUgen (P, —w)n L (P) A -(L=R)
breaking it behaves as~ (N/V)*~Ni2 [28]. Both circum- ;

stances are due to the peculiarity of the instanton-induced =M(p,u) ¢ (P)¥(p), 11
interactions dominated by the existence of the zero modes.

Would these modes remain zero, the fermion determinan\{vhere

would be zero, thus ;uppres_sing the presence of instantons M(P, ) =N(P+i ) o(P+i 1) @ a(Pr i) @ (P, 11).-
themselves. It is this intricate fermion self-supporting (12)
mechanism which makes the instanton-induced interactions
different from a more naive NJL model where the strength ofAt finite u the form factors are complex, since the zero
the effective four-fermion interactions are chosen once andhodes are solutions of E€3). This interaction is sufficient
forever. As will be shown below, this is the mechanism byto spontaneously break chiral symmetry. However, the cou-
which chiral symmetry is restored at the large chemical popling constantA has here been introduced as a Lagrange
tential in the case of two flavors. multiplier in order to obtain a manageable form for the ef-
For practical applications it is favorable to use thefective action, and is, in principle, an integration over all
Fourier-transformed expressions of the quark zero modegwossible coupling strengths. This simplifies to a saddle-point
which are written explicitly in the Appendix. These complex approximation which becomes exact in the thermodynamic
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limit of N,V—c. Such an evaluation of the integral also d%o. d*p, d*k. d*k

. . . T L P107P2 07K, 07K3 4
naturally connects the instanton density to this coupling, il\Y"™ =X\ T (2m)*6%(p1+ pr—ki—k»)
that the resulting “gap” equation is (27m)

Xf du wllalil(pl)]:(plvﬂ):(lleklll

E=4N J d'p M(p.)® (13 ajyto, T ny ,1B81P1 t
V ¢ (277)4 (p_i_iM)Z_i_M(p,#)Z' ><U|:L U,Bl fnlolf (kl:_ﬂ)pl'/fL (kl)'/’LZaziz(pZ)

o kol to
X]:(p21/~L)k226 2 2U|(122UB226n202

This equation is a direct generalization of the gap equation + Ny 1 2BoPs

found for x=0 in Ref.[25]. Although M and theu term are xXF (kZ’_"’“)pzwL (k2), (14
complex, one finds that the imaginary part of the integrand is o

odd inp, and hence vanishes under energy integration. Thi¥ith & similar form forAY™.

is equivalent to the statement that while individual eigenval-

ues of the Dirac operator are imaginary, their product re- A. Gap equations

mains real. By preserving the exact form of the zero-mode  Since the instanton-induced interacticiid) support both
solution, this property becomes manifest in our treatment—q andqq condensation, it is necessary to consider the two
Through solving this equation self-consistently, one Obtain%ompeting channels simultaneously. This means that one
a solution for the\ at any given quark chemical potential  muyst calculate both the norméd) and anomalouéF) quark
This in turn is proportional to an effective mass evaluated inGreen functions. A color-flavor-spin ansatz compatible with
the zero momentum limil, M(0,u)| = (27p)*N/N,. the possibility of chiral and color symmetry breaking is

To first order in\, this procedure amounts to averaging o T o i _
the effects of every instanton and anti-instanton which (¥ “'(P)¥gsi(P))=8455S1(p);  for a,=1.2,
modify the quark propagator. In principle, the instanton den- foi T o i
sity N/V is modified by a finite quark density. It scales with (7' (P)gp;(P))=0g05S,(p)j  for a,p>2,
the fugacity,y=2Z(x)Z(0) %, asx*®, whereb is the Gell- i . ui .
Mann-Low coefficient of QCD. Fugacity not equal to unity WfL (p) ¢€BJ(_p)>:<¢fR IWW%BJ(_ P)
simply arises from the change wijla of the fermion deter- _tg_aBly] i
minant in the partition function. Upon a systematic expan- =€ elF(p), (19

sion of this determinant il one finds the first-order term where[ y] refers to some generalized directisnin color
vanishes, for this is exactly the saddle-point condition of Eqspace and it is this set ®,— 2 indices which signals the
] (o3

(13). Thus modifications of the instanton background apPe€afreaking of color symmetry. In the particular case N
only when the determinant is expanded to ord&rwhich is =3, where the color symmetry is broken as SU(3)

beyo_nd the Scope of this work. . —SU(2)xU(1) and our ansatz considers theanne[9],

Without a first-order effect onN/V, there exists no o il by convention takd y]=3: for N.=4 one can take
mechanism in the theory to surppress the instanton bacl- 1_ 34 and so forth. In the event of color symmetry break-
ground and modify the form of the gap equation above;ng the standard propagata@nd ensuing condensalesill
While a finite quark chemical potential can and does modifyjse their color degeneracy and the separatioS(@l) into
the coupling strength and hence the effective mass, the COWs (p) and S,(p) becomes necessary; otherwise the
pling is never forced to zero. Therefore, chiral symmetryschwinger-Dyson-Gorkov equations do not close.

remains broken at any finite baryon density. This result can yritten in the chiralL,R basis, the &4 propagators
of course change when effects of higher order in the instans, (p) are of the form

ton density are taken into account. The picture is also radi-

cally altered with more than one flavor, as possible quark G(p)1 Z(p)So(p)*
pairing offers an alternative mechanism for chiral symmetry S(p)= Z(p)Sy(p)~ G(p)l | (16)
restoration.

Here the off-diagonal, bare propagatdB,(p)==[(p
+iw)™] 1 is modified by the scalar functiors A p), and is

V. TWO LIGHT FLAVORS augmented on the diagonal by the scaBar,(p) which, if
nonzero, break chiral symmetry.

The remainder of this paper investigates the case of mass- Using the instanton-induced interactii#) one can build
lessN;=2, corresponding to a system of chiral up and down@ Systematic expansion for tg G Green functions in the
qguarks. Furthermore, we will assume t68® invariant case 1/N. and p/R parameters. In the leading order in both pa-
of 6=0, which requiredN, =N_=N/2 and hence\, =\ _ rameters we restrict ourselves to the one-loop approximation
=\. With the definitions and notation of Eq&®) and (10), shown in Fig. 1. It corresponds to a set of self-consistent
the interaction terms may be written in momentum space, Schwinger-Dyson-Gorkov equations. An importantlepen-
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FIG. 1. Schwinger-Dyson-Gorkov diagrams to first ordeiin

PHYSICAL REVIEW D60 016004

The condensateg,, g,, andf are the closed loops con-
tributing to the quark self-energy. They are found by inte-
grating the appropriate Green function, modified by the ver-
tex form factors, over an independent momentum:

012~

LJL‘kA(k 1G4k
NZ_1) (ot Kot CrdlO:

B(k,u)F (k). (19

A\ 4
f= j
NZ-1J (2m)*

corresponding to five scalar equations in the text. The first is for the

off-diagonal and the second for the diagonal componeng; aind
S,, the third is the anomalous diquark propagator.

dence enters through the form factors in Ed4). With

E(p) =F*(p) these diagrams lead to the set of five algebraic

equations for the scalar Green functiohss,, G, ,, andF:
Z1(p)=1=Gy(p)A(p,u)M1—2F(p)B(p,u)A,
Z5(p)=1—Ga(p)A(p,u)M>,
G1(P)=Z1(P)@a(P. 1) ¢o(P, )My,
G2(P)=Z2(P) @l P, i) ol P, )M,
F(P)=2Z1(=P)@a(P, i) @o —P,p)A. 17

The constant$1,, M,, andA will be defined below and the
functions

AP, )= (Pp+ip)o(Ptin)aes(P,n)es(p,u),
B(p, i) =(p*+ u?) p(p. ) @p(— P, i)
+(p+i/*")agoa(pvﬂ)(p_iﬂ)ﬁ@ﬂ(_puu“)

_(p+|/*")a()oa(_ pvﬂ)(p_|M)B‘P5(p1M)v
(18

are the form factors which arise from the zero mo@e the
Appendix. At =0 we haveA(p,0)=B(p,0), but for any

The quantitiesM, , and A are linear combinations of the
condensateg; , andf:

g:t+ d2,

M.=|5 4 2N.—5+ 2

1= _N_c c N_c
1

Mo=2| 2= 5|01+ 2(Ne=2)gs,
C

A=

1+1f
N_C.

(20)
The M, , are measures of chiral symmetry breaking, which
act as an effective mass modifying the standard quark propa-
gation. On the other hand, the diquark loap plays the role
of twice the single-quark energy gap formed around the
Fermi surface. The Fermi momentum, in the absence of chi-
ral symmetry breaking, will remain gi;= u regardless of
the magnitude ofA. It should be noted that the effective
massedV ; , exhibit different behavior ifN,, than the super-
conducting gapA: the former areN, times larger than the
latter. Although, one can of course express a solution in
terms of @4,9,,f) as one in M,,M,,A), we will retain
both notations in the following text. The reason is the distinct
physical interpretations for the two variable sets: the first
quantifies the symmetry breaking by channel while the sec-
ond measures its effects on the quark states with particular
color.

After determining the five scalar functions through solv-

finite u the direction of the momentum flow through eaching Eqgs.(17) and inserting these solutions into E¢59), we

vertex leg is critical.

M,

find the coupled equations for the condensates themselves:

a(p,u)[1—48(p,w) A%+ a* (p, u)M3]

d*k
gl_N%—lf(27)4[1+a(p.#)Mi]ma*(p,mME]—mﬁ(p,mzA“’

B(p,w)[1—4B(p,u) A%+ a(p,u)M2]

(21)

_7\sz d*k a(p,u)
%N 2ot 1ratp oM’
2\NA [ d%
= j
NZ—1

(2m)* [1+ a(p,)MZ][1+ * (p,u)M2]—168(p, u)?A*’
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loops from which the effective masses are computed. Present
Q= + instead, is the solution for the propagator, in particular its
diagonal elements:

FIG. 2. Contributing diagrams t@ at orderx®.

4
where yet another pair of functions has been introduced: —<E¢>Mink=i<1f¢)gud=i f d—pATr[S(p)]
(27)

a(p,uw)=Ap,u) (P, 1)@a(P, 1),

_ d*p
e ~a 26+ (N=2)Go(p)].
29

Note that whileg is real, the functiona is complex. Al-
though the integrands above are complex, all imaginary parts
are odd inp4 and thus vanish under integration. As usual forAs with the previous integrals, the integrand reflectgin
gap equations, there is the possibility of a solution wheresuch that the result is guaranteed real.
some(or even al) of the condensates vanish.
The magnitudes of these condensates are not yet deter-
mined, as this requires fixing the coupling constanthis is

done through minimizing the partition functi@8) and leads B. Thermodynamic competition
to the saddle-point condition an, replacing the integration . .
with P P 9 g As a consequence of having two different modes of quark

condensation, one obtains multiple solutions for the charac-
teristics of the quark medium at any fixed chemical potential.
Specifically, there will be a competition between the follow-
ing phases.

(0) Free massless quarks; g g,=f=0.

On the left-hand side is the instanton density, which we will_ (1) Pure chiral symmetry breaking: ,g=9,#0, f=0.
here take to be fixed at its vacuum value, although in prin-This is the standard vacuum scenario. o
ciple it will have some correction due to the finite quark (2 Pure diquark condensation:;g=g,=0, f#0. This is
density. Evaluating the right-hand side requires calculatingh€ “color superconducting” phase, and leaves quarks of
the one-vertex contributions to the free energy, which in thiscolor [ y] free, since they neither participate in the diquark
case includes two-loop, figure-eight-type diagrams formedormation nor exhibit broken chiral symmetry.

by joining the four fermion legs into two pairs as shown in  (3) Mixed symmetry breaking: g g,#0, f#0. In fact,
Fig. 2. This can be written concisely in terms of the conden-one need not have finitg;, since it corresponds to chiral

N
v MYTHY). (23

sates: symmetry breaking by the quarks of transverse color to the
diquark condensate; however, such a phase requires that
2_ there at least be chiral breaking in the parallel-colored
N 4(Ng—1)
V=A<Y++Y*>= X quarks.

Phase(0), with all symmetries restored, would mean that
the average four-fermion verteX,Y*+Y~), is zero. It
would imply, via Eq.(8), that the saddle-point value afis
infinite. Being substituted into E@23), infinite A means that
As with the single flavor case, we are quenching by truncatthe fermion determinant vanishes. Consequently, the whole
ing our perturbative treatment in, and thus the instanton instanton vacuum is severely suppressed, which means a
denisty on the left is held fixed. This equation forand the large loss in the free energy. One can put it in another way:
definitions of the condensatd®1) comprise a system of if the density of instantonsl/V is considered fixed, there is
equations which can be solved for all quantities. It followsno solution to the combined Eg&0),(21),(23) with all con-
from Eqgs.(20), (21), and(24) that the mass and energy gaps densates being zero, at least in the one-loop approximation to
M, andA are proportional to thequare rootof the instan-  the Schwinger-Dyson-Gorkov equation we are considering.
ton densityN/V, while the saddle-point value of is, to the To resolve between the remaining, symmetry-breaking
first approximation, independent &/ V. solutions the free energy is minimized. Consistent with the

Once these quantities are found the chiral condensate mayaluation of the Green functions, it is calculated to first
be calculated, being a trace over the quark propagator. Thisrder in\. Repeating the calculation of figure-eight diagrams
is distinct from the effective masséd,,, as it does not and recalling the explicit dependence anin Eqg. (8) we
contain contributions from the form factors present in theobtain the free energy

X[29:M 1+ (N.—2)g,M o+ 4FA]. (24
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Q 1 singlet “baryons,” and hence there is only one possible chi-
V. ,BTan ral condensatey;=g. Not so obvious is that a=0 the
3 3 color and flavor SU(2) groups are arranged into the higher
2_ SU(4) symmetry. So no mixed phases exist; the theory has
Oy N [N N 4(N;—1) . ;
=——-—=-In|l—=|+———F only one symmetry. The instanton vacuum accounts for this
Vs VAV V A [11], and in the context of the analysis here this corresponds

_ to f2+g? being the only discernible quantity in the gap
*[20:Ma+ (No=2)g:Ma+41A]. (20 equations21). Numerically, we findJf?+g%=147 MeV.
Here V; is the three volume, whil& is the Euclidean four At finite u, however, the SU(4) symmetry is explicitly
volume, and(), is the free energy for a gas of free quarks. broken and there is a thermodynamic competition between
The last two terms are precisely the quantity which musiphases of pure chiral or diquark condensation. For all finite
vanish under the saddle-point determination\ofand thus chemical potentials, numerical calculations reveal thae-

we have creases faster thagn Since in this case the critical ratio of
Eq. (30) is unity, we conclude that for any finite density the
N.=2 world prefers diquark condensation to chiral symme-
QO Oy N N X SNPETR . :
—=—+—In| —]. (27)  try breaking. This finding is in agreement with the reasoning
Vs Vs VNNV of Ref.[13] and the lattice results of Rgi29].

Thus, the phase which features tbaestcoupling\ is the
thermodynamically favored one. N VIl. THREE COLORS

If we first concentrate on a competition between the two _
phases of simple chiral or color symmetry breaking, phase With three colors, the more relevant case for QCD, the
(1) and(2), the former is marked by nonzege=g,=g, and  phase structure is richer due to the possible appearance of
the latter by nonzerf Each case leads to its own valuedof phase(3). Furthermore, the physics is naturally completely

through solving Eq(24) for any givenu. For the first, the different, since here any diquark formation will spontane-
gap equation reduces to ously prefer a particular color. This dynamical consequence
mimics the Higgs mechanism as a spontaneous breaking of
8(N§—1)2g2 the SUN.) gauge group.
A= VIV (28)

A. Numerical results

while for the second one finds The system of gap equations is comprised of all three in

Eq. (21), which are accompanied by the conditi@4). For a
given u a set of solutions can be obtained numerically, each
of which corresponds to a phase of the quark matter charac-
terized by the mass or energy gaps formed.

In the vacuum, wherg. strictly vanishes, there exist so-
4utions for all three symmetry-breaking phases. The thermo-
dynamically favored is one of spontaneous chiral symmetry
breaking, and hence the equilibrium description of the
vacuum in the instanton picture is recovered. Numerical cal-
f(ue)  [Ne(Ne—1) 30 Culations show that the constituent quark masiisM,
O(me) 2 (30 _M,=346 MevV, corresponding th)=0.311. Two meta-
stable states are also present, these being manifestations of
Jhases(2) and (3). They featurex(®=0.674 andA(®
=0.673, and are thus clearly only local minima of the free
energy. It is noteworthy that the diquark gap in the meta-
&_table state is quite larggx=220 MeV. This is in agree-
ment with that found fop=0 in Ref.[15].*

Although it is an unstable state in vacuum and remains so
asu is increased, the phase of mixed symmetry breaking is
worthy of attention. It is marked by nonzero condensates
andf, which leads to not only a superconductivity energy gap
but also finite and distinct effective quark massils, and
M. The magnitudes of these gaps are plotted as a function

~ 16(N2—1)(Ng+1)f2
B N(N/V)

(29

At certain value ofu= u. these solutions fok cross; this is
the point where the phase transition occurs. This point i
defined by the condition

When the ratio between the condensates is less than the c
stant on the right, phad®) is favored; otherwise it is chiral
symmetry that is spontaneously broken in phébe How-
ever, the phase structure is not so simple in general, consi
ering the possible presence of phd8g Calculations were
carried out forN,=2 andN;= 3, taking the values foN/V

andp specified in Sec. Il. From E¢30) one observes that at
large N, it becomes increasingly difficult to get to the color
superconducting phase.

VI. TWO COLORS

In this case it is obvious that color symmetry is not bro-
ken by diquark formation, which here corresponds to color- 4in that work the notatiomn,=2A was used.
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n (MeVv) FIG. 4. Condensates fdi.=3 as a function ofw. Shown are

the effective quark masM, the quark condensate (/)3 and
FIG. 3. Chiral and diquark gaps as a function of chemical po-the diquark energy gap per quatk
tential in the phase of mixed symmetry breakiig),. The dashed
line is the phas&2) solution of the diquark energy gap. With increasing chemical potential bottand g conden-
sates in their respective phases are reduced, however, as
of chemical potential in Fig. 3. In effect here is a separatiorsurpasses the effective quark massaround 300 MeV, the
between the phenomenology of quarks of different colorschiral-breakingg stabilizes while the color-breakirfgontin-
Quarks orthogonal in color to the diquark condengatdors  ues to decrease in pha$®). At u=340 MeV, condition
1 and 2 do not conspire to break chiral symmetiso g, (30) is reached, and therefore for this and greater chemical
=0), and rather condense in color-asymmetric pairs. Thigpotential chiral symmetry is restored and the “color super-

leaves the quarks color parall@olor 3 to the diquark 3to ~ conducting” phase is realized. At the transition point, the
spontaneously break chiral symmetry in the usual mannefiuark gap isA=115 MeV and slowly decreasing with ris-
(g,#0). Thus, they acquire an effective mass due to selfing density. Numerical results for the characteristic quanti-
interaction and bestow a mass upon the other two quarkéées of each phase are plotted in Fig. 4. It is noteworthy that
through a similiar interaction. Since the &) color symme- the chiral condensatéy ) is distinct from the effective
try has been broken, these masses need not be equivalegtiark massM, in that while the latter decreases withthe
and in fact one finds that former remains practically at its vacuum value. Ror u.
they both vanish.
We note that other authors using different methods have
M1:§92, M,=29;. (31)  found first-order chiral symmetry restoration at approxi-
mately the same chemical potential. One previous work ob-
tained this via the same mechanism of diquark condensation
In the vacuumM ;=220 MeV andM,=260 MeV. As the in the context of the Nambu-Jona-Lasinio mofEd], while
chemical potential increases, the coexisting diquark and chisthers have found similar results when only analyzing the
ral condensates compete for the coupling strength; this is thehiral sectof34,32,.
condition of Eq.(24). We find that at relatively lowu,
around 80 MeV, this limited resource becomes entirely con-
sumed by the diquark. This is demonstrated in Fig. 3, where B. Properties of quark matter
one notes the chiral condensate in the color-3 channel

abruptly vanishes and the diquark condensate assumes its The F:hemlcal pqtentlal is a useful cpncept only n that it
value of phasd?2). Thus this solution is not only strictly a CcOnstrains the particle number or density, the physical quan-
local minimum, but is also short-lived in density. tity we actually need to compute. The four-fermion interac-

tions we are dealing with are somewhat unusual in that they

The remaining thermodynamic competition is thus be- q q h £ usi h
tween the two phases of pure chiral or color symmetry breakr® dependent on the energy, a consequence of using the

ing. For three colors, the critical ratio of the condens&8e5 zero-mode Green functions as the seed of the interaction.

is V3. At u=0 we find f/g=165 MeV/65 MeV>13. It For this reason we carefully define the density as
means that at low values qf the coupling constank is

smaller in the chiral broken phase, hence this phase is ener- n:J X j4(X) (32)
getically preferred. Furthermore, this is thkewhich leads to AR

a reasonable effective quark masswE 346 MeV, as well

as a chiral condensate ()Ezp): —(255 MeV)>. We thus and note that in this case one does not have the simple form
recover the standard chiral symmetry breaking at low baryon ,= (,ZIT’)/MI// for the current which carries the conserved par-
density. ticle number. In our notation this corresponds to the current
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of the high-momentum quarks, which without the zeroWith this definition we have not separated the quark and
modes would imply that the correct normalization is not pre-antiquark distribution functions, since the phases we analyze
served. We find the applicable current is do not necessarily retain these as basic degrees of freedom.
The conserved current written above is a sum of two
4 e Al a4 parts. The first is computed with the Green functions ob-
d"p, d"p, d"k, dk, tained through a self-consistent solution of the Schwinger-
(2)18 Dyson-Gorkov equations, and to the density it contributes

J#(q)=—in(q)m¢(q)+i>\f

X (2m)* 5% (py+pa—ki—ky)

% [ dUpLaay (o etuu o RGO
181pP1 k Kol o 4
Xenlol(/ﬁ_ ( 1)l/fL2a2 2(p2)5 22 :—If d*p Tr[S(p)'y4]
< U azU Tozenzozd/LﬁzPZ(k )(gq
Y23
t ng 4
XLAp1 i F (b= )R =—iJ(2£4 —(E“ﬂ [2Z,(p)+ (Ne=2)Zo(p)].
X Fl(k, = )21+ (LoR), (33 (36)

where the bracketed momentum derivative is understood t¥he scalar functionZ, p) are complex, and for a given
be a sum of four terms, each with one form factor differen-sojution set {1,,M,,A) become
tiated with respect to its momentum argument.
Although there has been some rearrangement, this is es-
sentially the vertex14) in which the form factors have been z,(p)
differentiated with respect to the momentuy. One can

verify this current is conserved by considering the Dirac 1+ a*(p,,u)Mf—4B(p,,u)A2
equation, written here for the left-handed, flavor-1 compo- ~— 2 * 29_ 274"
. [1+a(p.u)MT] [1+a* (p,u)M3]— 16B(p,u) A
L d*p, d*k,; d*k,
[(p+iw) Ji (@) -\ | ———(—2m)* Zy(p)=— . (37)
(2m) 1+a(p,u)M3

X 8(q+po—ky—k L UrUe
(@+pzk Z)J AU 7. )i, ViU g, "engo, The functionsa(p,«) and B(p,u), as defined previously,

+ Ny 1BIPL | i2 kol arise as combinations of the form factors evaluated with the
XF Ky = ) K 1)%2“2 P2 F(P2, ) €22 appropriate momentum arguments. In general, the first is
complex while the second is purely real and always positive,
a consequence of this being the expression which accompa-
nies the diquark propagation. Through pairing quarks, the
complications due to the non-Hermiticity of the single-quark
erac operator are avoided.

XUPPU 26,0, F (Ko, = ) 200 (kg =0. (39

202

Acting on this withqﬂz,l{l(q)(a/&qu), and with similar op-
erations on similar equations for the other components, on
In the current’'s second term the form factors have been

recovers the required,,j =0.
For three col?)rs Vyé‘ké(\?e) found two phases which SpeCirgl\/lfferentlated with respect t@,. The expectation values

1
the stable equilibria, each having one broken symmetryf eret computgdﬂt}o the sarﬂf()\ ) as;;ollowtid for the Green
Phase(1) denotes spontaneously broken chiral symmetry,funC lons, and this generates another siblir(@, ) in our
and it competes with phag@) which breaks color symme- amily of functions.
try. As an intermediate step in calculating the density, we
first examine the quark occupation numbers for the two

R ) =(priw)(ptrim), , ,
statesn(p) where in this contexp=|p|, which is obtained YP) = (PHIL)o(PHT1)a0p(P.1t) (P 1) 00

via ap, integration and precisely defined as x&qo)\(p,li) (38)
ps
[ dp
n=—lf n(p). (35 . . .
(2m)3 Combining the two pieces, the density reads
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14 i . . . . . , mass is clearly present, which upon evaluation of Egs.
p=318 MeV — (21),(24) satisfies the same gap equation as in fhe=1
12 5:288 MS¥ ] case, Eq(13).° The effective mass shifts the Fermi surface,

which for free quarks is apr=u, to the solution ofpg

=Ju?= M(pg,u)?. This, as shown in Fig. 5, is the only
8| - modification of the standard fermionic step functiof mag-

10

% nitude 2N¢{N.=12) due to chiral symmetry breaking.

61 The occupation numbers are more interesting when the
al ] quarks fall into the color superconducting state. As is known

in BCS theory, Cooper pairing of quarks spreads the Fermi

2r 1 surface as fermions pair with momenta above and below the

0 ) ) ) ) ) ) ) chemical potential. As demonstrated in Fig. 6, this is pre-

0 100 200 300 400 500 600 700 800 cisely the result for the two quark colors which participate in

Ipl (MeV) the diquark. Quarks of the parallel color are unaffected by

the energy gap, and furthermore, since chiral symmetry has
FIG. 5. Occupation numben(p) vs p in phase(1), wherep, ~ been completely restored, appear as massless fermions with a
=318, 360, and 600 MeV. The correspondipg=45, 170, and degeneracy of Rg. This is the origin of the discontinuity at
450 MeV, respectively. p=u, since the Fermi momentum remains at this point for
these free quarks. Thus the plot should be considered a com-

dp Patin bination of a smooth distribution of Bose-condensed di-
n= —iij 2 — [2Z1(p)+(N;—2)Z,(p)] quarks added to a simple step function of magnitude 4. To be
(2m)" ([(p+ip) explicit, Eq.(39) can be rewritten as
8 Patin IN((Ng—2 4
- + _ 2N¢(N;—2) d’p
Pa(Pi) P al(P, ) (p+i,u,)2a(p) ¥(P) n(®= 6 “3+2NFJ'(27T)4
4 ) 2 2_ 2
XI5~ G1(p)g1+(Nc—2)°G2(p)92 % p(pgt pu”—p°)
[
[p3+(p—w)?I[pa+(p+u?)?]
2
+{ 2N =5+ N_) (Gl(p)92+62(p)gl)H- (39 1
c X| ————=|. (40
1+4B(p)A?

The functionsG; (p) can be deduced from Eqél7) and

(37). The integrand here is complex, however, unggre-  The first term is the density fdi.—2 free quarks, the sec-
flection we note thata(—ps)=a*(p,) and y(—ps)=  ©nd's a contribution from the remaining degrees of freedom

— ¥*(p). This follows from our preserving the non- which are no Iong_er properly described as single quar_ks.

Hermitian contributions exactly, again we note that upgn Performing the integration over all momenta, we arrive at

integrate we recover purely real occupation numbers anH‘e density as a functlp_n pf chemical potential. ]n Fig. 7 this

hence quark density. is shown for the equilibria states, demonstrating the large
We now consider the two phases individually. When

phase(l) is assumed, and =0, the density expressidi39)

simplifies to a form where the integrand contains a denomi- 5n fact the same gap equation applies to ondefor any number

nator of the form p+iu)2+ M(p,u)?. A chiral effective  of flavors[28].

14 , — 8 . .
pn = 60 MeV — T = 60 MeV —
12 hoo p =360 MeV - J 7 e p =360 MeV - 1
w=600MeV - | [T S N k= 600 MeV -
of &1 AN ; ]
5 -
-~ 8 =
= S 4t \
c 6t < iy
i
4 { 2t \
\\
2 Ny 1 ;
e \\.\.
0 : e 0 . o
0 200 400 600 800 1000 0 200 400 600 800 1000
Ipl (MeV) Ipl (MeV)

FIG. 6. Occupation number(p) vs p in phase2), wherex= 60, 360, and 600 MeV. The plot on the left is for all three colors together,
the right for the two which participate in the bosonic diquark condensate.
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3 results; in every case chiral symmetry is restored at densities
which are a small fraction of that for saturation.
25 The near-zero transition density also arises when diquark
condensation is neglected and chiral symmetry is restored by
2t other mean$31,32. These authors have undertaken analysis
T .5 of extended mean-field possibilitid80] and interpolative
= models of quark and hadronic mat{@&3].
i L Finally, we note that the strong prediction one can make
from this and similar treatments is the presence of a first-
05 | order transition which restores chiral symmetry. It is a con-
clusion which is shared by other recent works which con-
0 sider chiral symmetry breaking at the quark level. In

0 100 200 30?Mev)4°° 500 600 particular we note that the density discontinuity which we
g find at this transitionAn~2.4n,, is close to that found in the
FIG. 7. Quark density as a function of chemical potential. TheNJL-type treatment of Berges and Rajagopainé&1.5n,
solid line denotes the equilibrium state of quark matter, the dashed-2n,) [19] as well as the chiral random matrix model
lines the metastable continuations. Naive quark matter saturatiofAn~2.5n,) [34].
density lies at~0.45 fm 3,

discontinuity at the phase transition, where the dashed lines
are the metastable continuations in each phase. Since the
constituent mass of a quark in the chiral breaking phase re- We have formulated the effective low-energy action for
mains near 300 MeV, no density is amassed below thiswo light fermions induced by instantons at nonzero chemi-
chemical potential. This is consistent with our finding a vir- cal potential. In the resulting fermion vertex we have re-
tually constant chiral condensate below the critical chemicatained the full dependence on both momentum and chemical
potential, in that the absence of physical quark densitypotential, which arises from the would-be zero modes. The
should leave the physical condensate unchanged from itsverall interaction strength is given by a dynamically deter-
vacuum value. Soon after the point at which the Fermi surmined coupling, which is a consequence of the fact that the
face moves from zero and physical states begin to be fillednstanton weight itself is proportional to the fermion deter-
the onset of the phase transition has been reached. Thus, fminant. In these respects we differ from other studies such as
pure quark matter in this simple mean-field treatment, thehe random-matrix model, Nambu-Jona-Lasinio models, and
maximum density of a purely chiral-broken phase is a rathealternative instanton approaches.
smalln=0.062 fm 3. Taking a naive saturation density for  In general, introduction of the fermion chemical potential
quark matter as three times that for nuclear matter, we havieads to complications due to the resulting nonhermiticity of
no=0.445 fm 3, which lies within the coexistence line be- the Dirac operator. This is particularly pronounced through
tween the two phases. It is only above a densitynof the complex nature of the quark interaction, induced by the
=1.05 fm 3=2.5%, where one finds the pure supercon- zero-mode solution of the complex eigenvalue problem. By
ducting phase. For reference, the density of free quarks aktaining the exact functional forms without simplifications
this u would be 2.28,, somewhat lower than that which is we are able to avoid any complications from individual
found in the pairing scenario where the states are in sominaginary eigenvalues. This is an advantage over various
sense compressed through bosonic condensation. numerical techniques, and should persist for all orders in the
This extremely low density for the onset of chiral resto- instanton density. The formalism outlined in this paper al-
ration suggests that in the core of heavy nuclei quarks exidbws one to make such an expansion in a systematic way.
in some transitional, “boiling” stat¢17]. However, we have The effective action leads to a competition between two
disregarded certain effects which could modify these resultgphases, one of chiral symmetry breaking and another charac-
Considering an extended mean-field ansatz of more than therized by diquark condensation. It was studied by solving a
three channels we consider, would likely result in additionalcoupled system of gap equations to first order in the instan-
interquark forces, which could lead to enhanced repulsioton density. For two massless flavors and three colors, a
and extend the stability of the chiral-breaking phase to highesimple ansatz allowed us a detailed study of the various
density[30]. We have also not taken into account the bindingtypes of symmetry breaking. Although we did recover an
energy of the quarks within a nucleon, which would notinteresting case of mixed condensation which broke both
modify our results at the quark level but could lead to somechiral and color symmetries, it was found to be thermody-
differences between quark and nuclear matter. namically disfavored. Considering the remaining possibili-
Another possibility is to vary the parameters of ourties, we find that spontaneously broken chiral symmetry is
theory. In particular, one can change the instanton packingestored through a first-order phase transition, replaced by
fraction which has been fixed atR=1/3 in all calculations ~ color breaking due to the formation of a diquark condensate.
described here. This in turn scales the strength of the induceith our “standard” choice of the instanton ensemble,
interaction. However, taking values from half to twice our N/V=1fm~* and p/R=1/3, we find the critical chemical
choice does not lead to qualitative differences in the densitypotential is=340 MeV, where the superconducting energy

VIIl. CONCLUSIONS
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gap is 115 MeV and decreasing with risipg This translates

PHYSICAL REVIEW D 60 016004

into the onset of chiral restoration at very low density of [CI)R,L(X—Z)]“i:\/_%e"(XFZ‘O II(x—2)d,

guark matter. Indeed, the critical,=340 MeV corresponds

to the quark density of 0.14 in the chiral broken phase
and to the density of 2.531; in the superconducting phase,
whereny=0.445 fnt is the quark density corresponding to
the standard nuclear matter. Taken literally, it suggests that
the deep interior of heavy nuclei are in a boiling mixture of
the two phases, as suggested earlier in Réf]. It should be
kept in mind however, that our calculations were to only first
order in the instanton density and that we neglected the bind-
ing of constituent quarks into nucleons. Both circumstances
might shift the critical density somewhat.

Restricting our discussion to the quark level, we com-
puted the fermion occupation numbers in the two distinct
phases which explicitly demonstrate the physics in each sys-
tem. In the chiral broken phase, the reduced Fermi radius
illustrates the effective mass, whereas in the diquark phase

II(x)

A(X, )

=1+

X2+ 12

v

e‘#(x4_z4)A(X_ Z, 1)

X (x—2)

NP
((TM)}El Uy .

(A1)

The single instanton solution is apparent in the functions

p?

X2+r2+4p?’

Xq .
———|coqur)+ Tsm(,ur) . (A2)

4

BCS-type behavior is demonstrated by the lack of a sharg he Fourier transform is defined as

Fermi surface.

It is expected that for large chemical potential higher-
order corrections will self-consistently reduce the instanton
background[20] and thus suppress the nonperturbative ef-
fects. At very high quark density, pairing has been predicted
due to the perturbative attraction from single gluon exchange
[9,35].

Finally, we note that our primary result, a first-order res-
toration of chiral symmetry at a chemical potential near 340

d(p,p)=i f d*x e P XD (X, 1)

Dr o (p,u)®= @M(D:M)(U,f)zeijﬁ_

(A3)

and has the structure

(A4)

ously using simpler models both wift7,13,19 and without
[31,32,34 color superconductivity. These more schematic
models of spontaneous symmetry breaking did not include
some of the microscopic degrees of freedom retained in the
instanton model used here. The general uniformity in predic-
tions from these different approaches suggests our more de-
tailed instanton calculations validate the formulation of these
models which are designed to describe the dominant phe-
nomena of nonperturbative QCD.

become

®i(Pa,pip)=
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APPENDIX: FOURIER TRANSFORMS OF FERMION
ZERO MODES

The use of the exact fermion zero modes in the momen-
tum space tremendously simplifies all calculations. The start-
ing point is the exact fermion zero mode in the field of one
(anti-instanton inx space[23,20, which we cite for arbi-
trary instanton positiorz, size p, and orientation given by
rectangulalN;x 2 matrix U. In the spinor representation for

2

ealpa,pisn) = ZoA(P— 1= IPQL(2Patip) -

+i(p—u—ipy)fo 1+ (p+utips)

X[(2pgtip)fe—i(p+u+ips) o]},

mp2p;

—2[(ZD—M)(IO—M—im)fl-+(2p+M)
4p

X(p+u+ipy)fi +|2(p—w)(P—pm—ipa)
1 H 2 2
_E(M+|p4)[p4+(p_ﬂ~) 1{fo-

+

1
2(p+M)(p+M+ip4)+B(M+ip4)

f2+]1

X[p3+(p+w)?] (A5)

the Dirac matrices the zero modes are two-component Weykhere the scalap=|p|, the spatiali=1-3, and the func-

spinors which can be written as tions
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11(22)Ko(Z+) = lo(Z+)Kq(Z2) sions it is explicitly verified that the normalization condition
2= — — —, holds for anyu:
dp .
1=J?¢|(D.M)®|(D,M)
11(2.)Ky(z2) (2m)
e R (A6)
Zs f dp -y -
= — + — . .
(277)4[904( w)ea(p) +@* (—u)-o(p)]
are evaluated aZiI%p\/pi-i-(p"_‘,u)z. With these expres- (A7)
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