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Gauge independent effective potential and the Higgs boson mass bound
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Institute of Physics, National Chiao-Tung University, Hsinchu, Taiwan, Republic of China

~Received 2 November 1998; published 26 May 1999!

We introduce the Vilkovisky-DeWitt formalism for deriving the lower bound of the Higgs boson mass. We
illustrate the formalism with a simplified version of the standard electroweak model, where all charged boson
fields as well as the bottom-quark field are disregarded. The effective potential obtained in this approach is
gauge independent. We derive from the effective potential the mass bound of the Higgs boson. The result is
compared to its counterpart obtained from the ordinary effective potential.@S0556-2821~99!06211-6#

PACS number~s!: 11.15.Ex, 12.15.Ji, 14.80.Bn
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I. INTRODUCTION

The effective potentials in quantum field theories are o
shell quantities. Therefore, in gauge field theories, effec
potentials are gauge-dependent as pointed out by Jacki
the early 1970s@1#. This property caused concerns on t
physical significance of effective potentials. In a work
Dolan and Jackiw@2#, the effective potential of scalar QED
was calculated in a set ofRj gauges. It was concluded tha
only the limiting unitary gauge gives a sensible result on
symmetry-breaking behavior of the theory. This difficul
was partially resolved by the work of Nielsen@3#. In his
paper, Nielsen derived the following identity governing t
behavior of effective potential in a gauge field theory:

S j
]

]j
1C~f,j!

]

]f DV~f,j!50, ~1!

wherej is the gauge-fixing parameter,f is the order param-
eter of the effective potential, andC(f,j) is the Green’s
function for certain composite operators containing a gh
field. The above identity implies that, for differentj,
the local extrema ofV are located along the same charact
istic curve on the (f,j) plane, which satisfiesdj
5df/@C(f,j)/j#. Hence covariant gauges with differentj
are equally good for computingV. On the other hand, a
choice of the multi-parameter gaugeLg f52(1/2j)(]mAm

1sf11rf2)2 @2#, with f1,2 the components of the scala
field, would break the homogeneity of Eq.~1! @3#. Therefore
an effective potential calculated in such a gauge does
have a physical significance.

Recently, it was pointed out@4# that the Higgs boson mas
bound, which one derives from the effective potential,
gauge dependent. The gauge dependence resides in th
pression for the one-loop effective potential. Boyanovs
Loinaz and Willey proposed a resolution@5# to the problem,
which is based upon thephysical effective potentialcon-
structed as the expectation value of the Hamiltonian in ph
cal states@6#. They computed thephysical effective potentia
of an Abelian Higgs model with an axial vector coupling
the gauge fields to the fermions. A gauge-independent lo
bound for the Higgs boson mass is then determined from
effective potential. We note that their approach requires
identification of first-class constraints of the model and
projection to the physical states. Such a procedure is
0556-2821/99/60~1!/016002~8!/$15.00 60 0160
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manifestly Lorentz covariant. Consequently we expect tha
is highly non-trivial to apply their approach to the standa
model~SM!. In our work, we shall introduce the Vilkovisky
DeWitt formalism @7,8# for constructing a gauge
independent effective potential, and therefore obtain
gauge-independent lower bound for the Higgs boson ma

In the Vilkovisky-DeWitt formalism, fields are treated a
vectors in the configuration space, and theaffine connection
of the configuration space is identified to facilitate the co
struction of an invariant effective action. Since this proc
dure is completely Lorentz covariant, the computations
the effective potential and the effective action are straig
forward. We shall perform a calculation with respect to a t
model @9# which disregards all charged boson fields in t
SM. It is easy to generalize our calculations to the full S
case. In fact, the applicability of Vilkovisky-DeWitt formal
ism to non-Abelian gauge theories has been extensiv
demonstrated in the literature@10#.

The outline of this paper is as follows. In Sec. II, w
briefly review the Vilkovisky-DeWitt formalism using the
scalar QED as an example. We shall illustrate that the ef
tive action of Vilkovisky and DeWitt is equivalent to th
ordinary effective action constructed in the Landau-DeW
gauge@11#. In Sec. III, we calculate the effective potential o
the simplified standard model, and the relevant renormal
tion constants of the theory using the Landau-DeWitt gau
The effective potential is then improved by the renormaliz
tion group analysis. In Sec. IV, the Higgs boson mass bo
is derived and compared to that given by the ordinary eff
tive potential in the Landau gauge. We conclude in Sec.
with some technical details discussed in the Appendix.

II. VILKOVISKY-DEWITT EFFECTIVE ACTION
OF SCALAR QED

The formulation of Vilkovisky and DeWitt is motivated
by the parametrization dependence of the ordinary effec
action, which can be written generically as@12#

exp
i

\
G@F#5exp

i

\ S W@ j #1F i
dG

dF i D
5E @Df#exp

i

\ S S@f#2~f i2F i !
dG

dF i D ,

~2!

whereS@f# is the classical action, andF i denote the back-
ground fields. The dependence on the parametrization a
©1999 The American Physical Society02-1
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because the quantum fluctuationh i[(f i2F i) is not a
vector in the field configuration space, hence the prod
h i
•dG/dF i is not a scalar under a reparametrization

fields. The remedy to this problem is to replaceh i with a
two-point functions i(F,f) @7,8,13# which, at the pointF,
is tangent to the geodesic connectingF andf. The precise
form of s i(F,f) depends on the connection of the config
ration space,G jk

i . It is easy to show that@12#

s i~F,f!5h i2
1

2
G jk

i h jhk1O~h3!. ~3!

For scalar QED described by the Lagrangian:

L52
1

4
FmnFmn1~Dmf!†~Dmf!2l~f†f2m2!2, ~4!

with Dm5]m1 ieAm andf5(f11 if2)/A2, the connection
of the configuration space is given by@7,12#

G jk
i 5H i

jkJ 1Tjk
i , ~5!

where$ jk
i % is the Christoffel symbol of the field configuratio

space andTjk
i is a quantity induced by generators of th

gauge transformation. The Christoffel symbol$ jk
i % can be

computed from the following metric tensor of scalar QED

Gfa(x)fb(y)5dabd
4~x2y!,

GAm(x)An(y)52gmnd4~x2y!,

GAm(x)fa(y)50. ~6!

According to Vilkovisky’s prescription@7#, the metric tensor
of the field configuration space is obtained by differentiat
twice with respect to the fields in the kinetic Lagrangian. F
the above metric tensor, we have$ jk

i %50 since each compo
nent of the tensor is field independent. However, the Chr
offel symbol would be non-vanishing if one parametrizes E
~4! with polar variablesr and x such thatf15rcosx and
f25rsinx. Finally, to determineTjk

i , let us specify genera
tors ga

i of the scalar-QED gauge transformations:

gy
fa(x)

52eabefb~x!d4~x2y!,

gy
Am(x)

52]md4~x2y!, ~7!

where eab is a skew-symmetric tensor withe1251. The
quantityTjk

i is related to the generatorsga
i via @7#

Tjk
i 52Bj

aDkga
i 1

1

2
ga

l Dlgb
i Bj

aBk
b1 j↔k, ~8!

where Bk
a5Nabgkb with Nab being the inverse ofNab

[ga
k gb

l Gkl . The expression forTjk
i can be easily understoo

by realizing thati , j , . . . ,l are function-space indices, whil
a andb are space-time indices. Hence, for example,
01600
ct
f

-

r

t-
.

Df1(z)gy
Am(x)

5
]gy

Am(x)

]f1~z!
1H Am~x!

j f1~z!
J gy

j , ~9!

where the summation overj also implies an integration ove
the space-time variable in the functionj.

The one-loop effective action of scalar QED can be c
culated from Eq.~2! with each quantum fluctuationh i re-
placed bys i(F,f). The result is written as@12#:

G@F#5S@F#2
i\

2
lndetG1

i\

2
lndetD̃ i j

21 , ~10!

whereS@F# is the classical action withF denoting generi-
cally the background fields; lndetG arises from the function-
space measure@Df#[)xdf(x)AdetG; and D̃ i j

21 is the
modified inverse propagator:

D̃ i j
215

d2S

dF idF j2G i j
k @F#

dS

dFk . ~11!

To study the symmetry-breaking behavior of the theory,
focus on the effective potential which is obtained fromG@F#
by setting each background fieldF i to a constant.

The Vilkovisky-DeWitt effective potential of scalar QED
has been calculated in various gauges and different sc
field parametrizations@11,12,14#. The results all agree with
one another. In this work, we calculate the effective poten
and other relevant quantities in the Landau-DeWitt gau
@15#, which is characterized by the gauge-fixing term:Lg f
52(1/2j)(]mBm2 ieh†F1 ieF†h)2, with j→0. In Lg f ,
Bm[Am2Acl

m , and h[f2F are quantum fluctuations
while Acl

m andF are background fields. For the scalar field
we further write F5(rcl1 ixcl)/A2 and h5(r1 ix)/A2.
The advantage of performing calculations in the Land
DeWitt gauge is thatTjk

i vanishes@11# in this case. In other
words, the Vilkovisky-DeWitt formalism coincides with th
conventional formalism in the Landau-DeWitt gauge.

For computing the effective potential, we chooseAcl
m

5xcl50, i.e.,F5rcl /A2. In this set of background fields
Lg f becomes

Lg f52
1

2j
~]mBm]nBn22erclx]mBm1e2rcl

2 x2!. ~12!

We note thatBm2x mixing in Lg f is j dependent, and
therefore would not cancel out the corresponding mix
term in the classical Lagrangian of Eq.~4!. This induces
mixed-propagators such as^0uT„Am(x)x(y)…u0& or
^0uT„x(x)Am(y)…u0&. The Faddeev-Popov ghost Lagrangi
in this gauge reads

LFP5v* ~2]22e2rcl
2 !v. ~13!

With each part of the Lagrangian determined, we are re
to compute the effective potential. Since we choose a fie
independent flat-metric, the one-loop effective potential
completely determined by the modified inverse-propaga
D̃ i j

21 @16#. From Eqs.~4!, ~11!, ~12! and ~13!, we arrive at
2-2
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D̃BmBn

21 5~2k21e2r0
2!gmn1S 12

1

j D kmkn,

D̃Bmx
21 5 ikmer0S 12

1

j D ,

D̃xx
215S k22mG

2 2
1

j
e2r0

2D ,

D̃rr
215~k22mH

2 !,

D̃v* v5~k22e2r0
2!22, ~14!

where we have setrcl5r0, which is a space-time
independent constant, and definedmG

2 5l(r0
222m2),

mH
2 5l(3r0

222m2). Using the definition G@r0#
52(2p)4d4(0)Ve f f(r0) along with Eqs.~10! and~14!, and
taking the limit j→0, we obtain Ve f f(r0)5Vtree(r0)
1V1-loop(r0) with

V1-loop~r0!5
2 i\

2 E dnk

~2p!nln@~k22e2r0
2!n23

3~k22mH
2 !~k22m1

2 !~k22m2
2 !#, ~15!

where m1
2 and m2

2 are solutions of the quadratic equatio
(k2)22(2e2r0

21mG
2 )k21e4r0

450. One notices that the
gauge-boson’s degree of freedom inV1-loop has been contin-
ued ton23 in order to preserve the relevant Ward identitie
For example, this continuation is crucial to ensure
Ward identity which relates the scalar self-energy to the c
tribution of the tadpole diagram. Our expression f
V1-loop(r0) agrees with previous results obtained in t
unitary gauge@14#. One could also calculate the effec
ive potential in theghost-freeLorentz gauge withLg f5
2(1/2j)(]mBm)2. The cancellation of the gauge-parame
(j) dependence in the effective potential has been dem
strated in the case of massless scalar QED wherem250
@11,12#. It can be easily extended to the massive case,
the resultant effective potential coincides with Eq.~15!. In
the Appendix, we will also demonstrate the cancellation
gauge-parameter dependence in the calculation of Hig
boson self-energy. The obtained self-energy will be show
coincide with its counterpart obtained from the Landa
DeWitt gauge. We do this not only to show that th
Vilkovisky-DeWitt formulation coincides with the ordinar
formulation in the Landau-DeWitt gauge, but also to illu
trate how it gives rise to identical effective action in spite
beginning with different gauges.

It is instructive to rewrite Eq.~15! as

V1-loop@r0#5
\

2E dn21kW

~2p!n21
„~n23!vB~kW !1vH~kW !

1v1~kW !1v2~kW !…, ~16!
01600
.
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where vB(kW )5AkW21e2r0
2, vH(kW )5AkW21mH

2 and v6(kW )

5AkW21m6
2 . One can see thatV1-loop is a sum of the zero-

point energies of four excitations with massesmB[er0 ,
mH , m1 and m2 . Since there are precisely four physic
degrees of freedom in the scalar QED, we see that
Vilkovisky-DeWitt effective potential does exhibit a corre
number of physical degrees of freedom. Such a nice prop
is not shared by the ordinary effective potential calculated
the ghost freeLorentz gauge just mentioned. As will b
shown later, the ordinary effective potential in this gau
contains unphysical degrees of freedom.

III. VILKOVISKY-DEWITT EFFECTIVE POTENTIAL
OF THE SIMPLIFIED STANDARD MODEL

In this section, we compute the effective potential of t
simplified standard model where charged boson fields and
fermion fields except the top-quark field are disregarded. T
gauge interactions for the top quark and the neutral sc
bosons are prescribed by the following covariant derivati
@9#:

DmtL5S ]m1 igLZm2
2

3
ieAmD tL ,

DmtR5S ]m1 igRZm2
2

3
ieAmD tR ,

Dmf5„]m1 i ~gL2gR!Zm…f, ~17!

whereZm andAm denote theZ boson and the photon respe
tively; the coupling constantsgL and gR are given bygL
5(2g1/21g2/3) and gR5g2/3 with g15g/cosuW and g2
52etanuW respectively. The self-interactions of scalar fiel
are described by the same potential term as that in Eq.~4!.
Clearly this toy model exhibits aU(1)A3U(1)Z symmetry
where eachU(1) symmetry is associated with a neutr
gauge boson. TheU(1)Z charges oftL , tR andf are related
in such a way that the following Yukawa interactions a
invariant underU(1)A3U(1)Z :

LY52y t̄LftR2y t̄Rf* tL . ~18!

Since Vilkosvisky-DeWitt effective action coincides with th
ordinary effective action in the Landau-DeWitt gauge, w
thus calculate the effective potential in this gauge, which
defined by the following gauge-fixing terms@17#:

Lg f52
1

2a S ]mZ̃m1
ig1

2
h†F2

ig1

2
F†h D 2

2
1

2b
~]mÃm!2,

~19!

with a,b→0. We note thatÃm, Z̃m and h are quantum
fluctuations associated with the photon, theZ boson and the
scalar boson respectively, i.e.,Am5Acl

m 1Ãm, Zm5Zcl
m 1Z̃m,

and f5F1h with Acl
m , Zcl

m and F being the background
fields. For computing the effective potential, we takeF as a
space-time-independent constant denoted asro , and setAcl

m

2-3
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5Zcl
m50. Following the method outlined in the previous se

tion, we obtain the one-loop effective potential

VVD~r0!5
\

2E dn21kW

~2p!n21
„~n23!vZ~kW !

1vH~kW !1v1~kW !1v2~kW !24vF~kW !…, ~20!

where v i(kW )5AkW21mi
2 with mZ

25(g1
2/4)r0

2 , m6
2 5mZ

2

1 1
2 (mG

2 6mGAmG
2 14mZ

2) andmF
2[mt

25y2r0
2/2. The Gold-

stone boson massmG is defined as before, i.e.,mG
2 5l(ro

2

22m2) with m being the mass parameter of the Lagrangi
One may notice the absence of photon contributions in
above effective potential. This is not surprising since phot
do not couple directly to the Higgs boson.

Performing the integration in Eq.~20! and subtracting the
infinities with modified minimal subtraction~MS! scheme
prescription, we obtain

VVD~r0!5
\

64p2 S mH
4 ln

mH
2

k2 1mZ
4ln

mZ
2

k2 1m1
4 ln

m1
2

k2

1m2
4 ln

m2
2

k2 24mt
4ln

mt
2

k2 D 2
\

128p2

3~3mH
4 15mZ

413mG
4 112mG

2 mZ
2212mt

4!,

~21!

where k is the mass scale introduced in the dimensio
regularization. AlthoughVVD(r0) is obtained in the Landau
DeWitt gauge, we should stress that any other gauge w
non-vanishingTjk

i should lead to the same result. For lat
comparisons, let us write down the ordinary one-loop eff
tive potential in the Lorentz gauge@removing the scalar par
of Eq. ~19!# as follows@2#:

VL~r0!5
\

2E dn21kW

~2p!n21
„~n21!vZ~kW !1vH~kW !

1va~kW ,a!1vb~kW ,a!24vF~kW !…, ~22!

where a is the gauge-fixing parameter andva,b(kW ,a)

5AkW21ma,b
2 (a) with ma

2(a)51/2•(mG
2

1AmG
4 24amZ

2mG
2 ) and mb

2(a)51/2•(mG
2

2AmG
4 24amZ

2mG
2 ). It is easily seen that there are 6 boson

degrees of freedom inVL , i.e., two extra degrees of freedo
emerge as a result of choosing the Lorentz gauge. In
Landau gauge, which is a special case of the Lorentz ga
with a50, there is still one extra degree of freedom in t
effective potential@6#. Since the Landau gauge is adopt
most frequently for computing the ordinary effective pote
tial, we shall takea50 in VL hereafter. Performing the in
tegrations inVL and subtracting the infinities, we obtain
01600
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VL~r0!5
\

64p2 S mH
4 ln

mH
2

k2 13mZ
4ln

mZ
2

k2

1mG
4 ln

mG
2

k2 24mt
4ln

mt
2

k2 D
2

\

128p2 ~3mH
4 15mZ

413mG
4 212mt

4!. ~23!

We remark thatVL differs from VVD except at the point of
extremum wherer0

252m2. At this point, one hasmG
2 50 and

m6
2 5mZ

2 , which lead to VVD(r052m2)5VL(r0
252m2).

ThatVVD5VL at the point of extremum is a consequence
the Nielsen identity@3# mentioned earlier.

To derive the Higgs boson mass bound fromVVD(r0) or
VL(r0), one encounters a breakdown of the perturbat
theory at the point of sufficiently larger0 such that, for
instance, (l/16p2)ln(lr0

2/k2).1. To extend the validity of
the effective potential to the large-r0 region, the effective
potential has to be improved by the renomalization gro
~RG! analysis. Let us denote the effective potential asVe f f
which includes the tree-level contribution and quantum c
rections. The renormalization-scale independence ofVe f f im-
plies the following equation@18,5#:

S 2m~gm11!
]

]m
1b ĝ

]

]ĝ
2~gr11!t

]

]t
14D

3Ve f f~ tr0
i ,m,ĝ,k!50, ~24!

wherem is the mass parameter of the Lagrangian as sho
in Eq. ~4!, and

b ĝ5k
dĝ

dk
,

gr52k
dlnr

dk
,

gm52k
dlnm

dk
, ~25!

with ĝ denoting collectively the coupling constantsl, g1 ,g2

andy; r0
i is an arbitrarily chosen initial value forr0. Solving

this differential equation gives

Ve f f~ tr0
i ,m i ,ĝi ,k!5expS E

0

lnt 4

11gr~x!
dxD

3Ve f f„r0
i ,m~ t,m i !,ĝ~ t,ĝi !,k…,

~26!

with x5 ln(r08/r0
i ) for an intermediate scaler08 , and

t
dĝ

dt
5

b ĝ„ĝ~ t !…

11gr~ ĝ~ t !!
with ĝ~0!5ĝi , ~27!
2-4
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m~ t,m i !5m iexpS 2E
0

lnt11gm~x!

11gr~x!
dxD . ~28!

To fully determineVe f f at a larger0, we need to calculate
the b functions ofl, g1 , g2 and y, and the anomalous di
mensionsgm and gr . It has been demonstrated that t
n-loop effective potential is improved by the (n11)-loop b
and g functions@19,20#. Since the effectve potential is ca
culated to the one-loop order, a consistent RG analysis
quires the knowledge ofb andg functions up to a two-loop
accuracy. However, as the computations of two-loopb and
g functions are quite involved, we will only improve th
tree-level effective potential with one-loopb and g func-
tions. After all, the main focus of this paper is to show ho
to obtain a gauge-independent Higgs boson mass bo
rather than a detailed calculation of this quantity.

To compute one-loopb andg functions, we first calculate
the renormalization constantsZl ,Zg1

, Zg2
,Zy ,Zm2 and Zr ,

which are defined by

lbare5Zll, g1
bare5Zg1

g1 , g2
bare5Zg2

g2 ,

ybare5Zyy, ~m2!bare5Zm2m2, rbare5AZrr.
~29!

In the ordinary formalism of the effective action, all o
the above renormalization constants exceptZr are in fact
gauge-independent at the one-loop order in theMS scheme.
For Zr , the result given by the commonly adopted Land
gauge differs from that obtained from the Landau-DeW
gauge. In Appendix A, we shall reproduceZr obtained in the
Landau-DeWitt gauge with the general Vilkovisky-DeW
formulation. The calculation of various renormalization co
stants are straightforward. In theMS scheme, we have~we
will set \51 from this point on!

Zl512
1

128p2e8
S 3g1

4

l
224g1

22
16y4

l
132y21160l D ,

Zg1
5Zg2

512
1

216p2e8
S 27g1

2

8
12g2

223g1g2D ,

Zy511
1

192p2e8
~9g1

214g1g2224y2!,

Zm2511
1

128p2e8
S 3g1

4

l
212g1

22
16y4

l
116y2196l D ,

Zr511
1

32p2e8
~25g1

214y2!, ~30!

where 1/e8[1/e1 1
2 gE2 1

2 ln(4p) with e5n24. The one-
loop b and g functions resulting from the above renorma
ization constants are
01600
e-

nd

u
t

-

bl5
1

16p2 S 3

8
g1

423lg1
222y414ly2120l2D ,

bg1
5

g1

4p2 S g1
2

16
2

g1g2

18
1

g2
2

27D ,

bg2
5

g2

4p2 S g1
2

16
2

g1g2

18
1

g2
2

27D ,

by5
y

8p2 S y22
3g1

2

8
1

g1g2

12 D ,

gm5
1

2p2 S 3l

4
1

3g1
4

128l
2

3g1
2

32
2

y4

8l
1

y2

8 D ,

gr5
1

64p2 ~25g1
214y2!. ~31!

Similar to what was mentioned earlier, all of the above qu
tities are gauge-independent in theMS scheme exceptgr ,
the anomalous dimension of the scalar field. In the Land
gauge of the ordinary formulation, we have

gr5
1

64p2 ~23g1
214y2!. ~32!

IV. THE HIGGS BOSON MASS BOUND

The lower bound of the Higgs boson mass can be deri
from the vacuum instability condition of the electroweak e
fective potential@21#. In this derivation, there exists differen
criteria for determining the instability scale of the ele
troweak vacuum. The first criterion is to identify the inst
bility scale as the critical value of the Higgs-field streng
beyond which the renormalization-group-~RG-! improved
tree-level effective potential becomes negative@22–24#. To
implement this criterion, the tree-level effective potential
improved by the leading@24# or next-to-leading order
@22,23# renormalization group equations, where one-loop
two-loopb andg functions are employed. Furthermore, on
loop corrections to parameters of the effective potential
also taken into account@23,24#. However, the effect of one
loop effective potential is not considered.

To improve the above treatment, Casaset al. @25# consid-
ered the effect of RG-improved one-loop effective potent
The vacuum-instability scale is then identified as the value
the Higgs-field strength at which the sum of tree-level a
one-loop effective potentials vanishes. In our subsequ
analysis, we will follow this criterion except that the on
loop effective potential is not RG improved.

To derive the Higgs boson mass bound, one begins w
Eq. ~26! which implies

Vtree~ tr0
i ,m i ,l i !5

1

4
x~ t !l~ t,l i !„~r0

i !222m2~ t,m i !…
2,

~33!
2-5
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with x(t)5exp„*0
lnt@4/11gr(x)#dx…. Since Eq. ~28!

implies that m(t,m i) decreases ast increases, we
then have Vtree(tr0

i ,m i ,l i)'
1
4 x(t)l(t,l i)(r0

i )4 for
a sufficiently large t. Similarly, the one-loop effective
potential V1-loop(tr0

i ,m i ,ĝi ,k) is also proportional to

V1-loop„r0
i ,m(t,m i),ĝ(t,ĝi),k… with the same proportiona

constantx(t). Because we shall ignore all running effects
V1-loop, we can takeĝ(t,ĝi)5ĝi and m(t,m i)5(1/t)m i in
V1-loop. For a sufficiently larget, V1-loop can also be ap-
proximated by its quartic terms. In the Landau-DeWitt gau
with the choicek5r0

i , we obtain

VVD'
~r0

i !4

64p2 F9l i
2ln~3l i !1

g1i
4

16
lnS g1i

2

4 D
2yi

4lnS yi
2

2 D 1A1
2 ~g1i ,l i !lnA1~g1i ,l i !

1A2
2 ~g1i ,l i !lnA2~g1i ,l i !

2
3

2 S 10l i
21l ig1i

2 1
5

48
g1i

4 2yi
4D G , ~34!

where A6(g1 ,l)5g1
2/41l/2•(16A11g1

2/l). Similarly,
the effective potential in the Landau gauge is given by

VL'
~r0

i !4

64p2 F9l i
2ln~3l i !1

3g1i
4

16
lnS g1i

2

4 D 2yi
4lnS yi

2

2 D
1l i

2ln~l i !2
3

2 S 10l i
21l ig1i

2 1
5

48
g1i

4 2yi
4D G .

~35!

Combining the tree-level and the one-loop effective pot
tials, we arrive at

Ve f f~ tr0
i ,m i ,ĝi ,k!'

1

4
x~ t !„l~ t,l i !1Dl~ ĝi !…~r0

i !4,

~36!

whereDl represents the one-loop corrections obtained fr
Eqs. ~34! or ~35!. Let tVI5rVI /r0

i , the condition for the
vacuum instability of the effective potential is then@25#

l~ tVI ,l i !1Dl~ ĝi !50. ~37!

We note that the couplingsĝi in Dl are evaluated atk
5r0

i , which can be taken as the electroweak scale. He
we haveg1i[g/cosuW50.67, g2i[2etanuW50.31, andyi
51. The running couplingl(tVI ,l i) also depends upon
g1 ,g2 andy throughbl , andgr shown in Eq.~31!. To solve
Eq. ~37!, we first determine the running behaviors of t
coupling constantsg1 ,g2 andy. For g1 andg2, we have

t
d„gl

2~ t !…

dt
52gl~ t !

bgl
„ĝ~ t !…

11gr„ĝ~ t !…
'bg

l
2, ~38!
01600
e

-

ce

wherel 51,2, and the contribution ofgr is neglected in ac-
cordance with our leading-logarithmic approximation. Al
bg

l
25gl

2/2p2
•(g1

2/162g1g2/181g2
2/27). Although the dif-

ferential equations forg1
2 and g2

2 are coupled, they can b
easily disentangled by observing thatg1

2/g2
2 is a RG-

invariant. Numerically, we havebg
l
25clgl

4 with c152.3

31023 and c251.131022. Solving the differential equa-
tions gives

gl
22~ t !5gl

22~0!2cl lnt. ~39!

With g1(t) andg2(t) determined, the running behavior ofy
can be calculated analytically@4#. Given by2[2yby5c3y4

2c4g1
2y2 with c352.531022 andc458.531023, we obtain

y2~ t !5F S g1
2~ t !

g1i
2 D c4 /c1S yi

222
c3

c11c4
g1i

22D
1

c3

c11c4
g1

22~ t !G21

. ~40!

Now the strategy for solving Eq.~37! is to make an initial
guess onl i , which enters intol(t) andDl, and repeatedly
adjustl i until l(t) completely cancelsDl. For tVI5102 ~or
r0'104 GeV) which is the new-physics scale reachable
the CERN Large Hadron Collider~LHC!, we find l i54.83
31022 for the Landau-DeWitt gauge, andl i54.831022

for the Landau gauge. For a higher instability scale such
the scale of grand unification, we havetVI51013 or r0
'1015 GeV. In this case, we findl i53.1331021 for both
the Landau-DeWitt and Landau gauges. The numerical s
larity between thel i of each gauge can be attributed to
identical b function for the running ofl(t), and a small
difference between theDl of each gauge. We recall from
Eq. ~27! that the evolutions ofl in the above two gauges wil
be different if the effects of next-to-leading logarithms a
taken into account. In that case, the difference between
gr of each gauge gives rise to different evolutions forl. For
a largetVI , one may expect to see a non-negligible diffe
ence between thel i of each gauge.

The critical valuel i54.8331022 corresponds to a lowe
bound for theMS mass of the Higgs boson. SincemH

52Alm, we have (mH)MS>77 GeV. Forl i53.1331021,
we have (mH)MS>196 GeV. To obtain the lower bound fo
the physical mass of the Higgs boson, finite radiative corr
tions must be added to the above bounds@4#. We will not
pursue these finite corrections any further since we are s
ply dealing with a toy model. However we would like t
point out that such corrections are gauge-independent as
sured by the Nielsen identity@3#.

V. CONCLUSION

We have computed the one-loop effective potential of
Abelian U(1)3U(1) model in the Landau-DeWitt gauge
which reproduces the result given by the gauge-indepen
Vilkovisky-DeWitt formulation. One-loopb andg functions
2-6
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were also computed to facilitate the RG improvement of
effective potential. A gauge-independent lower bound for
Higgs-boson self-coupling or equivalently theMS mass of
the Higgs boson was derived. We compared this bound
that obtained using the ordinary Landau-gauge effective
tential. The numerical values of both bounds are almost id
tical due to the leading-logarithmic approximation we ha
taken. A complete next-to-leading-order analysis should b
ter distinguish the two bounds. This improvement as wel
extending the current analysis to the full standard model
be reported in future publications.

Finally we would like to comment on the issue of com
paring our result with that of Ref.@5#. So far, we have no
found a practical way of relating the effective potentials c
culated in both approaches. In Ref.@5#, to achieve agauge-
invariant formulation, the theory is written in terms of a ne
set of fields which are related to the original fields throu
non-local transformations. Taking scalar QED as an
ample, the new scalar fieldf8(xW ) is related to the origina
field through@6#

f8~xW !5f~xW !expS ieE d3yAW ~yW !•¹W yG~yW2xW ! D , ~41!

with G(yW2xW ) satisfying ¹2G(yW2xW )5d3(yW2xW ). To our
knowledge, it does not appear obvious how one might inc
porate the above non-local and non-Lorentz-covariant tra
formation into the Vilkovisky-DeWitt formulation. This is an
issue deserving further investigations.
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APPENDIX: THE HIGGS-BOSON SELF-ENERGY AND
VILKOVISKY-DEWITT EFFECTIVE ACTION

In this Appendix, we calculate the Higgs-boson se
energy of scalar QED from the Vilkovisky-DeWitt effectiv
action. We will focus on the momentum-dependent part
the self-energy, which is not a part of the effective poten
calculated in Sec. II. Furthermore only the infinite part of t
self-energy will be calculated. We thus perform the calcu
tion in the symmetry phase of the theory.

We begin with the Lagrangian in Eq.~4! where m2 is
negative, i.e.,2m2[u2.0. In this case,f1 andf2 have an
identical massmf

2 52lu2. Let us renamef1 asr andf2 as
x according to our notation in the symmetry-broken phase
one follows the background field expansion in Eq.~2!, one
would expand the QED action by writingAm5Acl

m 1Bm, r
5rcl1h1, andx5xcl1h2, with Acl

m , rcl andxcl the clas-
sical background fields, andBm, h1 andh2 the correspond-
ing quantum fluctuations. However, as mentioned earlier,
above quantum fluctuations should be replaced by vectors i

in the configuration space. Hence the action in Eq.~2! should
be expanded covariantly@7# in powers ofs i . To simplify our
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notations, we useB̃m and h̃ i to denote the new quantum
fluctuations. Since we will only calculate the self-energy
r, we may takeAcl

m 5xcl50 for simplicity. With the covari-
ant expansion, the Lagrangian in Eq.~4! generates the fol-
lowing quadratic terms:

Lquad52
1

4
~]mB̃n2]nB̃m!21

1

2
~]mh̃1!~]mh̃1!

1
1

2
~]mh̃2!~]mh̃2!1ercl~]mh̃2!B̃m2eh̃2~]mrcl!B̃m

1
1

2
e2rcl

2 B̃mB̃m2lF1

2
rcl

2 ~3h̃1
21h̃2

2!1u2~ h̃1
21h̃2

2!G
2GFmFn

F l dS

dF lf̃
mf̃n, ~A1!

whereF l andf̃ l denote generically the classical backgrou
fields and the quantum fluctuations respectively. We cho
the Rj background-field gauge with the gauge-fixing term

Lg f52
1

2a
~]mB̃m2aerclh̃2!2. ~A2!

The corresponding Faddeev-Popov Lagrangian is then

LFP5v* ~2]22ae2rcl
2 !v. ~A3!

Compared to the usual background-field formalism, the q
dratic quantum flucuationsLquad contain extra terms propor
tional to the connectionG jk

i of the configuration space. Thes
extra terms are crucial for the cancellation of gaug
parameter dependence in the Higgs-boson self-energy. F
Eqs. ~5!, ~6!, ~7! and ~8!, we calculate those connection
which are relevant to the Higgs-boson self-energy. We fi

GAm(x)An(y)
r(z) uF52e2rcl~z!~]x

mNxz!~]y
nNyz!

Gx(x)x(y)
r(z) uF5e2Nxy

„d4~y2z!1d4~x2z!…rcl~z!

2e4rcl~z!NzxNzyrcl~x!rcl~y!

GAm(x)x(y)
r(z) uF5e~]x

mNzx!d4~z2y!2e3rcl~z!

3~]x
mNxz!Nzyrcl~y!, ~A4!

where

Nxy5K xU 1

]21e2rcl
2 ~X!

UyL
with Xmux&5xmux&; and the notationuF denotes evaluating
the connection at the classical background fields. The ab
connections are to be multiplied bydS/druF[(2]2

22lu22lrcl
2 )rcl with the space-time variablez inte-

grated over. It is interesting to note that the product ofG and
dS/dr contain terms which are able to generate the Hig
boson self-energy. For example, in the express
2*d4xd4y(GAm(x)An(y)

r(z) dS/druF)B̃m(x)B̃n(y), we can set
2-7
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rcl50 in Nxz andNyz and contract the pair of gauge field
This gives rise to, in the momentum space, the follow
Higgs-boson self-energy:

Sr
AA~p2!52

ae2

8p2

1

e8
p2, ~A5!

where 1/e8[1/e1 1
2 gE2 1

2 ln(4p) with e5n24. For

2*d4xd4y(Gx(x)x(y)
r(z) dS/druF)h̃2(x)h̃2(y), we again setrcl

50 in Nxy and contract the pair of scalar fields. We obta
the Higgs-boson self-energy

Sr
xx~p2!5

e2

4p2

1

e8
p2. ~A6!

Finally, the term 2*d4xd4y(GAm(x)x(y)
r(z) dS/

druF)B̃m(x)h̃2(y) can produce an effectivercl2B̃m2h̃2

vertex, namely, @*d4pd4k/(2p)8#Gm(p,k)rcl(k)B̃m(p)h2
(2p2k), with Gm(p,k)5 i (pm/p2)•(k222lu2). This ver-
tex can contribute to the Higgs-boson self-energy by c
tracting with another vertex of the same kind. Similarly,
could contract with an ordinaryrcl2B̃m2h̃2 vertex. It turns
out that both contractions produce only finite contributions
the momentum-dependent part of the Higgs-boson s
energy. Therefore Eqs.~A5! and~A6! are the only divergen
contributions ofG jk

i to the momentum-dependent part of t
ys

s-
in
y

.S

ob
tic
uc

01600
-

o
lf-

Higgs-boson self-energy. These contributions are to
added to the self-energy obtained by contracting a pair
ordinaryrcl2B̃m2h̃2 vertices. We find

Sr
ordinary~p2!5

e2

8p2

1

e8
~31a!p2. ~A7!

From Eqs.~A5!, ~A6! and ~A7!, we arrive at

Sr~p2!5Sr
AA~p2!1Sr

xx~p2!1Sr
ordinary~p2!5

5e2

8p2

1

e8
p2.

~A8!

We can see that the gauge-parameter dependenc
Sr

ordinary(p2) is cancelled by that ofSr
AA(p2). From Eq.~A8!,

the wave-function renormalization constant of the Higgs b
son is found to be

Zr512
5e2

8p2

1

e8
. ~A9!

This result can be applied to the model in Sec. III with t
replacemente→2g1/2 according to Eq.~17!. HenceZr51
2(5g1

2/32p2)(1/e8) in that model, which reproduces the re
evant part of Eq.~30! calculated in the Landau-DeWit
gauge.
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