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Gauge independent effective potential and the Higgs boson mass bound
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We introduce the Vilkovisky-DeWitt formalism for deriving the lower bound of the Higgs boson mass. We
illustrate the formalism with a simplified version of the standard electroweak model, where all charged boson
fields as well as the bottom-quark field are disregarded. The effective potential obtained in this approach is
gauge independent. We derive from the effective potential the mass bound of the Higgs boson. The result is
compared to its counterpart obtained from the ordinary effective potef$@h56-282(99)06211-9

PACS numbss): 11.15.Ex, 12.15.Ji, 14.80.Bn

[. INTRODUCTION manifestly Lorentz covariant. Consequently we expect that it
is highly non-trivial to apply their approach to the standard
The effective potentials in quantum field theories are off-model(SM). In our work, we shall introduce the Vilkovisky-
shell quantities. Therefore, in gauge field theories, effectivdeWitt formalism [7,8] for constructing a gauge-
potentials are gauge-dependent as pointed out by Jackiw jdependent effective potential, and therefore obtain a
the early 197041]. This property caused concerns on the9auge-independent lower bound for the Higgs boson mass.
physical significance of effective potentials. In a work by [N the Vilkovisky-DeWitt formalism, fields are treated as
Dolan and Jackiw2], the effective potential of scalar QED vectors in the configuration space, and #fne connection

was calculated in a set &%, gauges. It was concluded that of the configuration space is identified to facilitate the con-

only the limiting unitary gauge gives a sensible result on thestruct|on of an invariant effective action. Since this proce-

. X T dure is completely Lorentz covariant, the computations for
symmetry—breaklng behavior of the theqry. This d|ff|§:ulty the effective potential and the effective action are straight-
was partially resolved by the work of NielsdB]. In his

) ] L ; _ forward. We shall perform a calculation with respect to a toy
paper, Nielsen derived the following identity governing themodel[9] which disregards all charged boson fields in the

behavior of effective potential in a gauge field theory: SM. It is easy to generalize our calculations to the full SM
P P case. In fact, the applicability of Vilkovisky-DeWitt formal-
24 v _ 1 ism to non-Abelian gauge theories has been extensively
& C(¢’§)a¢ (¢.6)=0, @ demonstrated in the literatuf&Q].

The outline of this paper is as follows. In Sec. Il, we
where¢ is the gauge-fixing parametep,is the order param- briefly review the Vilkovisky-DeWitt formalism using the
eter of the effective potential, an@(¢,¢) is the Green’s scalar QED as an example. We shall illustrate that the effec-
function for certain composite operators containing a ghostive action of Vilkovisky and DeWitt is equivalent to the
field. The above identity implies that, for differen,  ordinary effective action constructed in the Landau-DeWitt
the local extrema o¥ are located along the same character-gauge{11]. In Sec. lll, we calculate the effective potential of
istic curve on the §,&) plane, which satisfiesd¢ the simplified standard model, and the relevant renormaliza-
—dg/[C(,&)/£]. Hence covariant gauges with differegit  tion constants of the theory using the Landau-DeWitt gauge.
are equally good for computiny. On the other hand, a The effective potential is then improved by the renormaliza-
choice of the multi-parameter gaude,= — (1/2£)(,A* tion group analysis. In Sec. IV, the_ Higgs boson mass bound
+ o+ pdy)? [2], with ¢1., the components of the' scalar is derived and compared to that given by the ordinary effec-

) : tive potential in the Landau gauge. We conclude in Sec. V,
field, WOL.'Id break the homogene|t'y of Ed) [3]. Therefore v%/ith some technical details discussed in the Appendix.
an effective potential calculated in such a gauge does no

have a physical significance. _ Il. VILKOVISKY-DEWITT EFFECTIVE ACTION
Recently, it was pointed o(i#] that the Higgs boson mass OF SCALAR QED

bound, which one derives from the effective potential, is

gauge dependent_ The gauge dependence resides in the ex_The formulatipn Of V|IkOV|Sky and DeW”:t |S mOtivated_
pression for the one-loop effective potential. BoyanovskyPY the parametrization dependence of the ordinary effective
Loinaz and Willey proposed a resolutif8] to the problem, ~ &ction, which can be written generically He]

which is based upon thehysical effective potentiaton- i i ST

structed as the expectation value of the Hamiltonian in physi- expﬁl“[@]:expﬁ(VV[j]Jr(D' 5;)

cal stateg6]. They computed thphysical effective potential

of an Abelian Higgs model with an axial vector coupling of i
the gauge fields to the fermions. A gauge-independent lower = f [Dq&]expﬁ
bound for the Higgs boson mass is then determined from the @
effective potential. We note that their approach requires the

identification of first-class constraints of the model and awhereS ¢] is the classical action, ard#' denote the back-
projection to the physical states. Such a procedure is najround fields. The dependence on the parametrization arises

. ol
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because the quantum fluctuatiofi=(¢'—®') is not a ag™ (A (X))
vector in the field configuration space, hence the product D%(Z)gsﬂ(x): y [ u }g{, ©)
7'-6T'16d" is not a scalar under a reparametrization of d1(z) | j¢a(2)

fields. The remedy to this problem is to replagewith a
two-point functiona' (®, ¢) [7,8,13 which, at the point,

is tangent to the geodesic connectihgand ¢. The precise
form of oi(d>,¢) depends on the connection of the configu-
ration spacel“}k. It is easy to show thdtl2]

where the summation ovgrlso implies an integration over
the space-time variable in the functipn

The one-loop effective action of scalar QED can be cal-
culated from Eq.(2) with each quantum fluctuation' re-
placed byd'(®,#). The result is written agl2]:

(D &)=7 1Fi ik 3 i% if ~
a'(®.4)=7'=5Tjn' 7'+ O(7"). ®) I[@]=§ @]~ —IndeG+—IndeD;*, (10

For scalar QED described by the Lagrangian: whereS[ @] is the classical action witkb denoting generi-
1 cally the background fields; Indetarises from the function-
L=- ZF,LVF“V+(DM¢)T(D“¢)—7\(¢T¢)—M2)2, (4 space measur§D ¢]=I1,d¢(x)deG; and D;;* is the
modified inverse propagator:
with D,,=d,+ieA, and¢=(¢1+i$,)/2, the connection

/ . AT o 5%S S
of the configuration space is given by,12] B; 1_ 5®|5®]_Fikj[q)]5q) _ (11)
. i .
K= ik + T, (5)  To study the symmetry-breaking behavior of the theory, we

focus on the effective potential which is obtained frbfrb |

where{,} is the Christoffel symbol of the field configuration PY Setting each background fiedl' to a constant.
space andT}k is a quantity induced by generators of the The V|Ik0V|sky-DeW|tt effectlve potential of §calar QED
gauge transformation. The Christoffel symt{(#} can be has been calculated in various gauges and different scalar-

computed from the following metric tensor of scalar QED: field parametrlzat!onéll,12,14. The results all agree W'th.
one another. In this work, we calculate the effective potential

Gy (e (y) = Oabd (X—Y), and other relevant quantities in the Landau-DeWitt gauge

aob [15], which is characterized by the gauge-fixing terin;
=—(1/2¢)(9,B —ien'®+ied )2 with £—0. In Ly,
B#=A*—Af, and n=¢—P are quantum fluctuations
while A% and® are background fields. For the scalar fields,
we further write ®=(pg+ixe)/v2 and p=(p+ix)/\2.

According to Vilkovisky’s prescriptiori7], the metric tensor The advantage of performing calculations in the Landau-

) . i ) e
of the field configuration space is obtained by differentiatingDev(\j/Itt ghaug/t_a"!s t_hiTjva%\r/]_lsr}es[ll]l_ln th|s_ ca_ze. In .Ort]hir
twice with respect to the fields in the kinetic Lagrangian. For/Vords, the Vilkovisky-DeWitt formalism coincides with the

conventional formalism in the Landau-DeWitt gauge.

the above metric tensor, we ha{/jh}=0 since each compo- F tina the effecti tential h
nent of the tensor is field independent. However, the Christ- or computing the effective potential, we choosg

offel symbol would be non-vanishing if one parametrizes Eq.~ Xc1= 0, i.e., ®=p /2. In this set of background fields,
(4) with polar variablesp and y such that¢; = pcosy and Lyt becomes
¢,=psiny. Finally, to determinél’}k, let us specify genera-

1
tors g', of the scalar-QED gauge transformations: Lgi=— 2—§(a#B“avBV—2epc|XaMB“+ e’px?). (12

Ga,0A,0=~ g“r8*(x—y),

Gh,(06,0=0- (6)

da(X)_ _ _ab _
9" ¢ edp(X) 5 (x—Y), We note thatB,— x mixing in Ly is é dependent, and

AL(X) therefore would not cancel out the corresponding mixing
W= 9,0 x-y), ™ i i i s

9y P term in the classical Lagrangian of E¢4). This induces

_ ) o mixed-propagators  such as(0|T(A,(x)x(y))[0) or

where € is a skew-symmetric tensor wite*=1. The  (g|T(y(x)A,(y))|0). The Faddeev-Popov ghost Lagrangian

quantity T;, is related to the generatogg, via [7] in this gauge reads

ab

— % 2 2 2
Ti=-BIDG, 50 DIGBBl ok @ Hrpm et (Z e (19
With each part of the Lagrangian determined, we are ready
where B{=N“fg,, with N*# being the inverse oN,, to compute the effective potential. Since we choose a field-
Eg‘;g'ﬁgkl_ The expression foT}k can be easily understood independent flat-metric, the one-loop effective potential is
by realizing that,j, ... | are function-space indices, while completely determined by the modified inverse-propagators
a and B are space-time indices. Hence, for example, 'Di]l [16]. From Egs.(4), (11), (12) and(13), we arrive at
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where wg(K) = Vk?+e%p2, wy(k)=VKk?+mZ and w- (k)

= Vk2+ mi. One can see thaly o, is @ sum of the zero-

point energies of four excitations with masseg=ep,,

-1 my, m, andm_. Since there are precisely four physical

DB#X:'k”ePo(l—g), degrees of freedom in the scalar QED, we see that the
Vilkovisky-DeWitt effective potential does exhibit a correct
number of physical degrees of freedom. Such a nice property

BD-1l= ( K2—m2— Eezpz) is not shared by the ordinary effective potential calculated in

XX G g-rop the ghost freeLorentz gauge just mentioned. As will be
shown later, the ordinary effective potential in this gauge
contains unphysical degrees of freedom.

~ 1
Dg s, = (—K*+e%p)) g+ 1—5) kK,

D, =(k2—mp),

5 s 2 oas 1. VILKOVISKY-DEWITT EFFECTIVE POTENTIAL
D ,*o,=(k"—€%pgy) "7, (14 OF THE SIMPLIFIED STANDARD MODEL

In this section, we compute the effective potential of the
simplified standard model where charged boson fields and all
. o fermion fields except the top-quark field are disregarded. The
2 _ 2_ 2
my=A(8po-2u%). Using the definition ITpo] 06 interactions for the top quark and the neutral scalar

_ 4 :
=—(2m) 54(9)\./9”([’0) along with Eqs(10) and(14), and  p5q00q are prescribed by the following covariant derivatives
taking the limit £—0, we obtain Veii(pg) = Viree(po) [9]:

+ Vl—loop(PO) with

where we have setp,=p, wWhich is a space-time
independent constant, and defineth3 =\ (p5—2u?),

2
—ih d"k - Dyt =|d,+igZ,— zieA, |t
Vl—loop(PO):Tf W'”[(kz—eng)n 3 3
2
X (k2—=m?)(k*—m?)(k?—m?)], (15 D tr=|d,+i9rZ,— §ieAﬂ)tR,
2 2 . . .
wherem? and mZ are solutions of the quadratic equation D,¢=(3,+i(d.~9r)1Z,) ¢, (17)

(k?)2—(2e?p5+m3)k?+e*p3=0. One notices that the

gauge-boson’s degree of freedomMi. oo, has been contin- wherez,, andA,, denote theZ boson and the photon respec-
ued ton—3 in order to preserve the relevant Ward identities tively; the coupling constantg, and gg are given byg,
For example, this continuation is crucial to ensure the:(_gl/2+ g-/3) and ggr=g,/3 with g;=g/cosé, and g,
Ward identity which relates the scalar self-energy to the con= 2etang,, respectively. The self-interactions of scalar fields
tribution of the tadpole diagram. Our expression forare described by the same potential term as that in(&q.
Vi100p(po) agrees with previous results obtained in theclearly this toy model exhibits &(1),x U(1), symmetry
unitary gauge[14]. One could also calculate the effect- where eachU(1) symmetry is associated with a neutral
ive potential in theghost-freeLorentz gauge withLgt=  gauge boson. The/(1), charges of, , t and ¢ are related

—(1/2¢)(9,B*)2. The cancellation of the gauge-parameterin such a way that the following Yukawa interactions are
(&) dependence in the effective potential has been demonnyariant undetU (1),x U(1);:

strated in the case of massless scalar QED where 0

[11,12. It can be easily extended to the massive case, and Ly=—y1 dtr—Yird*t, . (18)

the resultant effective potential coincides with Ef5). In

the Appendix, we will also demonstrate the cancellation ofsjnce Vilkosvisky-DeWitt effective action coincides with the
gauge-parameter dependence in the calculation of Higgsrdinary effective action in the Landau-DeWitt gauge, we
boson self-energy. The obtained self-energy will be shown tehus calculate the effective potential in this gauge, which is
coincide with its counterpart obtained from the Landau-defined by the following gauge-fixing terni$7]:

DeWitt gauge. We do this not only to show that the

Vilkovisky-DeWitt formulation coincides with the ordinary =, 191 4 ig1 2 1 .
formulation in the Landau-DeWitt gauge, but also to illus- Lgt=— 5| .2+ 57 @ =P | - ﬁ(ﬁ,ﬁ“) :

trate how it gives rise to identical effective action in spite of (19)
beginning with different gauges.
Itis instructive to rewrite Eq(15) as with a,8—0. We note thatA*, Z* and » are quantum
fluctuations associated with the photon, theoson and the
iofodk - . scalar boson respectively, i.d#*=A~ + AL Zr=7H+7H
J— - _ s e ] cl [l cl [l
Vitoopl Pol = Zf (zw)n—l((n 3)wg(K)+ (k) and ¢=®+ » with A%, Z¥ and ® being the background
R R fields. For computing the effective potential, we takeas a
+w, (K)+ w_(k)), (16)  space-time-independent constant denotegdgsand setA;
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=Z4=0. Following the method outlined in the previous sec- 3 . m, A m3

tion, we obtain the one-loop effective potential Vi(po) = gz2| Muln-—=z+3mzIn——
2 2
- m m
A(odIK R +m&In— — 4miin—y
V = —f ——({(N—3)w k G K2 t K2

vp(po) 2 (277)“_1(( )wz(K)
N N . N h 4 4 4 4
+ (k) + o (K)+o_(k)—4opk), (20) ~ 12852 (3Mu+5mz+3mg—12my). (23

We remark thatv/, differs from V,,p except at the point of
extremum wher@3=2u2. At this point, one has3=0 and

+ %(méi MgV mG+4mZ) an-dméz mtzzyzpélz T?e GOlg' m%_ _ mi’ which lead to VVD(pOZZ/-LZ) :VL(PS: 2/1/2)
stone boson massi; is defined as before, i.emg=Mpo  Thatv, =V, at the point of extremum is a consequence of
—2u7) with u being the mass parameter of the Lagrangianne Nielsen identity 3] mentioned earlier.

One may notice the absence of photon contributions in the 14 gerive the Higgs boson mass bound fréfys(pg) or
above effective potential. This i_s not surprising since photon@L(po)' one encounters a breakdown of the perturbation
do not cou_ple dlre_ctly to t_he I_-||ggs boson. . theory at the point of sufficiently large, such that, for
_Performing the integration in E420) and subtracting the ;i nce §/167%)In(\p3/x?)>1. To extend the validity of
'”f'”'“e_s .W'th mod|f|e_d minimal subtractiofMS) scheme the effective potential to the largey region, the effective
prescription, we obtain potential has to be improved by the renomalization group
(RG) analysis. Let us denote the effective potentiaNasg

where o;(K)=Vk?>+m? with m2=(g?/4)p3, m2=m32

% . m? . m3 . m2 which includes the tree-level contribution and quantum cor-
Vvo(po) = gz—2| Muln-7z+mzn-7 +mi In— rections. The renormalization-scale independendé.gfim-
plies the following equatiofi18,5]:
m? 2 #
+miin— —4min— | - ——
K Uk 12847

d d J
MY 1) BA = (}/+l)t—+4
m4+ 4 4 2 2 4 ( o Qag p ot
><(3 H 5mz+3mG+1Z‘nsz—1Z‘nt),
(21) Xveff(tpb,,u«,g,K)—O, (24)

) _ _ ) ~ wherey is the mass parameter of the Lagrangian as shown
where « is the mass scale introduced in the dimensionaly gq. (4), and

regularization. AlthoughVyp(pg) is obtained in the Landau-

DeWwitt gauge, we should stress that any other gauge with dg
non—vanishingT'jk should lead to the same result. For later ﬁgzxa,
comparisons, let us write down the ordinary one-loop effec-
tive potential in the Lorentz gaudeemoving the scalar part din
of Eq. (19)] as follows[2]; y = o—-"
P dk ’
n—-1p
. R dinu
Vv == ——(n—-1 k) + k =—
L(po) ZJ' (277)”_1(( Ywz(K)+ oy(k) Yu K (25)
+ wa(K, @) + wp(K,a) — 4op(K)), (220 with g denoting collectively the coupling constantsg; ,g,

andy; pg is an arbitrarily chosen initial value fgr,. Solving

where « is the gauge-fixing parameter anda,b(lz,a) this differential equation gives

=K+ m2 () with m2(a)=1/2-(mZ o nt 4

+ VM= damZm?) and my(@=1/2(mg  Verdtpo.i.0 "‘):ex”( fo mdx)

— Jm¢—4amzm?). Itis easily seen that there are 6 bosonic g

degrees of freedom i, i.e., two extra degrees of freedom X Vei1(pl m(t,2),9(t,0), &),
emerge as a result of choosing the Lorentz gauge. In the 26
Landau gauge, which is a special case of the Lorentz gauge

with a=0, there is still one extra degree of freedom inthe ... . .,/ | - . /

effective potential[6]. Since the Langau gauge is adoptedWIth x=In(pg/po) for an intermediate scalgy, and

most frequently for computing the ordinary effective poten- da (&t

tial, we shall takex=0 in V_ hereafter. Performing the in- t 9_ M with g(0)=g;, (27)

tegrations inV, and subtracting the infinities, we obtain dt 1+ yp(@(t))
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1+ yu(X) 1 (3 4 2_ o4 2 2
M(t,ui)—,uiexr{—fo mdx . (28 BA—W 591—3)\91—2)/ +4Ny“+20\7 ],
To fully determineVey at a largepo, we need to calculate 5 g1 g_f_ 910> g_g
the,B_funcUons of\, g1, g, andy, and the anomalous di- 9" 2472116 18 @ 27)
mensionsy, and y,. It has been demonstrated that the
n-loop effective potential is improved by tha{1)-loop 8 2 2
and y functions[19,20. Since the effectve potential is cal- By, = 9_22(%_ 9192 %)
culated to the one-loop order, a consistent RG analysis re- 2 4m°\16 18 27
quires the knowledge g8 and y functions up to a two-loop
accuracy. However, as the computations of two-lgbpnd y 5 3g§ 019>
v functions are quite involved, we will only improve the By:ﬁ 8 T 12 )
tree-level effective potential with one-loof and y func-
tions. After all, the main focus of this paper is to show how 30 302 4 2
to obtain a gauge-independent Higgs boson mass bound Vﬁ_iz 3_)\+ 91 °91 Y y_)’
rather than a detailed calculation of this quantity. 2"\ 4 128 32 8\ 8

To compute one-looB andy functions, we first calculate
the renormalization constang, ,Zg,, Zg,,Zy,Z,2 andZ,,

which are defined by

NPHe=Z\\,  99°=Z4 01, 957°=Z,0,,

1 2 2
Y= g2~ 5%1+4y). 31

(o]

3

Similar to what was mentioned earlier, all of the above quan-

tities are gauge-independent in tMS scheme excepy,,,

ybare: Z,y, (M2)bare: Z'uz,u,z, pbare: \Epp_ 9

In the ordinary formalism of the effective action, all of
the above renormalization constants excgptare in fact
gauge-independent at the one-loop order inNt&& scheme.
For Z,, the result given by the commonly adopted Landau
gauge differs from that obtained from the Landau-DeWitt
gauge. In Appendix A, we shall reprodugg obtained in the

the anomalous dimension of the scalar field. In the Landau
gauge of the ordinary formulation, we have

=L(—3 I+4y?) (32
7p 64’772 gl y©).

IV. THE HIGGS BOSON MASS BOUND

The lower bound of the Higgs boson mass can be derived

Landau-DeWitt gauge with the general Vilkovisky-DeWitt from the vacuum instability condition of the electroweak ef-
formulation. The calculation of various renormalization con-fective potentia[21]. In this derivation, there exists different

stants are straightforward. In thdS scheme, we haveve
will set =1 from this point on

criteria for determining the instability scale of the elec-
troweak vacuum. The first criterion is to identify the insta-

bility scale as the critical value of the Higgs-field strength

397 16y*
ﬂ—24gi—Ty+32y2+ 160>\),

zZ=1-—
» 128«%’( A

beyond which the renormalization-grouRG-) improved
tree-level effective potential becomes negafig@—24. To
implement this criterion, the tree-level effective potential is

improved by the leading[24] or next-to-leading order

797

1 2
Zy,=24,~1 —( 3 +29§—39192),

© 216m2€’

Z,=1+ ———(9g3+49,0,— 24y?),
y 1927726,( g1+40919,— 24y°)
397 16y*
Z,=1+———|—-129°— ——+16y>+ 96\ |,
o 1287726'( A U

Z,=1+ ;(—592+4y2)
P 32m2€’ . ’

where 1£'=1/e+ 3 ye— 3 In(4m) with e=n—4. The one-
loop B and vy functions resulting from the above renormal-

ization constants are

(30

[22,23 renormalization group equations, where one-loop or
two-loop B8 andy functions are employed. Furthermore, one-
loop corrections to parameters of the effective potential are
also taken into accoufi23,24]. However, the effect of one-
loop effective potential is not considered.

To improve the above treatment, Casasl. [25] consid-
ered the effect of RG-improved one-loop effective potential.
The vacuum-instability scale is then identified as the value of
the Higgs-field strength at which the sum of tree-level and
one-loop effective potentials vanishes. In our subsequent
analysis, we will follow this criterion except that the one-
loop effective potential is not RG improved.

To derive the Higgs boson mass bound, one begins with
Eq. (26) which implies

. 1 .
Vired tp0 i N ) = ZX(t))\(tv)\i)((Plo)z_ZMZ(tyMi))z,
(33
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with  x(t)=exp(/i4/1+ ¥,(x)]dx). Since Eq. (28)  wherel=1,2, and the contribution of, is neglected in ac-
implies that w(t,u;) decreases ast increases, we cordance with our leading-logarithmic approximation. Also
then have Viedtpy.ui M)~x(ONEA)(pp)*  for  Be=0f/2m?- (97/16—gag,/18+g3/27). Although the dif-

a sufficiently larget. Similarly, the one-loop effective ferential equations fog? and g3 are coupled, they can be
potential Vi oop(tpg.ai.0i k) is also proportional to easily disentangled by observing that/g3 is a RG-
V1 1000 (L, 14),9(1,8), k) with the same proportional invariant. Numerically, we haveeg|z=c|g|4 with ¢;=2.3
constanty(t). Because we shall ignore all running effects in x 10~ and c,=1.1x10"2. Solving the differential equa-
Vi00p, We can takeg(t,g;)=g; and u(t,u;)=()u; in  tions gives

Vi.00p- FOr a sufficiently large, Vi 40, can also be ap-

proximated by its quartic terms. In the Landau-DeWitt gauge g,‘z(t)=g|_2(0)—c|lnt. (39

with the choicex=p}, we obtain
With g,(t) andg,(t) determined, the running behavior pf

(pi0)4 5 gt [ 9% can be calculated analyticall¢}]. Given ByzEZy,By=c3y4
Vv~ gz.-2| ONiIn(3Ni) + T In| == —c,49%y? with c;=2.5x 10”2 andc,=8.5x 103, we obtain
2 2 cqlcqy
4 i 2 gl(t) _ C3 _
—yiln > + A% (91 M) INAL (T4 ,N) yz(t)Z{( 2 y; - C1+C491i2
+AZ (015, M) INA_ (g3, \y) cs -1
-2
TR (t)l : (40)

3 5
- 5( 10N+ Nig% + 4_8911i_Yf1> } (34)
Now the strategy for solving Eq37) is to make an initial
where A.(g;,\)=g3/4+N/2-(1+ 1+ gzllx). Similarly,  guess on\;, which enters into\(t) andAX, and repeatedly

the effective potential in the Landau gauge is given by adjust; until A(t) completely canceld\. Forty,=10? (or
po~10* GeV) which is the new-physics scale reachable by

(po)* ) 307 (95 4 y? the CERN Large Hadron Collidgi HC), we find \;=4.83
Vi~ g2z ONINEN) + — == In| = | —yiin| = X102 for the Landau-DeWitt gauge, and =4.8x10 2

for the Landau gauge. For a higher instability scale such as
) 3 ) , 5 4 4 the scale of grand unification, we hatg,=10 or p,
+A{In(N) — > 10N+ N g+ 2891 7Yi | |- ~10'® GeV. In this case, we find;=3.13<10 ! for both
the Landau-DeWitt and Landau gauges. The numerical simi-
(39  Jarity between the\; of each gauge can be attributed to an
. , identical B8 function for the running ofa(t), and a small
Combining the tree-level and the one-loop effective potengifterence between tha of each gauge. We recall from
tials, we arrive at Eq.(27) that the evolutions of in the above two gauges will
be different if the effects of next-to-leading logarithms are
Veff(tpi()u“i 'éi K)~ EX(t)()\(t:)\i)+A)\(éi))(Pio)4, taken into account.. In th'at case, the differenge between the
4 ¥, of each gauge gives rise to different evolutions XoiFor
(36) a largety,, one may expect to see a non-negligible differ-

) ) ence between thk; of each gauge.
whereAN\ represents the one-loop corrections obtained from  the critical value\;=4.83x 102 corresponds to a lower

Egs. (34) or (35). Let ty;=py/py, the condition for the o ng for theMS mass of the Higgs boson. Sineey

vacuum instability of the effective potential is thE2b] =2 N u, we have fn,)ys=77 GeV. For\;=3.13x 10 !
) = . i . l
- we have (ny)ws=196 GeV. To obtain the lower bound for
A(tyi,\)+AN(g)=0. (37 the physical mass of the Higgs boson, finite radiative correc-

R tions must be added to the above boufds We will not
We note that the couplingg; in AN are evaluated aik pursue these finite corrections any further since we are sim-
=pg, Which can be taken as the electroweak scale. Hencply dealing with a toy model. However we would like to
we haveg;=g/coséy,=0.67, g,;=2etand,=0.31, andy; point out that such corrections are gauge-independent as en-
=1. The running coupling\(ty,,\;) also depends upon sured by the Nielsen identity3].
91,9, andy throughg, , andy, shown in Eq(31). To solve
Eqg. (37), we first determine the running behaviors of the V. CONCLUSION

coupling constantg,,g, andy. Forg; andg,, we have . _
We have computed the one-loop effective potential of an

Abelian U(1)xU(1) model in the Landau-DeWitt gauge,
~ B2, (38 which reproduces the result given by the gauge-independent
% Vilkovisky-DeWitt formulation. One-loog3 andy functions

d@f®) o Fa@W)

t _—
dt T @)
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were also computed to facilitate the RG improvement of theygtations, we uséﬂ and 7, to denote the new quantum
effective potential. A gauge-independent lower bound for thgjyctuations. Since we will only calculate the self-energy of
Higgs-boson self-coupling or equivalently théS mass of 5 we may takeAX = x,=0 for simplicity. With the covari-

the HIggS boson was derived. We Compared this bound tant expansiorh the Lagrangian in Hq.) generates the fol-
that obtained using the ordinary Landau-gauge effective poowing quadratic terms:

tential. The numerical values of both bounds are almost iden-

tical due to the leading-logarithmic approximation we have _ ~ ~ ~ u

taken. A complete next-to-leading-order analysis should betkauad= ~ 7 (9,B,=3,B,)"+ 5(9,71)(*171)

ter distinguish the two bounds. This improvement as well as

extending the current analysis to the full standard model will 1 - ~ ~ = ~ ~

be reported in future publications. +5(9um2) (9" 12) + €pei(912) B~ €72(9*pc) By,
Finally we would like to comment on the issue of com-

paring our result with that of Ref5]. So far, we have not

found a practical way of relating the effective potentials cal-

culated in both approaches. In Rg5), to achieve ayauge-

1 (1, - Y -
+ 5 €205 B B, —\| 5 p&(3 7+ W) + U (i + )

invariant formulation, the theory is written in terms of a new _ rcp' S BN (A1)
set of fields which are related to the original fields through MO ST ’

non-local transformations. Taking scalar QED as an ex- _ _ .
ample, the new scalar ﬁe|¢f()‘(’) is related to the original where®' and¢' denote generically the classical background
field through[6] fields and the quantum fluctuations respectively. We choose
the R, background-field gauge with the gauge-fixing term:
¢'(x‘>=¢(x“>exp(ie f dyAy)-V,G(y=x) |, (41) 1 -
’ Lgi=— 5 (3,8~ aepo72)°. (A2)

with G(y—x) satisfying V2G(y—x)=&3%(y—x). To our . o
knowledge, it does not appear obvious how one might incor:rh'a corresponding Faddeev-Popov Lagrangian is then

porate_the_ above n(_)n-lo_cal and n_on-Lorentz_-covarl_an_t trans- Lep=w* (— 92— aengl)w_ (A3)
formation into the Vilkovisky-DeWitt formulation. This is an
issue deserving further investigations. Compared to the usual background-field formalism, the qua-
dratic quantum flucuationis,,,q cOntain extra terms propor-
ACKNOWLEDGMENTS tional to the connectiolf'jk of the configuration space. These
. . . . extra terms are crucial for the cancellation of gauge-
We thank W.-F. Kao for discussions. This work is SUP'rparameter dependence in the Higgs-boson self—energy. Igrom

ported in part by National Science Council of R.O.C. unde E :
gs. (5), (6), (7) and (8), we calculate those connections
grant numbers NSC 87-2112-M-009-038, and NSC 88-21123,i01, are relevant to the Higgs-boson self-energy. We find

M-009-002.
L A%m, 0|0 =~ €pai(D) (N (GN?)
APPENDIX: THE HIGGS-BOSON SELF-ENERGY AND

VILKOVISKY-DEWITT EFFECTIVE ACTION 2@ olo=eNY(S y—2)+ 6*(x—2))pa(2)

In this Appendix, we calcula_te the nggs-_boson ;elf- — e*p o (ZINPNDp o (X) per(Y)
energy of scalar QED from the Vilkovisky-DeWitt effective
action. We will focus on the momentum-dependent part of re®@ = e(I*N?) 54 z—y) —e3py(2)
the self-energy, which is not a part of the effective potential Aoyl =l (z7y Pel
calculated in Sec. II. Furthermore only the infinite part of the X(EN*H)NDp(y), (A4)
self-energy will be calculated. We thus perform the calcula-
tion in the symmetry phase of the theory. where

We begin with the Lagrangian in Eq4) where u? is
_nega_nve, ie.; ,LZL u >20. In this case¢; and ¢, have an NY=( X| y
identical massnj,=2Au“. Let us renamep; asp and ¢, as I+ e“pg(X)
x according to our notation in the symmetry-broken phase. If ' '
one follows the background field expansion in E2), one  with X |x)=x,|x); and the notatior);, denotes evaluating
would expand the QED action by writing“=A%+B*, p  the connection at the classical background fields. The above
=pa+ 71, and x=xci+ 7, With A%, p and x the clas- ~ connections  are o be multiplied byS/ p|p=(— 9
sical background fields, ar@#, 7, and 7, the correspond- —2AU“—Apg)pe With the space-time variable inte-
ing quantum fluctuations. However, as mentioned earlier, th@rated over. Itis interesting to note that the produdand
above quantum fluctuations should be replaced by veetors dS/6p contain terms which are able to generate the Higgs-
in the configuration space. Hence the action in@yshould ~ boson  self-energy. For example, in the expression
be expanded covariantfy/] in powers ofs'. To simplify our —fd4xd4y(F,§f()x)AV(y) 8S/8p|p)BL(X)B,(y), we can set
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pc=0 in N** andNY? and contract the pair of gauge fields. Higgs-boson self-energy. These contributions are to be
This gives rise to, in the momentum space, the followingadded to the self -energy obtained by contracting a pair of

Higgs-boson self-energy: ordinary p;—B,— 7, vertices. We find
AAC 2y ﬁ i ' e 1
E ( ) p s (AS) Egrdlnary( pZ)ZW Z(3+ a)pz. (A?)

where 1€ =1/e+ 5 yg— 3In(47) with e=n—4. For

4 @ ~ ~ ) From Egs.(A5), (A6) and (A7), we arrive at
— [A*xd*y (T4 () 0 Splw) 72(X) 72(y), we again sep

x(X)x(y
=0 in N*¥ and contract the pair of scalar fields. We obtain 5e? 1
the Higgs-boson self-energy 2,(p2)=3,(p%) + 2N (p) + Eordmary(pz)_ ?pz_
2 1 A8
(P = 52— P (A6) "9

/

We can see that the gauge-parameter dependence of
Finally, the term —fd4xd4y(FP(Z) 8S/ 39"Y(p?) is cancelled by that cf 2*(p?). From Eq.(A8),

A (X) (¥) . . .
" the wave-function renormalization constant of the Higgs bo-
5p|q,)BM(X) nz(y) can produce an effective,—B, 7;2 son is found to be

vertex, namely, [ fd*pd*k/(2)8]T*(p, k)pc|(k)B (P) 7,

(—p—k), with T',(p,k)=i(p*/p?) - (k*~2\u?). This ver- 5e2 1

tex can contribute to the Higgs-boson self-energy by con- Z,=1-g5—- (A9)
tracting with another vertex of the same kind. Similarly, it €

could contract with an ordinany, — B, — 7, vertex. It turns ~ This result can be applied to the model in Sec. Ill with the

out that both contractions produce onIy finite contributions toreplacemene— —g,/2 according to Eq(17). HenceZ,=1
the momentum-dependent part of the Higgs-boson self—(5g%/3272)(1/e’) in that model, which reproduces the rel-
energy. Therefore Eq$A5) and(A6) are the only divergent evant part of Eq.(30) calculated in the Landau-DeWitt
contributions ofl“}k to the momentum-dependent part of the gauge.
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