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Gross–Llewellyn Smith sum rule in the analytic approach to perturbative QCD
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We apply analytic perturbation theory to the Gross–Llewellyn Smith sum rule. We study theQ2 evolution
and the renormalization scheme dependence of the analytic three-loop QCD correction to this sum rule, and
demonstrate that the results are practically renormalization scheme independent and lead to rather differentQ2

evolution than the standard perturbative correction possesses.@S0556-2821~99!00913-3#

PACS number~s!: 11.10.Hi, 11.55.Hx, 12.38.Cy, 13.151g
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I. INTRODUCTION

At present, two deep inelastic scattering~DIS! sum rules,
the Gross–Llewellyn Smith~GLS! @1# and the polarized
Bjorken sum rule@2#, give the possibility of extracting the
value of the strong coupling constantaS from experimental
data, in particular, at low momentum transfer,Q, down to
1 GeV ~see, e.g., Refs.@3,4#!. Comparison of these values o
aS with other accurateaS values, such as those obtaine
from the decay widths of thet-lepton and theZ-boson into
hadrons, is an important test of the consistency of QC
Clearly what is required are reliable theoretical relations
tween physically observable quantities and the strong c
pling constantaS . At low Q2 scales, there are significan
theoretical uncertainties, which come, firstly, from a trunc
tion of the series obtained from perturbation theory~PT!,
which leads to a significant renormalization scheme~RS!
ambiguity, and, secondly, from poorly understood nonper
bative effects~see, e.g., Refs.@5,6# for a review!. In this
paper we apply the method proposed in Refs.@7,8# ~see also
Refs. @9,10#!, the so-called analytic perturbation theo
~APT!, to study the GLS sum rule, continuing our investig
tion of the APT approach initiated in Refs.@11,12#. This
method takes into account basic principles of local quan
field theory which in the simplest cases is reflected in
form of Q2-analyticity of the Källén-Lehmann type. The
standard renormalization group resummation violates this
quired analytic structure, and unphysical singularities suc
a ghost pole appear. Within the analytic approach all
physical singularities are removed by incorporating nonp
turbative terms, which can be written as a power series w
the expansion parameterL2/Q2. These terms are invisible in
the ordinary perturbative expansion; however, they are
stored by the dispersion relation. The APT approach, w
maintaining the conventional form of the expressions in
asymptotic ultraviolet region, allows one, in principle, to d
fine ‘‘analytic power corrections’’ in any order of the pertu
bative approximation to the spectral function. During the l
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few years unconventional power corrections~beyond those
given by the operator product expansion! have been dis-
cussed in many papers~see, for example, Refs.@13,14#, and
Ref. @15# for a brief survey of these discussions!.

It is familiar that the QCD correction to the GLS sum ru
is expressed as an expansion in powers ofaS that allows one,
in principle, easily to obtain a value for the running couplin
Before going into detailed considerations, let us demonst
the difference between the standard PT and APT runn
couplings in the two-loop level. The two-loop analytic ru
ning coupling can be written in the form of a sum of th
standard perturbative part and additional terms which co
pensate for the contributions of unphysical singularities,
ghost pole and a cut arising from the ‘‘log-of-log’’ depen
dence. The difference may be transparently shown by us
the approximate formula for the two-loop analytic runnin
coupling given in Ref.@8#:

aAPT~Q2,L,nf !.aPT~Q2,L,nf !1
2p

b0~nf !

3F 1

12Q2/L2
22C1~nf !

L2

Q2G , ~1!

where b051122nf /3 is the one-loop coefficient of the
b-function corresponding tonf active quarks, and, for fou
active flavors,C1(nf54)50.0396. The PT running coupling
is obtained by integration of the renormalization group eq
tion with the two-loopb-function.

The difference between the APT and PT functions is
lustrated in Fig. 1 over a wide range ofQ2, 1<Q2

<104 GeV2. The curves in the figure correspond to vario
values of the QCD scale parameterL for four active flavors.
Figure 1 shows that the expression~1!, represented by dotted
lines, approximates the exact two-loop analytic coupli
~solid lines! rather well forQ.2L. Comparing theQ2 evo-
lution of the QCD running coupling obtained from APT t
that given by PT~dashed lines!, one can see that the differ
ence between the shapes of the APT and PT running c
plings becomes significant at lowQ2-scales,Q2,10 GeV2.
This fact stimulated applications of the modified perturbat
theory with correct analytic properties, APT, for variou
physical processes~see, e.g., Refs.@11,16#!. Here, we con-
©1999 The American Physical Society01-1
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sider the GLS sum rule in the framework of the APT a
proach. As has been demonstrated in Ref.@17# by using the
Deser-Gilbert-Sudarshan representation for the virtual
ward Compton amplitude@18# ~see also Ref.@19#!, the mo-
ments of the structure functions are analytic functions in
complexQ2-plane with a cut along the negative real axis. O
the other hand, the conventional renormalization group
summation does not support these analytic properties and
influence of requiring these properties to hold in the D
description has not been studied. Here, we perform this
vestigation, by applying the APT method, which gives t
possibility of combining the renormalization group resu
mation with correct analytic properties of the QCD corre
tion to the GLS sum rule. In Sec. II we start by describi
the GLS sum rule in the PT and APT approaches and c
pare theQ2 evolution of the APT and PT predictions. In Se
III we consider in detail the RS dependence of the resu
Summarizing comments are given in Sec. IV.

II. THE GLS SUM RULE WITHIN APT

The GLS sum rule predicts the value of the integral o
all x of the non-singletF3 structure function measured i
neutrino- and antineutrino-proton scattering

SGLS~Q2!5
1

2E0

1

dx@F3
np~x,Q2!1F3

n̄p~x,Q2!#. ~2!

In the quark-parton level, which is appropriate forQ2→`,
the GLS sum rule should equal three. Therefore, for fixedQ2

the integral~2! can be conveniently written as

SGLS~Q2!53@12DGLS~Q2!#, ~3!

where the QCD correction,DGLS, in principle, contains per-
turbative and nonperturbative parts. To begin, we conc
trate on the perturbative contribution toDGLS, considering in
turn standard PT and APT methods and postponing u
later a discussion of the possible influence of higher tw
~HT! effects, which remain poorly understood. In this co
nection it is interesting to note from the result of the fit to t

FIG. 1. Comparison ofQ2 evolution of the two-loop running
coupling in the APT and the standard PT approaches.
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revised CCFR data@20# presented in Refs.@21# that the
higher-twist contributions are small in the regionQ2

.1 GeV2 and can have a sign-alternating character.

A. PT analysis

The standard perturbative part of the GLS sum rule c
rection is known up to the three-loop level for massle
quarks in the MS-like renormalization schemes with t
number of active quarksnf fixed,

DGLS
PT 5

aPT

p
1d1~RS,nf !S aPT

p D 2

1d2~RS,nf !S aPT

p D 3

.

~4!

The PT running couplingaPT(Q
2,RS,nf) is obtained by in-

tegration of the renormalization group equation with t
three-loopb-function. The coefficientsd1 andd2 are given
in Ref. @22# in the MS renormalization scheme. Therefor
the perturbative QCD correction to the GLS sum rule is re
resented in the form of a power series inaPT and, at first
glance, the value ofaPT can be easily extracted if the valu
of DGLS(Q

2) is experimentally known. In the regionQ2

.1 GeV2, one believes PT with its renormalization-grou
improvement is still valid. We should note that different r
gions of thex integration in Eq.~2! at fixed values ofQ2, in
principle, correspond to different numbers of active quar
nf ; arguments have been given in Ref.@23# to select one or
another value ofnf . Experimental measurements of the GL
sum rule are made in a region ofx where one believes tha
four light flavors are relevant. At present, there is no regu
and consistent method of including threshold effects for
GLS sum rule. In the following analysis, we will first tak
nf54 to obtain results in the standardMS renormalization
scheme, and then consider RS dependence.

B. Analytic approach

The QCD correction with correct analytic properties c
be written in the form of a spectral representation

DGLS~Q2!5
1

pE0

` ds

s1Q2
%~s!, ~5!

where we have introduced the spectral function, which
defined as the discontinuity ofDGLS(Q

2): %(s)
5Disc$DGLS(2s2 ie)%/2i. If we calculate now the spectra
function %(s) perturbatively, we get an expression fo
DGLS(Q

2), which has the correct analytic properties a
therefore no unphysical singularities. Consequently, we w
the three-loop APT approximation toDGLS(Q

2) as follows:

DGLS
APT5dAPT

(1) ~Q2!1d1dAPT
(2) ~Q2!1d2dAPT

(3) ~Q2!, ~6!

where the coefficientsd1 andd2 are the same as in Eq.~4!
and the functionsdAPT

(k) (Q2) are derived from the spectra
representation and correspond to the discontinuity of thek-th
power of the PT running coupling
1-2
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dAPT
(k) ~Q2!5

1

pk11E0

` ds

s1Q2
Im $aPT

k ~2s2 i«!%. ~7!

The functiondAPT
(1) (Q2) defines the APT running coupling

aAPT(Q
2)5pdAPT

(1) (Q2), which in the one-loop order is
given by

aAPT~Q2!5
4p

b0
F 1

ln~Q2/L2!
1

1

12Q2/L2G . ~8!

As can be seen from Eq.~6!, the first term of the expansio
is aAPT /p, but the following terms are not representable
powers ofaAPT unlike in the PT case. There are approxima
expressions, like Eq.~1!, for higher loop corrections in Eq
~6!, which have rather simple forms, which can be derived
using a method of subtracting unphysical singularities@24#.
For instance, fordAPT

(2) , the approximate formula is

dapprox
(2) ~z!5FaPT~z!

p G2

1
4

b0
2 F2

1

~12z!2

1S 11
b0

2

2b1
D 1

12z
1

C1

z G , z5Q2/L2, ~9!

where C150.0273 for four active flavors andb15102
238nf /3. In the perturbative ultraviolet region the no
logarithmic terms in Eq.~9!, characteristic of the APT ap
proach, are negligible; however, at lowQ2 scales they be-
come important.

C. Convergence properties

To illustrate the difference between the convergen
properties of the PT expansion~4! and the APT series~6! we
use the recent result of the CCFR Collaboration~CCFR’97!
@25,26#: SGLS52.4760.09 atQ253.1 GeV2, which is con-
sistent with the result of a previous CCFR analy
~CCFR’93! @27#, SGLS52.5060.08 at Q253 GeV2. The
central value ofSGLS corresponds to the value of the QC
correctionDGLS

exp 50.1767 and the successive terms of the
series~4! respectively constitute 65.1%, 24.4% and 10.5%
the total. At the same time, the corresponding contributi
to the APT series~6! make up 75.7%, 20.7% and 3.6% of th
total. The convergence of the APT series seems to be so
what better behaved than is that of the PT expansion at s
small Q.1.76 GeV.

The same may be seen from Fig. 2, whereSGLS is shown
as a function of the QCD running couplingaS in the PT and
APT approaches. As outlined above, in the PT case,
function SGLS is an explicit function of the PT running cou
pling and in the one-loop approximation is represented b
straight line in Fig. 2, as a parabola in the two-loop case,
as a cubic curve in the three-loop one. At sufficiently lar
values ofaS;0.4, the difference between the 1-, 2-, a
3-loop PT predictions becomes large. An inclusion of t
higher-twist term with the value recommended by the P
ticle Data Group,DHT5(0.0960.045)/Q2 @28# ~see Refs.
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s

y

e

T
f
s

e-
ch

e

a
d

e

e
r-

@29,30# for additional details!, also significantly changes th
behavior, as is apparent from the figure. Note that the co
cidence of the one-loop PT and APT curves in Fig. 2 do
not mean that the PT and APT approaches are physic
identical, this is simply a matter of the linear form of th
one-loop approximation; the behavior of the PT and A
running couplings are rather different@see Eq.~8!#. In the
APT case, the contribution of the higher loop corrections
not so large as in the PT one and the corresponding curve
Fig. 2 are quite close to the linear function, and, especia
there is very little difference between the 2-loop and 3-lo
results. The horizontal lines in Fig. 2 correspond to cen
values from experimental data at different low values ofQ2:
SGLS(1.7 GeV2)52.1360.46 @31#, SGLS(3 GeV2)52.50
60.08 @27#, SGLS(5 GeV2)52.6360.09 @25,26#. The inter-
section of one of these lines with a given theoretical cu
gives the value ofaS for that value ofQ2 in that theoretical
description. It will be seen that stability of the theoretic
curve atQ2; a few GeV2 is required in order to extract a
reliable value ofaS or the QCD scale parameterL.

D. Q2 evolution

Let us briefly discuss some experimental results. In R
@32#, the low-Q2 dependence of GLS sum rule has be
evaluated by combiningxF3 measurements of the CCFR’9
data with data from other DIS experiments. Preliminary u
dated analysis with CCFR’97 data was presented in R
@25,26#. The analysis of the GLS sum rule based on the
cobi polynomial expansion has been given in Ref.@33#, and
for new CCFR’97 data has been examined in Ref.@34#. The
very recent CCFR-NuTEV result for the GLS integral is pr
sented in Refs.@35–37#. The three values of the GLS integra
at Q251.26, 2.00, and 3.16 GeV2 are in good agreemen
with the old result@32#, but the value atQ255 GeV2 is
larger, which corresponds to a smaller value of the QC
correction to GLS sum rule, although consistent within err
~see also Fig. 4!. Note that the valueSGLS(Q

255.01 GeV2)
52.776@36# gives a very small value of the scale parame
LPT

(nf54)
589 MeV. The choice of normalization point influ

FIG. 2. SGLS with 1-, 2-, and 3-loop QCD corrections vs th
coupling constant.
1-3
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ences the value of the parameterL, but does not change th
general picture of there being a difference between the A
and PT results for lowQ2 scales. To study this difference w
take the relevant value ofL (4)5300 MeV. That practically
means the normalization on the valueSGLS(Q

2

53.16 GeV2)52.547 @36# that givesLPT
(4)5303 MeV. This

value of the scale parameterL is quite realistic and agree
well with the results of the fits to the structure functionxF3
from the CCFR’97 data, for example, with the two-loop r
sult 337628 MeV @20# and with the three-loop value 30
634 MeV @21#. Since the difference between the PT a
APT forms of the QCD corrections is of orderL2/Q2, both
these functions will coincide in the asymptotic region, whe
the perturbative approximation is valid.

The comparison between theQ2 evolution in the APT and
PT approaches is shown in Fig. 3, where the QCD correc
to the GLS sum rule is plotted for the perturbative part~solid
curve for APT and dashed for PT approach! and separately
for the HT term given by two different estimations for th
coefficients in the form (0.0960.045)/Q2 ~dash-dotted line!
and (0.1660.01)/Q2 ~dotted line! taken from Refs.@29,30#,
respectively. This figure demonstrates that there is an es
tial difference between PT and APT evolutions for lowQ2.
Instead of a rapidly changing function with unphysical s
gularities as occurs in the PT case, we get a slowly chang
function in the APT approach.

E. Comparison with experiment

To compare theoretical predictions with experimental d
we plot in Fig. 4 the full contribution to the QCD correctio
DGLS with the perturbative part, calculated in the PT a
APT approaches, and the HT part taken in the form as
cussed above@28#. We also plot the data, indicated b
squares, of the recent CCFR-NuTeV analysis@35,36# where
the Q2 behavior of the GLS integral has been evaluated
values ofQ2 between 1.26 GeV2 and 12.59 GeV2, as well as
older data. The dotted curve represents the PT result with

FIG. 3. The theoretical predictions forQ2 evolution of QCD
correction to the GLS sum rule given by Eqs.~4! and ~6!. The
dash-dotted and dotted lines represent the HT corrections f
Refs.@29,30#, respectively.
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HT effects. At highQ2 scales, the PT and APT results agr
closely with each other, both including the HT effects a
without them, whereas at lowQ2 scales, the difference be
tween the PT and APT behaviors becomes significant. At
same time, forQ2.2 GeV2, the PT prediction without the
HT term practically coincides with the APT curve includin
the HT term. Cancellation between the additional APT ter
beyond the standard PT prediction and the HT terms
explain the fact that attempts to extract the HT effect fro
the CCFR’97 xF3 experimental data give a rather sma
value, even poorly determining the sign of the HT contrib
tion ~see, for detail, Ref.@21#!. Note also that in the analysi
of Refs.@25,26# the HT contribution to the QCD correctio
for the GLS sum rule is taken to be given by the for
(0.0960.05)/Q2; however, in the subsequent papers@35–
37#, the HT term has been taken to be smaller, (0
60.05)/Q2.

The comparison of the APT and PT predictions with e
perimental data, as is demonstrated in Fig. 4, cannot giv
definite conclusion since there are large experimental er
and the value of the HT corrections is very uncertain. Mo
over, even if the experimental situation is improved, there
a theoretical source of uncertainty which arises from
renormalization scheme dependence of the truncated PT
pansion. In the next section we will discuss this issue.

III. RENORMALIZATION SCHEME DEPENDENCE

We have considered theQ2 evolution of the GLS sum
rule in the customaryMS renormalization scheme. In gen
eral, it is not sufficient to obtain a result in some scheme,
rather it is important to study its RS stability over som
acceptable domain. The RS dependence of the GLS sum
based on the PT approach has been studied in Ref.@23#. In
this section we consider the RS stability of the APT resu

m
FIG. 4. The APT and PT predictions for the QCD correction

the GLS sum rule together with experimental results. The Serpu
data@31# is denoted by a circle, the CHARM@38# data by a down-
ward pointing triangle, the CCFR data from Ref.@39# by an upward
pointing triangle, and the recent CCFR-NuTeV results from R
@36# by squares.
1-4



e
S

e

b
n

e

t i

-

,
r

g

b
o
us

no
lat-
nd

ose
s of
e

rms
d

ex
se

,
of

ts
the

lla-
n

t is

ifi-
the

for
s,
ults

ECH

GROSS–LLEWELLYN SMITH SUM RULE IN THE . . . PHYSICAL REVIEW D60 016001
A. Three-loop analysis

A truncation of a perturbative expansion leads to unc
tainties in the theoretical predictions arising from the R
dependence of the partial sum of the series. At low mom
tum scales these uncertainties may become very large~see,
for example, an analysis in Ref.@40#!. A physical quantity, in
our case the QCD correction to the GLS sum rule, has to
invariant under a change of RS, when the coupling tra
forms as follows (a5aS /p):

a85a~11v1a1v2a21••• !. ~10!

In the new RS, the QCD correctionDGLS is represented as

DGLS5a8~11d18a81d28a82!, ~11!

where the coefficientsd1 andd2 are RS dependent and hav
the transformation law

d185d12v1 , ~12!

d285d222~d12v1!v12v2 .

In the three-loop level there are two process-dependen
variants under the RS-transformation~10! @41#

r15
b

2
ln

Q2

L2
2d1 , ~13!

r25b21d22b1d12d1
2 , ~14!

whereb5b0/2, b1 andb2 are the coefficients of the three
loop b-function

b~a!5m2
]a

]m2
52b0a2~11b1a1b2a2!. ~15!

The coefficientb2, as welld1 andd2, depends on RS, and
because of the first equation in Eq.~12!, the scale paramete
L transforms as follows@42#: L85L exp(v1 /b). In terms of
the scale parameterLMS, the three-loop perturbative runnin
coupling in any RS obeys the equation

b

2
lnS Q2

LMS
2 D 5d1

MS2d11F~a,b2!, ~16!

where

F~a,b2!5
1

a
2b1ln

11b1a

b0a

1b2E
0

a dx

~11b1x!~11b1x1b2x2!
. ~17!

Thus, any RS taken from the MS-like schemes can
characterized by two parameters, which we choose here t
d1 andb2. To calculate the second RS invariant one can
the coefficients in theMS scheme, which fornf54 ared1
53.25, b253.05.
01600
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B. ‘‘Natural’’ and optimal schemes

In the framework of the conventional approach there is
solution of the RS dependence problem apart from calcu
ing many further terms in the asymptotic PT expansion, a
there is no fundamental principle upon which one can cho
one or another preferable RS. Usually, one uses a clas
‘‘natural’’ or ‘‘well-behaved’’ RSs, which are defined by th
so-called cancellation index criterion@43#, according to
which the degree of cancellation between the different te
in the second RS-invariantr2 are not too large, as measure
by the cancellation index

C5
1

ur2u ~ ub2u1ud2u1d1
21ud1ub1!. ~18!

By taking some maximum value of the cancellation ind
Cmax one can investigate the stability of predictions for tho
RSs withC<Cmax. In the case of theMS-scheme the value
of the cancellation index for the GLS sum rule isCMS595.
Taking into account that theMS scheme is commonly used
we will consider this value as a boundary for the class
‘‘natural’’ schemes. In addition we will compare our resul
with predictions given by optimized schemes based on
principle of minimal sensitivity~PMS! @41# and the method
of effective charge~ECH! @44#. ~See also applications in
@23,45,46#!.

It should be stressed that the large value of the cance
tion indexCMS for four active quark flavors does not mea
that the coefficients from which the second RS invarian
constructed are huge, only thatr2 is small, r2520.32. In
this special case the value ofr2 is very sensitive to the value
of nf ; for example, for nf53, this invariant becomes
r2

(nf53)
54.2 and the cancellation index becomes sign

cantly reduced. At the same time, the absolute values of
coefficients that construct the second RS invariant~14! are
smaller for nf54 than for nf53, however, C

MS

(nf54)

FIG. 5. Renormalization scheme dependence of predictions
DGLS vs Q2 for the APT and PT expansions. The solid curve
which are very close to each other, correspond to the APT res
for theMS, A, B, and ECH schemes. The PT predictions in theMS,
A, and B schemes are represented by the dashed curves; the
and PMS results are given by the dotted lines.
1-5



n
ne
o

ti

p

ith

S
a
-

ad

rs
r

ve
ub
e

H
er.

ll

ar-
for
-
e
the

lla-
the

.

n-

his
wo

LS

K. A. MILTON, I. L. SOLOVTSOV, AND O. P. SOLOVTSOVA PHYSICAL REVIEW D60 016001
.10C
MS

(nf53)
. Perhaps, in this situation, it is more convenie

to introduce as the corresponding index, which will defi
the class of ‘‘natural’’ RSs, the sum of the absolute values
the terms inr2, without the denominator in Eq.~18!. The
numerical parameter introduced in such a way will prac
cally define the same region in the (d1 ,b2)-plane, without
changing significantly with changingnf , and, therefore,
more adequately describing the situation.

Let us briefly discuss results of the ECH and PMS a
proaches. For the ECH scheme the parameters ared1

ECH

5d2
ECH[0 and, therefore,b2

ECH5r2. The transformation
from theMS scheme to the ECH scheme is performed w
the parameters in Eq.~10! v1

ECH5d1
MS53.25 and v2

ECH

5d2
MS512.20. The system of equations for getting the PM

optimal prescription consists of four equations. These
Eqs.~14! and~16! complemented by the following two equa
tions:

3d212d1b11b21~2d1b213d2b1!a13d2b2a250,

~11b1a1b2a2!~112d1a13d2a2!I ~a,b2!2a50,
~19!

where

I ~a,b2!5E
0

a dx

~11b1x1b2x2!2
. ~20!

In the PMS optimization procedure the coefficientsd1 , d2
andb2 becomeQ2 dependent and, therefore, have to be
justed for each different value ofQ2.

C. Discussion of results

Let us first discuss the RS dependence which appea
the conventional perturbative approach. We present our
sults in Fig. 5, where the QCD correctionDGLS is plotted as
a function ofQ2 in different RS. The schemes A and B ha
the same cancellation index as in the modified minimal s
traction scheme (MS) scheme,C595, and are defined by th

FIG. 6. TheQ2 dependence of the PMS coefficients for the G
sum rule,nf54.
01600
t

f

-

-

re

-

in
e-

-

following values of the parameters:d1
A523.93, b2

A50 and
d1

B521.0, b2
B513.7. The dotted curves present the EC

and PMS predictions, which are very close to each oth
This is because the PMS coefficientsd1

PMS(Q2) and
d2

PMS(Q2) are found for four active quark flavors to be sma
numerically in the region under consideration,Q2.1 GeV2.
Behaviors of these coefficients as functions ofQ2 are shown
separately in Fig. 6.

As it has been mentioned above, there are no strong
guments to fix the definite number of active quark flavors
the integral~2! to benf54. Therefore, we have also consid
ered the casenf53. The ECH and PMS prescriptions gav
again results that are very close to each other. However,
reason is no longer that the PMS coefficientsd1

PMS(Q2) and
d2

PMS(Q2) are very small, but that there is a strong cance
tion between the last two terms in the expression for
QCD correction DGLS5aPMS(11dPMS) with dPMS

[d1
PMSaPMS1d2

PMS(aPMS)2. This fact is demonstrated in Fig
7, where~a! shows the quadratic~solid line! and cubic~dot-
ted line! contributions toDGLS for nf53. The sum of these
contributions is shown in Fig. 7~b! for nf53 ~solid line! and
for nf54 ~dashed line!.

The sensitivity of the PT predictions to the RS depe
dence can be reduced by applying the Pade´ approximation
~PA! @47#. However, in the case under consideration, t
approach can lead to some difficulties. In Fig. 8 we plot t
possible Pade´ approximants@1/1# and@0/2# in the three-loop

FIG. 7. Cancellation in the PMS optimal prescription vsQ2: ~a!
quadratic and cubic contributions forDGLS5aPMS@d1

PMSaPMS

1d2
PMS(aPMS)2#, nf53; ~b! dPMS5d1

PMSaPMS1d2
PMS(aPMS)2.

FIG. 8. Behavior of the PA@1/1# and@0/2# for QCD corrections
to GLS sum rule vsaS: ~a! nf53; ~b! nf54.
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order forDGLS versusaS . This figure demonstrates that th
PA leads to unphysical singularities in the region of sm
momenta that violate the causal properties and prevent
from considering the method of PA as a systematic
proach.

Let us return now to Fig. 5 and discuss RS dependenc
the APT predictions. In this case the APT results turn ou
be stable for the whole interval of momenta and appear
the MS, A, and B schemes as a wide solid line in Fig.
Note that the optimized RS constructions in the framew
of PT do not maintain the correct analytic properties, ho
ever, to avoid this difficulty, they can be modified in th
sense of APT. In Fig. 5 we plot also the analytic ECH res
which, of course, is different from the perturbative one a
practically coincides with the other APT curves for theMS,
A, and B schemes. Thus, in contrast to the usual PT desc
tion, the APT results for theMS, A, B, and ECH scheme
lead to stable predictions for the whole interval of mome
tum, which practically coincide with each other, and, the
fore, the APT description turns out to be practically RS
dependent.

IV. SUMMARY AND CONCLUSION

We have considered the GLS sum rule by using the A
approach, which, in contrast to PT, does not lead to
unphysical singularities. Taking into account the analy
properties of the moments of the deep inelastic struc
functions, we have obtained an analytically improved th
retical description of the GLS sum rule, which possesses
following features.

First, the convergence properties of the APT expans
are better than are those in the standard PT description.

Second, there is a significant difference between theQ2

evolution in the PT and APT approaches for lowQ2 scales:
Instead of a rapidly changingQ2 evolution as occurs in the
PT case, the APT approach leads to a slowly changing fu
tion.

Third, the APT power corrections have a sign opposite
that of the typically-used higher-twist term@28# and, numeri-
-
C
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, e
nn

01600
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-
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T
y
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e
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o

cally, there is an effective cancellation between these
corrections.

Fourth, in the framework of APT the theoretical predi
tion for the GLS sum rule becomes practically renormaliz
tion scheme independent starting from the three-loop lev

A similar statement that RS dependence is drastically
duced has been made also for the process ofe1e2 annihila-
tion into hadrons@48# and for the semileptonic inclusive de
cay of thet lepton @49#. A corresponding analysis of th
Bjorken sum rule is presented in Ref.@16#. Thus, the APT
approach gives a systematic method of reducing the RS
biguity significantly and leads to practically unique pred
tions for physical quantities. It should be stressed that
analysis shows that there is serious doubt concerning
conjecture that, in spite of the large values ofaS at low Q2,
the conventional three-loop PT predictions for the GLS s
rule are reliable~see, e.g.,@37#!. The proximity of PT pre-
dictions in theMS scheme to predictions obtained in th
optimal schemes seems to possess no significance for
process at small momentum transfer and cannot be con
ered a guarantee of RS independence of the results.

At present, the experimental situation for the GLS su
rule, with its large errors, does not allow us to come to
reliable conclusion that the APT description is preferable
the PT one. However, from the theoretical point of view, t
remarkable properties of the APT approach, for example,
higher-loop and renormalization-scheme stability for t
whole interval of momenta, create a basis for preferring
application of this new technique.
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