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Gross-Llewellyn Smith sum rule in the analytic approach to perturbative QCD
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We apply analytic perturbation theory to the Gross—Llewellyn Smith sum rule. We study’tegolution
and the renormalization scheme dependence of the analytic three-loop QCD correction to this sum rule, and
demonstrate that the results are practically renormalization scheme independent and lead to ratheQfifferent
evolution than the standard perturbative correction possg@556-282(99)00913-3
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[. INTRODUCTION few years unconventional power correctiofieyond those
given by the operator product expansidmave been dis-
At present, two deep inelastic scatterifS) sum rules, cussed in many papetsee, for example, Ref§13,14, and

the Gross—Llewellyn SmitHGLS) [1] and the polarized Ref.[15] for a brief survey of these discussions
Bjorken sum rule[2], give the possibility of extracting the It is familiar that the QCD correction to the GLS sum rule
value of the strong coupling constart from experimental is expressed as an expansion in poweraothat allows one,
data, in particular, at low momentum transf€, down to  in principle, easily to obtain a value for the running coupling.
1 GeV(see, e.g., Ref$3,4]). Comparison of these values of Before going into detailed considerations, let us demonstrate
ag with other accuratexg values, such as those obtained the difference between the standard PT and APT running
from the decay widths of the-lepton and thez-boson into  couplings in the two-loop level. The two-loop analytic run-
hadrons, is an important test of the consistency of QCDhing coupling can be written in the form of a sum of the
Clearly what is required are reliable theoretical relations bestandard perturbative part and additional terms which com-
tween physically observable quantities and the strong courensate for the contributions of unphysical singularities, the
pling constantag. At low Q? scales, there are significant ghost pole and a cut arising from the “log-of-log” depen-
theoretical uncertainties, which come, firstly, from a trunca-dence. The difference may be transparently shown by using
tion of the series obtained from perturbation the¢RT),  the approximate formula for the two-loop analytic running
which leads to a significant renormalization sche(®S)  coupling given in Ref[8]:
ambiguity, and, secondly, from poorly understood nonpertur-

bative effects(see, e.g., Refd5,6] for a review. In this 2 - 2 2m

paper we apply the method proposed in RETSS] (see also appr( Q%A ) =apr(Q 'A'nf)+ﬁo(nf)

Refs. [9,10)), the so-called analytic perturbation theory )
(APT), to study the GLS sum rule, continuing our investiga- % 1 —2C,(n )A_ (1)
tion of the APT approach initiated in Reff11,12. This 1-Q3%A? 52|

method takes into account basic principles of local quantum
field theory which in the simplest cases is reflected in thewhere Bo=11—2n;/3 is the one-loop coefficient of the
form of Q2-analyticity of the Kédén-Lehmann type. The gB-function corresponding to; active quarks, and, for four
standard renormalization group resummation violates this reactive flavorsC,(n;=4)=0.0396. The PT running coupling
quired analytic structure, and unphysical singularities such ais obtained by integration of the renormalization group equa-
a ghost pole appear. Within the analytic approach all untion with the two-loopgB-function.
physical singularities are removed by incorporating nonper- The difference between the APT and PT functions is il-
turbative terms, which can be written as a power series withustrated in Fig. 1 over a wide range @? 1<Q?
the expansion parametar/Q?. These terms are invisible in  <10* GeV2. The curves in the figure correspond to various
the ordinary perturbative expansion; however, they are revalues of the QCD scale parameterfor four active flavors.
stored by the dispersion relation. The APT approach, whild=igure 1 shows that the expressid, represented by dotted
maintaining the conventional form of the expressions in thdines, approximates the exact two-loop analytic coupling
asymptotic ultraviolet region, allows one, in principle, to de- (solid lineg rather well forQ>2A. Comparing theQ? evo-
fine “analytic power corrections” in any order of the pertur- lution of the QCD running coupling obtained from APT to
bative approximation to the spectral function. During the lastthat given by PT(dashed lines one can see that the differ-
ence between the shapes of the APT and PT running cou-
plings becomes significant at lo@?-scales,Q?<10 Ge\~.

*Email address: milton@mail.nhn.ou.edu This fact stimulated applications of the modified perturbation
"Email address: solovtso@thsunl.jinr.ru theory with correct analytic properties, APT, for various
*Email address: olsol@thsuni.jinr.ru physical processesee, e.g., Refd.11,16). Here, we con-
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o7k em T revised CCFR datd20] presented in Refs[21] that the
Th Ot ] higher-twist contributions are small in the regio@?
.. —— APT ] . .
o6b\ PT ; >1 Ge\? and can have a sign-alternating character.
L e APT approx. [Eq(1)] ]
0.5 Y ] A. PT analysis
0.4 1?.‘: 3 The standard perturbative part of the GLS sum rule cor-
: rection is known up to the three-loop level for massless
03k A=500 MeV ] quarks in the MS-like renormalization schemes with the
: A=350 MeV : number of active quarks; fixed,
0.2F A=200 MeV , ;
1 apr apr apr
o1 b Ag[s:7+d1(RS,nf)<7 +d2(RS’nf)(?) :
100 10! 102 108 104 (4)

Q@ (GeVy) The PT runnin l 2 i i in-
g couplingvp1(Q“,RSn;) is obtained by in
FIG. 1. Comparison of? evolution of the two-loop running t€gration of the renormalization group equation with the
coupling in the APT and the standard PT approaches. three-loopg-function. The coefficientsl; andd, are given
in Ref. [22] in the MS renormalization scheme. Therefore,
sider the GLS sum rule in the framework of the APT ap-the perturbative QCD correction to the GLS sum rule is rep-
proach. As has been demonstrated in RET] by using the resented in the form of a power seriesdp; and, at first
Deser-Gilbert-Sudarshan representation for the virtual forglance, the value ofpt can be easily extracted if the value
ward Compton amplitudgl8] (see also Refl19]), the mo-  of Ag g(Q?) is experimentally known. In the regio®?
ments of the structure functions are analytic functions in the>1 Ge\?, one believes PT with its renormalization-group
complexQ?-plane with a cut along the negative real axis. Onimprovement is still valid. We should note that different re-
the other hand, the conventional renormalization group regions of thex integration in Eq(2) at fixed values ofQ?, in
summation does not support these analytic properties and tigginciple, correspond to different numbers of active quarks,
influence of requiring these properties to hold in the DISn;; arguments have been given in REZ3] to select one or
description has not been studied. Here, we perform this inanother value ofi; . Experimental measurements of the GLS
vestigation, by applying the APT method, which gives thesum rule are made in a region ®fwhere one believes that
possibility of combining the renormalization group resum-four light flavors are relevant. At present, there is no regular
mation with correct analytic properties of the QCD correc-and consistent method of including threshold effects for the
tion to the GLS sum rule. In Sec. Il we start by describingGLS sum rule. In the following analysis, we will first take
the GLS sum rule in the PT and APT approaches and conyy,=4 to obtain results in the standaMiS renormalization
pare th@z evolution of the APT and PT predictions. In Sec. scheme, and then consider RS dependence_
[l we consider in detail the RS dependence of the results.
Summarizing comments are given in Sec. IV. .
B. Analytic approach
II. THE GLS SUM RULE WITHIN APT The QCD correction with correct analytic properties can

) ) be written in the form of a spectral representation
The GLS sum rule predicts the value of the integral over

all x of the non-singlet~5 structure function measured in 1 [
neutrino- and antineutrino-proton scattering Ag s(Q9)= Wf
0

do
i) 5)

o

11 -
2y — vp 2 vp 2
SeLs(Q9) = 2Jo IAF(x,QI+FF(xQ9]. (2 \yhere we have introduced the spectral function, which is
defined as the discontinuity ofAg g(Q%): ¢(0)

In the quark-parton level, which is appropriate @f—o,  =Disc[Ag g(—o—ie€)}/2i. If we calculate now the spectral
the GLS sum rule should equal three. Therefore, for fiRdd  function ¢(o) perturbatively, we get an expression for
the integral(2) can be conveniently written as Ac s(Q?), which has the correct analytic properties and
5 5 therefore no unphysical singularities. Consequently, we write
SeLs(Q7) =3[1-Ags(Q) ], (3 the three-loop APT approximation thg, s(Q?) as follows:

where the QCD correctio\ g, 5, in principle, contains per-

turbative and nonperturbative parts. To begin, we concen- Aég: 55%13T(Q2)+d15§33T(Q2)+d25§\3F2T(Q2)* (6)
trate on the perturbative contributionAg;, 5, considering in

turn standard PT and APT methods and postponing untiwhere the coefficientd; andd, are the same as in E()
later a discussion of the possible influence of higher twisand the functionss{3(Q?) are derived from the spectral
(HT) effects, which remain poorly understood. In this con-representation and correspond to the discontinuity okitie
nection it is interesting to note from the result of the fit to thepower of the PT running coupling
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1 (= do 's... ]
® . Ko ('S 1-loop PT and APT
onpt(Q )_Wk+1fo —0'+Q2|m{aPT( o—ig)}.  (7) L P — 2-loop PT .
--------- 2-loop APT
. 1 . . . ——— 3-loop
The function 85p-(Q?) defines the APT running coupling, 5 gf oo e 3-loop PT+HT

app(Q?) = 7553:(Q?), which in the one-loop order is
given by

1 1| T \\ ..... \ . \
+ . 8 [ o]
IN(Q%/A?) 1—Q%A? ®

417

aAPT(QZ) = Bo

As can be seen from E@6), the first term of the expansion N
is appr/, but the following terms are not representable as [ RN P

powers ofa,pr unlike in the PT case. There are approximate 9.0 0.1 0.2 0.3 0.4 0.5
expressions, like Eq1), for higher loop corrections in Eq. Q)
(6), which have rather simple forms, which can be derived by
using a method of subtracting unphysical singularifi24). FIG. 2. Sg s with 1-, 2-, and 3-loop QCD corrections vs the
For instance, fos?);, the approximate formula is coupling constant.
ap(2)]? 4 1 [29,30 for additional details also significantly changes the
521%))pr0>£2): Sl behavior, as is apparent from the figure. Note that the coin-
m Bol (1=2) cidence of the one-loop PT and APT curves in Fig. 2 does
B2\ 1 C not mean that the PT and APT approaches are physically
+l1+ _0) 41 z=Q% A2, (9) Identical, this is simply a matter of the linear form of the
2B1)1-z z one-loop approximation; the behavior of the PT and APT

running couplings are rather differefgee Eq.(8)]. In the
where C;=0.0273 for four active flavors angd;=102 APT case, the contribution of the higher loop corrections is
—38n4/3. In the perturbative ultraviolet region the non- not so large as in the PT one and the corresponding curves in
logarithmic terms in Eq(9), characteristic of the APT ap- Fig. 2 are quite close to the linear function, and, especially,
proach, are negligible; however, at lo@? scales they be- there is very little difference between the 2-loop and 3-loop
come important. results. The horizontal lines in Fig. 2 correspond to central

values from experimental data at different low value€df

C. Convergence properties SoLs(1.7GeV)=2.13+0.46 [31], Sg (3 GeV’)=2.50

+0.08[27], SgLs(5 GeV?) =2.63+0.09[25,26. The inter-
&ection of one of these lines with a given theoretical curve
gives the value ofrg for that value ofQ? in that theoretical
description. It will be seen that stability of the theoretical
curve atQ?~ a few GeV is required in order to extract a
reliable value ofag or the QCD scale parametdr.

properties of the PT expansig#) and the APT serie) we
use the recent result of the CCFR Collaborati@CFR’'97)
[25,26: Sg.s=2.47+0.09 atQ?=23.1 Ge\#, which is con-
sistent with the result of a previous CCFR analysis
(CCFR'93 [27], Sg.s=2.50+0.08 at Q?=3 Ge\?. The
central value ofSg, 5 corresponds to the value of the QCD
correctionAgs=0.1767 and the successive terms of the PT
series(4) respectively constitute 65.1%, 24.4% and 10.5% of ~Let us briefly discuss some experimental results. In Ref.
the total. At the same time, the corresponding contribution§32], the low-Q? dependence of GLS sum rule has been
to the APT serie$6) make up 75.7%, 20.7% and 3.6% of the evaluated by combiningF; measurements of the CCFR’93
total. The convergence of the APT series seems to be soméata with data from other DIS experiments. Preliminary up-
what better behaved than is that of the PT expansion at sudfated analysis with CCFR'97 data was presented in Refs.
smallQ=1.76 GeV. [25,26. The analysis of the GLS sum rule based on the Ja-
The same may be seen from Fig. 2, wh&¢gs is shown  cobi polynomial expansion has been given in R88], and
as a function of the QCD running couplirgs in the PT and  for new CCFR'97 data has been examined in R&4]. The
APT approaches. As outlined above, in the PT case, th¥ery recent CCFR-NUTEV result for the GLS integral is pre-
function Sg_ is an explicit function of the PT running cou- sented in Refd.35-37. The three values of the GLS integral
pling and in the one-loop approximation is represented by & Q°=1.26, 2.00, and 3.16 GéVare in good agreement
straight line in Fig. 2, as a parabola in the two-loop case, anith the old result{32], but the value aQ?=5 Ge\* is
as a cubic curve in the three-loop one. At sufficiently largelarger, which corresponds to a smaller value of the QCD
values of ws~0.4, the difference between the 1-, 2-, andcorrection to GLS sum rule, although consistent within errors
3-loop PT predictions becomes large. An inclusion of the(see also Fig. ¥ Note that the valuSg s(Q*=5.01 GeV)
higher-twist term with the value recommended by the Par=2.776[36] gives a very small value of the scale parameter
ticle Data Group,A,r=(0.09+0.045)/Q? [28] (see Refs. A(P”T’:“)=89 MeV. The choice of normalization point influ-

D. Q2 evolution
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0al ) 0.4 r T ————
A Ags | —— APT&HT
! AN e PT & HT
03F
02F
01}
" R 0.0
Q'(GeV?) 1 .
. - . Q(GeV)
FIG. 3. The theoretical predictions f@? evolution of QCD
correction to the GLS sum rule given by Ed4) and (6). The FIG. 4. The APT and PT predictions for the QCD correction to
dash-dotted and dotted lines represent the HT corrections frorthe GLS sum rule together with experimental results. The Serpukov
Refs.[29,30, respectively. data[31] is denoted by a circle, the CHARIMBS] data by a down-

ward pointing triangle, the CCFR data from REF9] by an upward

ences the value of the parametey but does not change the pointing triangle, and the recent CCFR-NuTeV results from Ref.
general picture of there being a difference between the AP¥36] by squares.
and PT results for lovQ? scales. To study this difference we
take the relevant value of ¥’=300 MeV. That practically HT effects. At highQ? scales, the PT and APT results agree
means the normalization on the valueSg g(Q?  closely with each other, both including the HT effects and
=3.16 Ge\f) = 2.547[36] that givesAfj‘T)=303 MeV. This  without them, whereas at lo®? scales, the difference be-
value of the scale parametdr is quite realistic and agrees tween the PT and APT behaviors becomes significant. At the
well with the results of the fits to the structure functioh; ~ Same time, forQ*>2 Ge\#, the PT prediction without the
from the CCFR’97 data, for example, with the two-loop re- HT term practically coincides with the APT curve including
sult 33728 MeV [20] and with the three-loop value 308 the HT term. Cancellation between the additional APT terms
+34 MeV [21]. Since the difference between the PT andbeyond the standard PT prediction and the HT terms can
APT forms of the QCD corrections is of ord&?/Q?, both  €xplain the fact that attempts to extract the HT effect from
these functions will coincide in the asymptotic region, wherethe CCFR'97xF3 experimental data give a rather small
the perturbative approximation is valid. \{alue, even poorly determining the sign of t_he HT contrlpu—

The comparison between ti@ evolution in the APT and  tion (see, for detail, Re1[21]).'No'_[e also that in the analyss
PT approaches is shown in Fig. 3, where the QCD correctioRf Refs.[25,26 the HT contribution to the QCD correction
to the GLS sum rule is plotted for the perturbative gadiid ~ for the GLS sum rule is taken to be given by the form
curve for APT and dashed for PT appropeind separately (0-09£0.05)/Q% however, in the subsequent papg8s—
for the HT term given by two different estimations for the 37, the HT term has been taken to be smaller, (0.05
coefficients in the form (0.090.045)Q2 (dash-dotted line ~ =0.05)/Q. o _
and (0.16-0.01)/Q? (dotted ling taken from Refs[29,30, The comparison of the APT and PT predictions with ex-
respectively. This figure demonstrates that there is an esseRerimental data, as is demonstrated in Fig. 4, cannot give a
tial difference between PT and APT evolutions for IG¢.  definite conclusion since there are Igrge experlmer_nal errors
Instead of a rapidly changing function with unphysical sin-and the value of the HT corrections is very uncertain. More-

gularities as occurs in the PT case, we get a slowly changingver, even if the experimental situation is improved, there is
function in the APT approach. a theoretical source of uncertainty which arises from the
renormalization scheme dependence of the truncated PT ex-
E. Comparison with experiment pansion. In the next section we will discuss this issue.

To compare theoretical predictions with experimental data || RENORMALIZATION SCHEME DEPENDENCE
we plot in Fig. 4 the full contribution to the QCD correction

AgLs with the perturbative part, calculated in the PT and We have considered th@? evolution of the GLS sum
APT approaches, and the HT part taken in the form as disrule in the customarMS renormalization scheme. In gen-
cussed abovd28]. We also plot the data, indicated by eral, it is not sufficient to obtain a result in some scheme, but
squares, of the recent CCFR-NuTeV analy$5,36| where rather it is important to study its RS stability over some
the Q2 behavior of the GLS integral has been evaluated atcceptable domain. The RS dependence of the GLS sum rule
values ofQ? between 1.26 Ge¥and 12.59 Ge¥, as well as  based on the PT approach has been studied in[R8]. In

older data. The dotted curve represents the PT result withouhis section we consider the RS stability of the APT results.
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A. Three-loop analysis 0.5

A truncation of a perturbative expansion leads to uncer-
tainties in the theoretical predictions arising from the RS 04
dependence of the partial sum of the series. At low momen-
tum scales these uncertainties may become very l@ge, 03
for example, an analysis in R¢#0]). A physical quantity, in

our case the QCD correction to the GLS sum rule, has to be 02 [

invariant under a change of RS, when the coupling trans-
forms as follows &= ag/7): .
0.1
a'=a(l+viatv,a®+---). (10 [
In the new RS, the QCD correctiakg, 5 is represented as ool
AGLS:a,(l'f' dia,'f'déa,z), (11) QZ(GeV2)
where the coefficientd; andd, are RS dependent and have  FIG. 5. Renormalization scheme dependence of predictions for
the transformation law AgLs vs Q? for the APT and PT expansions. The solid curves,
, which are very close to each other, correspond to the APT results
di=dy—vy, (12 for theMS, A, B, and ECH schemes. The PT predictions ing,
, A, and B schemes are represented by the dashed curves; the ECH
dy=dy,—2(dy—vy)vi—v>. and PMS results are given by the dotted lines.
In the three-loop level there are two process-dependent in- B. “Natural” and optimal schemes

variants under the RS-transformati 41 . .
@0 [41] In the framework of the conventional approach there is no

b Q2 solution of the RS dependence problem apart from calculat-
p1= Eln—2 —d,, (13 ing many further terms in the asymptotic PT expansion, and
there is no fundamental principle upon which one can choose

) one or another preferable RS. Usually, one uses a class of
p2=Dby+d,—byd; —df, (149 “patural” or “well-behaved” RSs, which are defined by the
so-called cancellation index criteriopd3], according to
which the degree of cancellation between the different terms
in the second RS-invariapt, are not too large, as measured
by the cancellation index

whereb= 8,/2, b; andb, are the coefficients of the three-
loop B-function

B(a)=,u2%=—ﬁoa2(1+ b;a+bya?). (15
“w

1
C= 7 (Ibzl +]dz| +di+[dyby). (18)
The coefficientb,, as welld, andd,, depends on RS, and,

because of the first equation in E42), the scale parameter By taking some maximum value of the cancellation index
A transforms as follow$42]: A’ = A exp@,/b). In terms of ~ C,,,0ne can investigate the stability of predictions for those
the scale parametéys, the three-loop perturbative running RSs withC<C,,,. In the case of théS-scheme the value
coupling in any RS obeys the equation of the cancellation index for the GLS sum ruleGgs= 95.

) Taking into account that th®1S scheme is commonly used,
bl Q _ Vs we will consider this value as a boundary for the class of
5Nl ——|=di~—d;+P(a,by), 16 . ,, " ;

2 Ass natural .sc_hemes_. In addltlon we will compare our results
with predictions given by optimized schemes based on the
where principle of minimal sensitivity PMS) [41] and the method
of effective charge(ECH) [44]. (See also applications in
1+bja [23,45,48).
Bod It should be stressed that the large value of the cancella-
tion index Cys for four active quark flavors does not mean
fa dx a7 that the coefficients from which the second RS invariant is
2 o constructed are huge, only thas is small, p,=—0.32. In
0 (b0 (1+byx+bx%) this special case the value pf is very sensitive to the value
Thus, any RS taken from the MS-like schemes can bé’fn nis for example, forn;=3, this invariant becomes
characterized by two parameters, which we choose here to Wy’ ~=4.2 and the cancellation index becomes signifi-
d; andb,. To calculate the second RS invariant one can useantly reduced. At the same time, the absolute values of the
the coefficients in thelS scheme, which fon;=4 ared, coefficients that construct the second RS invaridd are
=3.25, b,=3.05. smaller for ni=4 than for n;=3, however, C%J)

1
(D(a,bz): a_blln
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| ' l | I ' l ' I ' I l I | 0.5 T T T T T T
e b ] PMS
N ® (@) 5 (b)
0.164 | 1 0.4 —_leMS M 0.04 1
E e NN | B -d PMS (aPMS )2
0.3 H 2 i
0.160 L 1 4 1. , L
o2r 1 0.02 1
0.00 — T ———— — (;1)' — s
-0.02 ] 01} | ‘10
-0.04 ] 0.0 é 1-0 1-5 2 0.00 = ]
. 1L6 118 20 Q2 (GeVz) Q& GeV?)
Q2 (GeV?) FIG. 7. Cancellation in the PMS optimal prescription@%: (a)

quadratic and cubic contributions fol g g=a"™Yd?M%aPMS
FIG. 6. TheQ? dependence of the PMS coefficients for the GLS +d5MS(aPM9)2], n;=3; (b) s"MS=dMSaPVS+dPMS(aPM9)2,
sum rule,n;=4.

(n=3) S ~ following values of the parameterd; = —3.93, b5=0 and
=10Cs . Perhaps, in this situation, it is more convenlentd?: ~1.0, b§=13.7. The dotted curves present the ECH
to introduce as the corresponding index, which will defineand PMS predictions, which are very close to each other.
the class of “natural” RSs, the sum of the absolute values offhjs is because the PMS coefficientsSQ?) and
the terms inp,, without the denominator in Eq18). The  ¢PMS(32) are found for four active quark flavors to be smal
numerical parameter introduced in such a way will praCti'numericalIy in the region under considerati@?>1 Ge\~.
cally define the same region in thély(b,)-plane, without  gepayiors of these coefficients as functiongX¥fare shown
changing significantly with changingy;, and, therefore, separately in Fig. 6.
more adequately describing the situation. As it has been mentioned above, there are no strong ar-

Let us briefly discuss results of the ECH and PMS ap-4ments to fix the definite number of active quark flavors for
proggges. For the ECH sthCeHme the parametersdﬁ?_é' the integral(2) to ben;=4. Therefore, we have also consid-
=d; =0 and, thereforeb;""=p,. The transformation ered the case;=3. The ECH and PMS prescriptions gave
from the MS scheme to the ECH scheme is performed withagain results that are very close to each other. However, the
the parameters in Eq(10) vE=d)’S=3.25 andv5"  reason is no longer that the PMS coefficied{$'S(Q?) and

=d2"_s= 12.20. The system of equations for getting the PMsd_ZPMS(QZ) are very small, but that t_here is a strong cancella-
optimal prescription consists of four equations. These aréon between the last two terms in the expression for the
Egs.(14) and(16) complemented by the following two equa- QCD  correction Ag s=a"™1+ ™)  with M5

tions: =d"MSaPMS+ dEMS(aPMS)2, This fact is demonstrated in Fig.
7, where(a) shows the quadratigsolid line) and cubic(dot-

3d,+2d;b; +by+(2d;by+3d,bs)a+3d,bya?=0, ted line contributions toAg, g for n;=3. The sum of these
(1+bja+b,a?)(1+2d,a+3d,a2)1(a,b,) —a=0, contributions is shown in Fig.(B) for n;=3 (solid line) and

(19) for n;=4 (dashed ling
The sensitivity of the PT predictions to the RS depen-

where dence can be reduced by applying the Pagproximation
(PA) [47]. However, in the case under consideration, this
a dx approach can lead to some difficulties. In Fig. 8 we plot two
I(a, )=f _ (20) ossible Padapproximantg$ 1/1] and[0/2] in the three-loo
27 ) (15 boxt byd)? p pp $1/1] and[0/2] p
1.0 ; —— T 1.0 —7
In the PMS optimization procedure the coefficiedts d, Ay @ Ags o |
andb, becomeQ? dependent and, therefore, have to be ad- o} ‘ 1 o3 /
justed for each different value @?2. ek TRE L S B S ;e
/’t
C. Discussion of results o4r o4r /!

/ 1]

Let us first discuss the RS dependence which appears ir2; o2p

the conventional perturbative approach. We present our re- | T 0 -
sults in Fig. 5, where the QCD correctidyy, 5 is plotted as 00 02 o4 08 0B T0 00 02 04 06 08 10

a function ofQ? in different RS. The schemes A and B have s

the same cancellation index as in the modified minimal sub- F|G. 8. Behavior of the PA1/1] and[0/2] for QCD corrections
traction schemeNIS) schemeC =95, and are defined by the to GLS sum rule varg: (a) n;=3; (b) ni=4.

[072] -
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order forAg, s versusas. This figure demonstrates that the cally, there is an effective cancellation between these two
PA leads to unphysical singularities in the region of smallcorrections. . _
momenta that violate the causal properties and prevents us Fourth, in the framework of APT the theoretical predic-
from considering the method of PA as a systematic apI!on for the G_LS sum rule becc_)mes practically renormaliza-
proach. tion sth—;me independent starting from the three-loqp level.
Let us return now to Fig. 5 and discuss RS dependence o A similar statement that RS dependence is drastically re-

i uc
the APT predictions. In this case the APT results turn out t?uced has been made also for the process @ annihila-

be stable for the whole interval of momenta and appear fol’ion into hadrong48] and for the semileptonic inclgsive de-
the MS, A, and B schemes as a wide solid line in Fig. 5. c&Y of the 7 lepton[49]. A corresponding analysis of the

e . . Bjorken sum rule is presented in Ré¢fL6]. Thus, the APT
glfolgeTtZit Izgf raztilr:?;r??hiscgﬁgcs::r:ﬁgﬂfcmrf)h?a:trizr;er\:\:) ?Arllfapproach gives a systematic method of reducing the RS am-
ytic prop ’ biguity significantly and leads to practically unique predic-

ever, to avoid this difficulty, they can be maodified in the . : -

' ! ! . tions for physical quantities. It should be stressed that our
sense of APT. In F.'g' 5we plot also the analytlc_ECH resur:j’analysis shows that there is serious doubt concerning the
which, of course, is different from the perturbative one an

. . . conjecture that, in spite of the large valuesagfat low Q2
practically coincides with the other APT curves for %S, . the conventional three-loop PT predictions for the GLS sum

A, and B schemes. Thus, in contrast to the usual PT descrig;,;e are reliable(see, e.g.[37]). The proximity of PT pre-
tion, the APT results for thé4S, A, B, and ECH schemes iniong in theMS scheme to predictions obtained in the
lead to stable predictions for the whole interval of momen-q o) schemes seems to possess no significance for any
tum, which practically coincide with each other, and, there-process at small momentum transfer and cannot be consid-
fore, the APT description turns out to be practically RS in-, o4 5 guarantee of RS independence of the results.

dependent. At present, the experimental situation for the GLS sum
rule, with its large errors, does not allow us to come to a
IV. SUMMARY AND CONCLUSION reliable conclusion that the APT description is preferable to

We have considered the GLS sum rule by using the apthe PT one. However, from the theoretical point of view, the
remarkable properties of the APT approach, for example, the

approach, which, in contrast to PT, does not lead to an¥]_ N o
unphysical singularities. Taking into account the analytictigner-loop and renormalization-scheme stability for the

properties of the moments of the deep inelastic structurdvhole interval of momenta, create a basis for preferring the

functions, we have obtained an analytically improved theo@PPlication of this new technique.

retical description of the GLS sum rule, which possesses the
following features.

First, the convergence properties of the APT expansion The authors would like to thank L. Gamberg, A. L. Ka-
are better than are those in the standard PT description. taev, and S. M. Mikhailov for useful discussions and interest

Second, there is a significant difference between@3e in this work, O. Nachtmann who brought the pap&¥] to
evolution in the PT and APT approaches for Q% scales: our attention, and J. H. Kim for useful discussion of the
Instead of a rapidly changin@? evolution as occurs in the CCFR-NuTeV data. Partial support of the work by the US
PT case, the APT approach leads to a slowly changing fundNational Science Foundation, grant PHY-9600421, by the
tion. US Department of Energy, grant DE-FG-03-98ER41066, by

Third, the APT power corrections have a sign opposite tahe University of Oklahoma, and by the RFBR, grant 96-02-
that of the typically-used higher-twist terf88] and, numeri- 16126 is gratefully acknowledged.
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