
PHYSICAL REVIEW D, VOLUME 60, 015002
Higgs boson mass bounds in the three- and six-Higgs doublet models for family structure
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Institute for Advanced Study, Princeton, New Jersey 08540

~Received 2 February 1999; published 26 May 1999!

We reanalyze our recently proposed mass matrix model based on spontaneously broken discrete chiral
family symmetry, taking into account the additional flavor changing neutral current constraint implied by the
bound on theD12D2 mass difference, and including several corrections to our earlier analysis. When com-
bined, theK12K2 and D12D2 constraints force the masses of the Higgs particles that contribute most
strongly to flavor changing neutral currents~thef Higgs states! to lie above 17 TeV, well beyond the limit of
validity of conventional perturbative Higgs physics. The analogous constraints on the masses of theh Higgs
states and the neutral pseudo Goldstone Higgs state depend on the mechanism for realizing small first family
masses. If theh Higgs states are the primary contributor to second family masses, the pseudo Goldstone and
h Higgs states must have masses above 220 GeV, with numerical fits suggesting masses above 1 TeV, while
if the h Higgs states are responsible solely for first family masses, the corresponding mass bounds drop to the
range detectable at the CERN LHC. We show that naturalness of small first family masses favors the latter
alternative, and give an illustrative mass matrix texture model.@S0556-2821~99!03713-3#

PACS number~s!: 12.60.Fr, 11.30.Hv, 11.30.Rd
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I. INTRODUCTION

In a recent paper@1# we constructed extensions of th
standard model, based on the hypothesis that the H
bosons also exhibit a threefold family structure, and that
flavor weak eigenstates are distinguished by a discreteZ6
chiral symmetry that is spontaneously broken by the Hig
sector. Two models were analyzed in@1#, the first with one
three-family set of Higgs doublets, and the second with t
three-family sets of Higgs doublets. In the three-Higgs d
blet model, the leading cyclically symmetric approximati
to the quark and lepton mass matrices has the ‘‘democra
form with all matrix elements equal, leading to one mass
and two massless fermion families. In the six-Higgs doub
model, for a wide range of Higgs potential parameters,CP is
spontaneously broken, and this breaking simultaneou
modifies the democratic Ansatz to give nonzero masses t
additional family~assumed in@1# to be the second family! in
leading cyclic approximation. Corrections to the cyclic a
proximation were used in@1# to give first family masses, an
a nontrivial Cabibbo-Kobayashi-Maskawa~CKM! matrix.

In performing numerical fits to the data using the mod
of @1#, we took into account bounds on flavor changing ne
tral currents solely through the constraint provided by
K12K2 mass difference, which led to strong asymmetries
the fits between the up and down quark sectors. Peskin@2#
has pointed out the importance of including in the analy
experimental bounds on theD12D2 mass difference, which
is the up quark sector analog of theK12K2 mass difference
constraint. The purpose of this paper is to give the formu
and numerical results needed for this extension of the an
sis of @1#. We also consider an alternative version of t
model of @1#, in which cyclic asymmetries in thef Higgs
couplings are responsible for second family masses, and
h Higgs contributes significantly only to first family masse

*Email address: adler@ias.edu
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We show that this alternative is favored by requiring na
ralness of small first family masses. In addition, we make
following three corrections to the model as originally form
lated:~i! we correct the form of the CKM matrix, as pointe
out in an Erratum@3# to @1#, ~ii ! we include rephasings
needed to make the diagonalized quark mass matrices p
tive real, and~iii ! we correct combinatoric factors in th
flavor changing neutral current amplitude~amounting to an
overall factor of 2!, and give a more accurate treatment of t
hadronic matrix elements appearing in the flavor chang
neutral current constraints.

This paper is organized as follows. In Sec. II we give
synopsis of results needed from@1#, including the corrections
~i! and ~ii ! noted above. In Secs. III and IV we analyzeK1
2K2 and D12D2 mixing induced by Higgs exchange, in
cluding the corrections~iii !. In Sec. III we give formulas for
calculating thef Higgs, theh Higgs, and the pseudo Gold
stone Higgs contributions, in the six-Higgs doublet model,
both theK12K2 and D12D2 mass differences. In Sec. IV
we use the formulas of Secs. II and III to derive a series
bounds on the Higgs boson masses, which are evaluated
merically using lattice and model calculations of the relev
hadronic matrix elements, for two possible mechanisms
realizing the first and second family masses. Irrespective
this choice of mechanism, we find that thef Higgs boson
masses must be greater than 17 TeV, in accord with anal
@4# of generic multi-Higgs models. This bound also exten
by specialization to the case in which theh Higgs couplings
vanish, to theCP conserving case of the three-Higgs doub
model. In Sec. V we analyze the implications of requiri
that small first family masses arise naturally, as oppose
arising by detailed cancellations between physically un
lated quantities, and give a simple mass matrix texture mo
corresponding to the case in which Yukawa coupling asy
metries are responsible for second family masses. In Sec
we repeat the numerical fits of@1#, taking into account the
results derived in the preceding sections, and summarize
conclusions.
©1999 The American Physical Society02-1
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II. SYNOPSIS OF NEEDED RESULTS
FROM THE SIX-HIGGS MODEL

The six-Higgs doublet model of@1# is based on the as
sumption that there are two discrete chiral families of Hig
bosons,fn andhn , n51,2,3. These are coupled to discre
chiral families of fermions to give a Lagrangian that is e
actly discrete chiral invariant, and that is approximately
variant under cyclic permutation of the discrete chiral co
ponents. The model is constructed so that the Higgs fie
develop nonvanishing vacuum expectations in aCP violat-
ing phase, and it is assumed that thef Higgs bosons couple
much more strongly to fermions than theh Higgs bosons,
and similarly for their corresponding expectations~denoted
respectively byVf andVh). As a zeroth order approxima
tion to the model, only thef Higgs expectations are retaine
and cyclic permutation symmetry is assumed, leading t
‘‘democratic’’ mass matrix with one massive and two ma
less families, and a CKM matrix of unity.

Deviations from cyclic symmetry, and theh Higgs expec-
tations, are then added back as a perturbation, giving as
Lagrangian mass term

Lmass5 (
f 5u,d,e

f̄ L8gf
f Vf~3M (3)1s f ! f R8 . ~1a!

HereM (3)5diag(0,0,1) is the projector on the third family
gf

f is thef Higgs Yukawa coupling for flavorf, ands f is a
333 matrix of perturbations, given explicitly by

s11
f 5

1

3
m11

f 1d3
f 1v̄d2

f 1vd1
f ,

s22
f 5

1

3
m22

f 13Rf1d3
f 1vd2

f 1v̄d1
f ,

~1b!
s33

f 50,

s lm
f 5

1

3
m lm

f , lÞm; v[exp~2p i /3!, v̄[v* .

In Eq. ~1b! the termsm lm arise from small deviations from
cyclic symmetry in the Yukawa couplings of thef Higgs
bosons, the termsdn

f arise from deviations from cyclic sym
metry in thef Higgs expectations, and the termRf arises
from contributions to the mass matrix of the weakly coup
h Higgs expectations. Further details of the structure ofs f

are given in Eqs.~38b! through~39c! of @1# and are used in
Secs. V and VI below. However, the only property need
for the analytic calculations of Sec. III is that, since t
Yukawa coupling asymmetries are all real because the
grangian in the six-Higgs doublet model is assumed to
CP invariant, the first order perturbationss f obey

s12
f 5s21

f* . ~1c!

This restriction holds even though the model of@1# chooses a
CP violating ground state.

Defining
01500
s

-
-
s

a
-

he

d

a-
e

M f853M (3)1s f , ~2a!

we then@1# construct the bi-unitary transformation matric
UL

f , UR
f for which UL

f M f8UR
f † is diagonal, with the eigenval

ues ordered in absolute value. The fermion mass eigens
basis, up to rephasings to be discussed, is related to
primed basis by

f L85UL
f †f L

mass,
~2b!

f R85UR
f †f R

mass, f 5u,d,e,

and the CKM matrixUCKM is given @3# by

UCKM5UL
uUL

d† . ~2c!

Since Eq.~2a! defines a degenerate perturbation proble
the matricesUL,R

f are constructed@1# in two stages: first the
232 submatrix ofM f8 spanned by the first two families i
diagonalized exactly, and then the solution to this problem
used to perturbatively construct the full 333 diagonalizing
matrices. Because the analysis of flavor changing neu
current effects in the next section ignores third family m
ings, it suffices for this analysis to discuss only the 232
submatrix diagonalization problem. Suppressing for the ti
being the flavor superscriptf, we define the 232 submatrix
m by

m5S s11 s12

s21 s22
D , ~3a!

which is brought to diagonal~but not necessarily real! form
by matricesVL,R ,

VLmVR
†5S k1 0

0 k2
D , ~3b!

with uk1u<uk2u. An explicit construction ofVL,R is given in
Appendix B of @1#; the results obtained there can be simp
fied by using the symmetry of Eq.~1c! above, which~in
terms of the quantities defined in Appendix B of@1#! implies
that

AL5AR5us11u21us12u2[A,

BL5BR5us22u21us12u2[B,
~4a!

zL5~s11* 1s22!s12* , zR5~s111s22* !s12* ,

uzLu5uzRu[uzu.

These relations, together with the results in Appendix B
@1#, imply that

VL,R5S cosQ 2exp~2 ifL,R!sinQ

exp~ ifL,R!sinQ cosQ
D ,

~4b!

with

exp~ ifL,R!5zL,R /uzu, ~4c!
2-2
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and

Q5
1

2
tan21S 22uzu

A2B D . ~4d!

Although the construction just given suffices for the co
putation of the magnitudes of the CKM matrix elements,
calculation of the Higgs exchange amplitude in the next s
tion requires care in the choices of phases. When we rep
the physical mass eigenstatesf L,R

mass, the matricesVL,R
f trans-

form according to

VL,R
f →V̂L,R

f 5DL,R
f VL,R

f , ~5a!

with DL,R
f diagonal unitary matrices. A correct choice

phases requires that the diagonalized mass matrix

V̂L
f mfV̂R

f † ~5b!

be real and positive; in other words, the matricesDL,R
f must

be chosen to absorb the phases of the diagonal matrix
mentsk1,2

f on the right of Eq.~3b! above. In addition, re-
stricting ourselves now to the up and down quark flavor s
tors, we shall require that the phase choices for the phys
states put the matrixV̂L

uV̂L
d† , which is the 232 submatrix of

the rephased CKM matrix when third family mixings a
neglected, into the standard real form

S c12 s12

2s12 c12
D , ~5c!
u

01500
-
e
c-
se

le-

-
al

with s12 andc12 both nonnegative. These two phase requi
ments together fix the rephasing matricesDL,R

f up to an ir-
relevant overall phase.

To carry this construction out explicitly, we write Eq
~3b!, in the up and down quark sectors, as

VL
f mfVR

f †5S uk1
f uexp~ iu1

f ! 0

0 uk2
f uexp~ iu2

f !
D , f 5u,d,

~6a!

and we write the adjoint of the 232 CKM matrix computed
before rephasing as

VL
dVL

u†5S c12exp~ iu11! 2s12exp~ iu12!

s12exp~ iu21! c12exp~ iu22!
D , ~6b!

with unitarity imposing the conditions

c12
2 1s12

2 51,

u111u225u121u21 ~mod 2p!. ~6c!

Then a simple calculation gives

DL
d5diag@exp~2 iu11!,exp~2 iu21!#,

DR
d5diag@exp~ iu1

d2 iu11!,exp~ iu2
d2 iu21!#,

~6d!
DL

u5diag@1,exp~2 iu211 iu22!#,

DR
u5diag@exp~ iu1

u!,exp~ iu2
u2 iu211 iu22!#.

Corresponding to these, we find from Eqs.~4b! and~5a! that
V̂L
d5S exp~2 iu11!cd 2exp~2 ifL

d2 iu11!sd

exp~ ifL
d2 iu21!sd exp~2 iu21!cd

D , ~7a!

V̂R
d5S exp~2 iu111 iu1

d!cd 2exp~2 ifR
d2 iu111 iu1

d!sd

exp~ ifR
d2 iu211 iu2

d!sd exp~2 iu211 iu2
d!cd

D , ~7b!

V̂L
u5S cu 2exp~2 ifL

u!su

exp~ ifL
u2 iu211 iu22!su exp~2 iu211 iu22!cu

D , ~7c!

V̂R
u5S exp~ iu1

u!cu 2exp~2 ifR
u1 iu1

u!su

exp~ ifR
u2 iu211 iu221 iu2

u!su exp~2 iu211 iu221 iu2
u!cu

D , ~7d!
ri-

ed
with cd,u , sd,u defined in terms of the angleQ of Eq. ~4d! by

cd,u5cos~Qd,u!, sd,u5sin~Qd,u!. ~7e!

Equations~4a!–~4d!, ~6a!, ~6b!, and ~7a!–~7e! provide our
starting point for calculating the Higgs exchange contrib
tions to flavor changing neutral current processes.
-

III. ANALYSIS OF K12K2 AND D12D2 MIXING
INDUCED BY HIGGS EXCHANGE

We begin by extending the formulas of@1# for the Higgs
exchange contribution to theK12K2 mass difference to the
case when theh Higgs and pseudo Goldstone Higgs cont
butions are also included, using the rephased matricesV̂L,R

u,d

of Eqs. ~7a!–~7e!. Our starting point is Eq.~45c! of @1# for
theDS51 terms in the Higgs Lagrangian density, calculat
2-3
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to zeroth order in the perturbations f , which when extended
to include theh and pseudo Goldstone Higgs couplin
reads

Lscnc
DS515 (

j5f,h
(

p56
(

F5R,I
@ d̄ejF

(p)~AjF12
(p) 1BjF12

(p) g5!s

1 s̄ejF
(p)~AjF21

(p) 1BjF21
(p) g5!d#

1d̄ehR
(3)~AhR12

(3) 1BhR12
(3) g5!s

1 s̄ehR
(3)~AhR21

(3) 1BhR21
(3) g5!d

1d̄ePG
(3)~APG121BPG12g5!s

1 s̄ePG
(3)~APG211BPG21g5!d. ~8a!

The corresponding formula for the effective Hamiltoni
densityHeff

DS52 for the DS52 processs1s→d1d is

Heff
DS5252

1

2 (
j5f,h

(
p56

(
F5R,I

d̄~AjF12
(p) 1BjF12

(p) g5!s

3
1

M jF
2(p)

d̄~AjF12
(p) 1BjF12

(p) g5!s

2
1

2
d̄~AhR12

(3) 1BhR12
(3) g5!s

1

MhR
2(3)

3d̄~AhR12
(3) 1BhR12

(3) g5!s

2
1

2
d̄~APG121BPG12g5!s

1

M PG
2

3d̄~APG121BPG12g5!s. ~8b!

The eight Higgs boson squared masses appearing in Eq.~8b!
that carry superscripts (6) are equal in pairs:

M jR
2(1)5M jI

2(2) , M jR
2(2)5M jI

2(1) , j5f,h. ~8c!

Although they~as well asMhR
2(3)) are given in terms of La-

grangian parameters by Eq.~46b! and Table II of@1#, we will
not use these expressions, but rather will treat the Hi
masses that are independent, after taking account of Eq.~8c!,
directly as parameters to be bounded.

The subscripts 12~or 21) in Eq.~8a! indicate the row 1 to
column 2 ~or row 2 to column 1! matrix element of the
corresponding 232 matrix expressions for theA andB co-
efficients, which we now give. BecauseCP invariance of the
Lagrangian for the six-Higgs doublet model implies that t
Yukawa couplings appearing in Eq.~8a! are real, theA co-
efficients appearing in Eq.~8a! are related to theB coeffi-
cients as follows:

Af,hR
(6) 52 iBf,hI

(6) ,

Af,hI
(6) 5 iBf,hR

(6) ,
01500
s

AhR
(3)5 i

VAV

Vf
BPG , ~8d!

APG52 i
Vf

VAV
BhR

(3) ,

VAV[~Vf
2 1Vh

2 !
1
2.

Defining

M232
(1) 5S 1 0

0 0D , M232
(2) 5S 0 0

0 1D , r35S 1 0

0 21D ,

~9a!

the matricesBfR,I
(6) are given by

BfR
(1)5

A3

4
gf

d ~V̂L
dV̂R

d†2V̂R
dV̂L

d†!,

BfR
(2)5

A3

4
gf

d ~V̂L
dr3V̂R

d†2V̂R
dr3V̂L

d†!,

~9b!

BfI
(1)5

A3

4
gf

d i ~V̂L
dV̂R

d†1V̂R
dV̂L

d†!,

BfI
(2)5

A3

4
gf

d i ~V̂L
dr3V̂R

d†1V̂R
dr3V̂L

d†!,

the matricesBhR,I
(6) are given by

BhR
(1)52BhR

(2)5
A3

4
gh

d@exp~ iu!V̂L
dM232

(1) V̂R
d†

2exp~2 iu!V̂R
dM232

(1) V̂L
d†#,

~9c!

BhI
(1)52BhI

(2)5
A3

4
gh

d i @exp~ iu!V̂L
dM232

(1) V̂R
d†

1exp~2 iu!V̂R
dM232

(1) V̂L
d†#,

and the matricesBhR
(3) andBPG are given by

BhR
(3)5

A6

4
gh

d@exp~ iu!V̂L
dM232

(2) V̂R
d†

2exp~2 iu!V̂R
dM232

(2) V̂L
d†#,

~9d!

BPG52
A6

4
i

Vf

VAV
gh

d@exp~ iu!V̂L
dM232

(2) V̂R
d†

1exp~2 iu!V̂R
dM232

(2) V̂L
d†#.

In the above formulas,u is the overall phase rotation ang
between thef and h Higgs expectations introduced in Eq
~21! of @1#.

Taking theK to K̄ matrix element of Eq.~8b!, we get
2-4
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^KuHeff
DS52uK̄&52

1

2
SA

d^Ku~ d̄s!2uK̄&2
1

2
SB

d^Ku~ d̄g5s!2uK̄&,

~10a!

with

SA
d5S (

j5f,h
(

p56
(

F5R,I

~AjF 12
(p) !2

M jF
2(p) D 1

~AhR 12
(3) !2

MhR
2(3)

1
APG 12

2

M PG
2

,

SB
d5S (

j5f,h
(

p56
(

F5R,I

~BjF 12
(p) !2

M jF
2(p) D 1

~BhR 12
(3) !2

MhR
2(3)

1
BPG 12

2

M PG
2

.

~10b!

The corresponding formulas for the Higgs exchange con
bution to theD to D̄ transition amplitude are obtained b
replacingK by D̄, d by u, ands by c in the above formulas
and replacing the explicit factors ofi by 2 i in Eqs. ~9b!–
~9d!, with the latter substitution reflecting the fact that the
sector Yukawa couplings involve the charge conjugates
the Higgs fields.

Substituting now the explicit forms given in Eqs.~7a!–
~7e! for the matricesV̂R,L

d,u , we get formulas for the sumsSA
d ,

SB
d that determine the Higgs exchange contribution to theK̄

to K transition amplitude, and for the corresponding sumsSA
u

and SB
u that contribute to theD to D̄ transition amplitude .

With an eye to how these formulas will be used in Sec.
we write them as

SA
d5sd

2cd
2 exp~ iFd!PA

d ,

SB
d52sd

2cd
2 exp~ iFd!PB

d ,
~11a!

SA
u5su

2cu
2 exp~ iFu!PA

u ,

SB
u52su

2cu
2 exp~ iFu!PB

u ,

with the positive real quantitiesPA,B
d,u given by

PA
d53F ~gf

d !2S sin2Yd

MfR
2(1)

1
cos2Yd

MfR
2(2) D

1
1

4
~gh

d !2S 1

MhR
2(1)

1
1

MhR
2(2)D

1
1

2
~gh

d !2S cos2Xd

Mh
2(3)

1
Vf

2

VAV
2

sin2Xd

M PG
2 D G ,
01500
i-

f

,

PB
d53F ~gf

d !2S cos2Yd

MfR
2(1)

1
sin2Yd

MfR
2(2) D

1
1

4
~gh

d !2S 1

MhR
2(1)

1
1

MhR
2(2)D

1
1

2
~gh

d !2S sin2Xd

Mh
2(3)

1
Vf

2

VAV
2

cos2Xd

M PG
2 D G ,

PA
u53F ~gf

u !2S sin2Yu

MfR
2(1)

1
cos2Yu

MfR
2(2) D

1
1

4
~gh

u !2S 1

MhR
2(1)

1
1

MhR
2(2)D

1
1

2
~gh

u !2S cos2Xu

Mh
2(3)

1
Vf

2

VAV
2

sin2Xu

M PG
2 D G ,

PB
u53F ~gf

u !2S cos2Yu

MfR
2(1)

1
sin2Yu

MfR
2(2) D

1
1

4
~gh

u !2S 1

MhR
2(1)

1
1

MhR
2(2)D

1
1

2
~gh

u !2S sin2Xu

Mh
2(3)

1
Vf

2

VAV
2

cos2Xu

M PG
2 D G . ~11b!

The mixing and phase angles appearing in Eqs.~11a!,~11b!
are given in terms of the various phase angles defined ab
by

Yd5
1

2
~u1

d1u2
d!,

Xd5u1
1

2
~fR

d2fL
d!2

1

2
~u1

d1u2
d!,

Fd5u1
d2u2

d22u1112u212~fR
d1fL

d!,
~12a!

Yu5
1

2
~u1

u1u2
u!,

Xu52u1
1

2
~fR

u2fL
u!2

1

2
~u1

u1u2
u!,

Fu5u1
u2u2

u22u2212u212~fR
u1fL

u!.

As a check on our phase conventions, we note that w
the model isCP conserving, which implies@1# the additional
condition s22

f 5s11
f* , then Eq.~4d! reduces toQ5p/4, and

the following relations hold~modulop):
2-5
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u1
d,u52u2

d,u5args11
d,u ,

fL
d,u52args12

d,u2args11
d,u ,

fR
d,u52args12

d,u1args11
d,u , ~12b!

2u11522u225fL
u2fL

d ,

2u12522u2152fL
u2fL

d .

When substituted into Eq.~12a!, these relations imply the
vanishing ~modulo p) of the phasesFd and Fu . Conse-
quently, with the phase conventions used in this paper,
imaginary parts of the Higgs exchange contributions toK

2K̄ and D̄2D mixing are a direct measure of theCP vio-
lating contributions to these amplitudes.

IV. HIGGS BOSON MASS BOUNDS

We proceed now to derive bounds on the Higgs bo
masses in the six-Higgs doublet model. LetDMK

obs and
DMD

obs be respectively the measured value of theK12K2

mass difference and the experimental upper bound on
D12D2 mass difference. Since it is reasonable to exp
these to set upper limits on possible Higgs contributions
these mass differences, given respectively by@5#

uDMK12K2

Higgs u5MK
21u^KuHeff

DS52uK̄&u,

~13a!
uDMD12D2

Higgs u5MD
21u^D̄uHeff

DC52uD&u,

we get the basic inequalities

DMK
obs>MK

21u^KuHeff
DS52uK̄&u,

~13b!
DMD

obs>MD
21u^D̄uHeff

DC52uD&u.

These inequalities will be used in this section, both indep
dently and in combination, to derive a number of use
bounds on the Higgs boson masses.

We begin by rewriting Eqs.~10a!,~10b! and ~11a!,~11b!
so as to exhibit the features that play a role in our vario
inequalities. Let us definepK andpD as the negatives of th
ratios of the scalar to pseudoscalar matrix elements app
ing in Eq. ~10a! and in itsD meson analog,

pK52
^Ku~ d̄s!2uK̄&

^Ku~ d̄g5s!2uK̄&
,

~14a!

pD52
^D̄u~ ūc!2uD&

^D̄u~ ūg5c!2uD&
.

According to calculations ofpK and pD by the vacuum in-
sertion method@6,7# and the MIT bag model@6#, they are
positive and small~roughly of order 0.1 in magnitude!. The
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ratio pK can also be extracted from lattice calculations th
have been performed@7# for kaon matrix elements, giving
the resultpK50.3060.05, again of positive sign. Although
similar lattice calculation is not yet available for theD sys-
tem, we will assume that this follows the same pattern
observed in theK system, and thatpD ~as suggested by th
vacuum saturation and bag model calculations! is positive.
Substituting Eqs.~10a!, ~11a!, and~14a! into Eq. ~13b!, our
two basic inequalities now take the form

MKDMK
obs>

1

2
u^Ku~ d̄g5s!2uK̄&usd

2cd
2uPB

d1pKPA
d u,

~14b!

MDDMD
obs>

1

2
u^D̄u~ ūg5c!2uD&usu

2cu
2uPB

u1pDPA
u u,

with PB
d,u1pK,DPA

d,u both sums of positive terms. Introduc
ing the definitions

EK5
2MKDMK

obs

s12
2 c12

2 u^Ku~ d̄g5s!2uK̄&u
,

~14c!

ED5
2MDDMD

obs

s12
2 c12

2 u^D̄u~ ūg5c!2uD&u
,

we rewrite the inequalities of Eq.~14b! as

S EK

uPB
d1pKPA

d u D 1/2

>
usdcdu
s12c12

,

~14d!

S ED

uPB
u1pDPA

u u D 1/2

>
usucuu
s12c12

.

Although Eqs.~14d! are relevant for the numerical fits o
Sec. VI, where the productsusdcdu and usucuu are known,
they cannot be used to give fit-independent bounds on
Higgs boson masses, because eitherusdcdu or usucuu can van-
ish. However, we shall now show that the sumusdcdu
1usucuu is bounded below by CKM matrix elements, perm
ting us to extract a useful inequality by combining theK
meson andD meson flavor changing neutral current co
straints. To see this, we substitute Eq.~4b! for VL

d,u , together
with the definitions of Eq.~7e!, into Eq. ~6b! for the adjoint
of the unrephased CKM matrix, and take absolute values
the matrix elements on the first row, giving

s125ucusd exp~2 ifL
d!2sucd exp~2 ifL

u!u<ucusdu1usucdu,

c125ucucd1exp~ ifL
u2 ifL

d!susdu<ucucdu1ususdu.
~15a!

Multiplying these inequalities, we get

s12c12<ucdsdu~su
21cu

2!1ucusuu~sd
21cd

2!5ucdsdu1ucusuu,
~15b!
2-6
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giving the needed lower bound. Adding the two inequalit
in Eq. ~14d!, and using Eq.~15b!, we get the master inequa
ity

S EK

uPB
d1pKPA

d u D 1/2

1S ED

uPB
u1pDPA

u u D 1/2

>1. ~16!

Since all terms in the denominatorsuPB
d,u1pK,DPA

d,uu are
spositive, deleting any of these terms serves to make the
hand side of Eq.~16! larger, giving a number of simple
subsidiary inequalities that are consequences of the ma
inequality. Specifically, if we delete all terms in both d
nominators that do not refer to a given Higgs boson m
~i.e., if we set all of the other Higgs boson masses equa
infinity!, we get a lower bound for the Higgs boson mass t
we have retained; performing this in succession for the
Higgs boson masses we get the following inequalities:
c.
MfR
(1)>H F EK

3~gf
d !2~cos2Yd1pKsin2Yd!

G 1/2

1F ED

3~gf
u !2~cos2Yu1pDsin2Yu!

G 1/2J 21

,

MfR
(2)>H F EK

3~gf
d !2~sin2Yd1pKcos2Yd!

G 1/2

1F ED

3~gf
u !2~sin2Yu1pDcos2Yu!

G 1/2J 21

,

MhR
(6)>H F 4EK

3~gh
d !2~11pK!

G 1/2

1F 4ED

3~gh
u !2~11pD!

G 1/2J 21

,

MhR
(3)>H F 2EK

3~gh
d !2~sin2Xd1pKcos2Xd!

G 1/2

1F 2ED

3~gh
u !2~sin2Xu1pDcos2Xu!

G 1/2J 21

,

M PG>H F 2EKVAV
2

3~gh
d !2Vf

2 ~cos2Xd1pKsin2Xd!
G 1/2

1F 2EDVAV
2

3~gh
u !2Vf

2 ~cos2Xu1pDsin2Xu!
G 1/2J 21

. ~17a!

Applying the same procedure of successive deletion of denominator terms to the inequalities of Eq.~14d!, we get a set of
analogous inequalities@which, by use of Eq.~15b!, imply those of Eq.~17a!# that will be used in the numerical work of Se
VI,

MfR
(1)>maxH r dF EK

3~gf
d !2~cos2Yd1pKsin2Yd!

G21/2

,r uF ED

3~gf
u !2~cos2Yu1pDsin2Yu!

G21/2J ,

MfR
(2)>maxH r dF EK

3~gf
d !2~sin2Yd1pKcos2Yd!

G21/2

,r uF ED

3~gf
u !2~sin2Yu1pDcos2Yu!

G21/2J ,

MhR
(6)>maxH r dF 4EK

3~gh
d !2~11pK!

G21/2

,r uF 4ED

3~gh
u !2~11pD!

G21/2J ,

MhR
(3)>maxH r dF 2EK

3~gh
d !2~sin2Xd1pKcos2Xd!

G21/2

,r uF 2ED

3~gh
u !2~sin2Xu1pDcos2Xu!

G21/2J ,

M PG>maxH r dF 2EKVAV
2

3~gh
d !2Vf

2 ~cos2Xd1pKsin2Xd!
G21/2

,r uF 2EDVAV
2

3~gh
u !2Vf

2 ~cos2Xu1pDsin2Xu!
G21/2J ,

r d[
usdcdu
s12c12

, r u[
usucuu
s12c12

. ~17b!

015002-7
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STEPHEN L. ADLER PHYSICAL REVIEW D 60 015002
The bounds in Eq.~17a! still depend on the mixing angle
Xd,u and Yd,u defined in Eq.~12a!; a set of ~necessarily
weaker! bounds that do not depend on these angles is
tained by using the inequalities, valid forp<1,

cos2Z1p sin2Z5~12p!cos2Z1p>p,
~18a!

sin2Z1p cos2Z5~12p!sin2Z1p>p,

giving ~for pK,D<1) the inequalities

MfR
(6)>H F EK

3~gf
d !2pK

G 1/2

1F ED

3~gf
u !2pD

G 1/2J 21

,

MhR
(6)>H F 4EK

3~gh
d !2~11pK!

G 1/2

1F 4ED

3~gh
u !2~11pD!

G 1/2J 21

,

~18b!

MhR
(3)>H F 2EK

3~gh
d !2pK

G 1/2

1F 2ED

3~gh
u !2pD

G 1/2J 21

,

M PG>H F 2EKVAV
2

3~gh
d !2Vf

2 pK
G 1/2

1F 2EDVAV
2

3~gh
u !2Vf

2 pD
G 1/2J 21

.

Equations~17a!, ~17b! and~18b! are our final bounds for the
Higgs boson masses in the six-Higgs doublet model.

To obtain numerical values from the bounds of Eq.~18b!,
we first need to evaluate the ratiosEK,D defined in Eq.~14c!.
For EK we use the measured value@8# DMK

obs5
3.49310212 MeV, together with MK5497.7 MeV, Md
56 MeV, Ms5115 MeV, f K5160 MeV, c1250.975, s12
50.221, and the lattice evaluation@7#

u^Ku~ d̄g5s!2uK̄&u51.58S MK

Ms1Md
D 2

MK
2 f K

2 , ~19a!

to give

EK50.44310212 ~GeV!22. ~19b!

For ED , we use the experimental upper bound@8# DMD
obs

51.58310210 MeV, together with MD51865 MeV, Mu
53.25 MeV, Mc51.25 GeV, the lattice calculation@9#
value f D.1.2f K , and the vacuum saturation approximati
formula @7#

u^Ku~ d̄g5s!2uK̄&

u^D̄u~ ūg5c!2uD&u
5

f K
2 MK

2 @11MK
2 ~Ms1Md!2211#

f D
2 MD

2 @11MD
2 ~Mc1Mu!2211#

,

~19c!

to give

ED527310212 ~GeV!22. ~19d!
01500
b-

Since the scalar to pseudoscalar ratiopD has not yet been
computed on the lattice, we will assume thatpD5pK50.3 in
evaluating Eqs.~18b!.

To complete the computation of Higgs boson ma
bounds, we need the values of the various Yukawa coupli
appearing in Eqs.~18b!. Here some assumptions about ho
the first and second family masses are generated are ne
If, following @1#, we assume that thef Higgs expectations
generate the third family masses, theh Higgs expectations
generate the second family masses, while cyclic asymme
in the Yukawa couplings are responsible for the first fam
masses, then we get from Eq.~32b! of @1# the formulas

gf
u 5

Mt

3Vf
, gf

d 5
Mb

3Vf
,

~20a!

gh
u5

Mc

3Vh
, gh

d5
Ms

3Vh
.

If we now assume equalVf and Vh , so that Vf5Vh
571 GeV, we get the numerical values

gf
u 50.82, gf

d 50.020,
~20b!

gh
u50.0059, gh

d50.00054,

giving the Higgs boson mass lower bounds

MfR
(6)>24 TeV,

MhR
(6)>470 GeV,

~20c!
MhR

(3)>320 GeV,

M PG>220 GeV.

An alternative possibility, discussed in the next section
that the second family masses are generated by cyclic as
metries in thef Yukawa couplings, with the first family
masses generated by theh Higgs expectations. In this case
the second line of Eq.~20a! is replaced by

gh
u.

Mu

1.5Vh
, gh

d.
Md

1.5Vh
, ~21a!

giving ~for Vh5Vf) the numerical valuesgh
u53.131025,

gh
d55.731025, which imply the much weakerh and pseudo

Goldstone Higgs boson mass bounds

MhR
(6)>5.5 GeV,

MhR
(3)>3.7 GeV, ~21b!

M PG>2.6 GeV.

Finally, we note that the first inequality of Eq.~18b! also
applies to theCP conserving case of the three-Higgs doub
model of@1#, for whichVf5A2371 GeV, so thatgf

d,u are a
factor ofA2 smaller than given in Eq.~20b!. This reduces the
2-8
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corresponding bounds of Eq.~18b! by a factor ofA2, giving
for the CP-conserving three-Higgs doublet model the Hig
boson mass lower bounds

MfR
(6)>17 TeV. ~22!

In this model there are noh Higgs states, and hence n
possibility of neutral Higgs states that are not supermass

V. IMPLICATIONS OF REQUIRING NATURALLY
SMALL FIRST FAMILY MASSES

We saw in the preceding section that the bounds on thh
and pseudo Goldstone Higgs boson masses depend o
coupling pattern assumed for theh Higgs discrete chiral trip-
let. In this section we classify possibleh Higgs coupling
patterns, based on a criterion of requiring naturally small fi
family masses. Referring to Eqs.~1a! and ~1b!, we see that
contributions to the mass matrix in the six-Higgs doub
model are of three distinct types, arising from deviatio
from cyclic symmetry in thef Higgs Yukawa couplings,
deviations from cyclic symmetry in thef Higgs expecta-
tions, and contributions from the weakly coupledh Higgs
expectations. Since these three contributions are not dire
related physically, detailed cancellations between them in
determination of the first family masses area priori unlikely.
Hence as a necessary~but not sufficient! condition for natu-
rally small first family masses, we impose the condition th
only one of these three contributions dominates in a lead
approximation in which the first family masses are exac
zero.

We begin by noting that the deviationsdn
f from cyclic

symmetry in thef Higgs Yukawa couplings cannot dom
nate and lead to naturally zero first family masses. Let
suppose that thedn

f do dominate, and consider first the ca
in which the model chooses aCP conserving ground state
for which the parametersdn

f are all real. In this case th
magnitudes

us11
f u.ud3

f 1v̄d2
f 1vd1

f u,
~23!

us22
f u.ud3

f 1vd2
f 1v̄d1

f u,

are equal, and so the first and second family masses
equal. Turning on aCP violation results in complexdn

f ’s, for
which the first and second family masses are no longer
same, but clearly a fine tuning of the amount ofCP violation
would be needed to achieve zero first family masses. He
dominance of the Higgs expectation asymmetriesdn

f is not
compatible with naturally small first family masses.

We consider next the case in which the contributionRf of
the h Higgs expectations dominates, which is the scena
assumed in@1#. In this case theh Higgs expectations give
rise to the second family masses, and the leading approx
tion to the first family masses is automatically zero, satis
ing our criterion for naturally small first family masse
However, a potential problem arises when we examine
structure of the CKM matrix. In the leading approximation
which only Rf is retained in the mass matrix, the CKM m
01500
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trix is unity. To get a nontrivial CKM matrix, we must ad
back the small perturbationsdn

f andm lm
f in Eq. ~1b!. Accord-

ing to Eqs.~4a!–~4d!, in each flavor channel we then get

A2B.2us22u2,

uzu.us12uus22u, ~24a!

Q.
1

2
tan21S 2us12u

us22u
D ,

which by the hypothesis of dominance ofRf is much less
than unity. Hence, in particular, the up channel quantitysu

5sinQu is much less than unity in magnitude. But referrin
now to the corrected expressions@3# for the CKM elements
s13 ands23, we have

s135us32d3u/3, s235us31d3u/3,
~24b!

s35cu~s13
d 2s13

u !, d35su exp~2 ifL
u!~s23

d 2s23
u !,

indicating that the spread ofs23 ands13 from their geometric
mean is suppressed by the small quantitysu . This in turn
requires relatively large parameter valuess23 and/ors13 to
give a satisfactory fit to the data, contradicting the start
assumption of a dominantRf . We shall see evidence for thi
phenomenon in the next section, where we find Yuka
asymmetries comparable in magnitude toRf , and hence sub-
stantial fine tuning in achieving small first family masses

We turn finally to the third case, in which the domina
contributions to the mass matrix come from the asymmet
m lm

f of the f Higgs Yukawa couplings. For the leading a
proximation to the 232 submatrixm of the mass matrix, we
then have~suppressing the flavor indexf )

m5
1

3 S m11 m12

m21 m22
D , ~25a!

with only two of the matrix elements in Eq.~25a! indepen-
dent, sinceCP invariance of thef Higgs Yukawa couplings
implies @1# that

m215m12* , m225m11* . ~25b!

In order for Eq.~25a! to have a zero eigenvalue, we mu
impose the additional condition

um12u5um11u⇔m125exp~2 ix!m11* , ~26a!

an explanation for which must be sought in higher ene
physics determining the Yukawa couplings. Taken togeth
Eqs.~26a! and ~25b! imply that the matrixm takes the rank
one form

m5
1

3 S m11 exp~2 ix!m11*

exp~ ix!m11 m11*
D , ~26b!
2-9
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STEPHEN L. ADLER PHYSICAL REVIEW D 60 015002
with eigenvaluesuk1u50 and uk2u5 2
3 um11u, corresponding

respectively to the first and second family mass eigensta
From Eq.~4a!, we find that the diagonalizing matricesVL,R
are given by Eq.~4b!, with

Q5
p

4
, cosQ5sinQ5

1

A2
,

~27a!
fL5x, fR5x12 argm11.

Referring to Eq.~15a!, we see that the sine of the Cabibb
angles12 is given now by

s125
1

2
uexp~2 ifL

d!2exp~2 ifL
u!u5Usin

1

2
~xu2xd!U.

~27b!

Averaging Eq.~24b! and the analogous expression obtain
from the lower left corner of the CKM matrix, we get th
following leading order expressions fors13 ands23:

s135us32d3u/3, s235us31d3u/3,

s35
1

A2
~s13

d 2s13
u !, ~27c!

d35
1

A2
expF2

i

2
~xu1xd!GcosF1

2
~xu2xd!G ~s23

d 2s23
u !,

in which the coefficient ofs23
d 2s23

u in d3 is not now a small
parameter.

To complete the analysis of the third case, let us calcu
the first family mass eigenvalue. There are four possible c
tributions to a nonzero first family mass:~i! deviations from
the rank one condition of Eq.~26a! on the 232 submatrixm
of the mass matrix,~ii ! asymmetries in thef Higgs expec-
tations dn , ~iii ! couplings to the third family through th
mass matrix elementss13, s31 and s23, s32, and ~iv! ef-
fects of theh Higgs expectation termR in Eq. ~1b!. ~We are
continuing to suppress the flavor indexf when not needed.!
The simplest way to calculate the first family mass mat
eigenvalueuk1u is to evaluate the absolute value of the d
terminant of the 333 mass matrixM 8 of Eq. ~2a!, which
yields uk1u when divided by the product of the other tw
eigenvalues, giving to leading order in small quantities,

uk1u.
udetM 8u

3uk2u
.

udet~3M (3)1s!u
2um11u

. ~28a!

To illustrate this in a simple texture model corresponding
the third case, let us assume that the contributions~i! and~ii !
above are absent, that is, we assume that the condition o
~26a! is exact and that cyclic asymmetries in thef Higgs
expectations are negligible. Then the only relevant contri
tions to the determinant in Eq.~28a! are~iii ! and~iv! above,
and a simple calculation gives the leading order formula
01500
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uk1u.U32 R2
1

6
@s13* 2exp~ ifL!s13#@s31* 2exp~2 ifR!s31#U,

~28b!

with fL,R given in Eq.~27a!. When only theR term is re-
tained, substituting Eq.~28b! into Eq. ~1a! yields the formu-
las of Eq. ~21a!. Within the simplified texture model, we
have also calculated theCP violating angled13 appearing in
the standard form@8# CKM matrix as a consequence of th
CP violation carried by theR term. After considerable alge
bra, we find

d13.2A2eu@cot~fL
u2fL

d!2cot~fL
u12u13!#

22A2ed csc~fL
u2fL

d!, ~29a!

with the auxiliary quantities appearing in Eq.~29a! defined
by

u135arg~s13
d 2s13

u !, eu,d5
29 Re~m11

u,dRu,d!

4A2um11
u,du2

.

~29b!

To complete the specification of the texture model cor
sponding to the third case, we note that since the 232 di-
agonalizing submatricesVL,R are maximally mixing in this
case, wherever ‘‘1st’’ or ‘‘2nd’’ appears in the Higgs meso
fermion family coupling Table II of@1#, there now should
appear ‘‘1st and 2nd,’’ indicating couplings of equal magn
tude of first family to first family, first family to second
family, and second family to second family. We also rema
that the rank one condition of Eq.~26a! can be reexpresse
as a model for the Yukawa asymmetriesb lm , by using the
inversion formulas

b115
2

9
Re~m111m121m131m31!,

b125
2

9
Re~vm111v̄m121m131vm31!,

b135
2

9
Re~v̄m111vm121m131v̄m31!,

b215
2

9
Re~vm111vm121vm131m31!,

b225
2

9
Re~v̄m111m121vm131vm31!,

~30!

b235
2

9
Re~m111v̄m121vm131v̄m31!,

b315
2

9
Re~v̄m111v̄m121v̄m131m31!,

b325
2

9
Re~m111vm121v̄m131vm31!,

b335
2

Re~vm111m121v̄m131v̄m31!.
9

2-10
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VI. SOME ILLUSTRATIVE NUMERICAL FITS

We give in this section illustrative numerical fits, obtain
by the method of minimizing a ‘‘cost function’’ described i
detail in Sec. IX of@1#. The mass and CKM cost function
are as in Eqs.~51b! and ~52b! of @1#, with the changes tha
we omit the term (Vf2Vh)2, which had little effect on the
fits, and take the target values and standard deviations f
the latest Particle Data Group@8# compilation. For the pa-
rameter cost function, we use Eq.~53a! of @1#, with the
changes that we omit the summation restrictions exclud
the n53 and m5n53 terms, so that all asymmetries a
treated symmetrically, and we take the exponente as 2 rather
than as 1. For the third case of the preceding section
which the second family masses arise from Yukawa coup
asymmetries, we also add to the parameter cost functio
term

Vh
2

4 F S gh
u

Mu
D 2

1S gh
d

Md
D 2

1S gh
e

Me
D 2G , ~31!

designed to keep theh Higgs contributions small, and sta
the iteration from preliminary parameter values determin
with gh

f 50, f 5u,d,e. We omit flavor changing neutral cur
rent constraints from the cost function, so that there is no
tuning to attempt to suppress flavor changing neutral cur
effects; instead we use the inequalities of Eq.~17b!, evalu-
ated using the parameters determined by the fitting pro
dure, to give lower bounds on the Higgs masses that gua
tee sufficiently small flavor changing neutral curre
contributions toK2K̄ and D̄2D mixing.

Fitting results for the second case of the proceeding s
tion are given in Table I, obtained with a standard deviat
for the Yukawa asymmetriesb of sparameter50.02. For this
fit, the maximumubu values in the up, down, and electro

TABLE I. Six-Higgs doublet model fit to experimental dat
second case of Sec. V.

Quantity Target value Fitted value

Mu 0.0033 0.0033
Mc 1.25 1.26
Mt 173.8 174.0

Md 0.0060 0.0064
Ms 0.115 0.111
Mb 4.25 4.24

Me 0.00051 0.00051
Mm 0.1057 0.1057
M t 1.777 1.777

s12 0.221 0.221
s13 0.0059 0.0062
s23 0.039 0.037
usind13u 0.60 0.48
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sectors are 0.032, 0.058, and 0.010 respectively. Altho
the iteration is started with theh Higgs coupling values of
Eq. ~20b!, the converged fit has significantly smaller co
plings gh

u50.0031 andgh
d50.00039, indicating that the

Yukawa asymmetries make substantial contributions to
second family masses. This means that theh Higgs contri-
butions do not dominate the Yukawa asymmetries, and t
substantial fine tuning is involved in achieving small fir
family masses. For the fit of Table I, the Higgs boson m
bounds obtained from Eq.~17b! are

MfR
(1)>520 TeV,

MfR
(2)>440 TeV,

MhR
(6)>1.3 TeV, ~32a!

MhR
(3)>1.1 TeV,

M PG>1.0 TeV.

In Table II we give fitting results for the third case of th
preceding section, obtained now with a standard devia
for the Yukawa asymmetriesb of sparameter50.08. For this
fit, the maximumubu values in the up, down, and electro
sectors are 0.042, 0.052, and 0.11 respectively, with the r
tively large Yukawa coupling asymmetry needed in the el
tron sector reflecting the fact that in this sector the ratio
the second family to third family mass is biggest. For the
of Table II, the Higgs boson mass bounds obtained from
~17b! are

TABLE II. Six-Higgs doublet model fit to experimental data
third case of Sec. V.

Quantity Target value Fitted value

Mu 0.0033 0.0032
Mc 1.25 1.25
Mt 173.8 173.9

Md 0.0060 0.0065
Ms 0.115 0.096
Mb 4.25 4.25

Me 0.00051 0.00051
Mm 0.1057 0.1057
M t 1.777 1.777

s12 0.221 0.221
s13 0.0059 0.0059
s23 0.039 0.039
usind13u 0.60 0.33
2-11
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MfR
(1)>370 TeV,

MfR
(2)>620 TeV,

MhR
(6)>210 GeV, ~32b!

MhR
(3)>220 GeV,

M PG>140 GeV.

To conclude, in order for flavor changing neutral curre
effects in our models to be sufficiently small, thef Higgs
boson masses must be very large, far outside the regim
which conventional perturbative Higgs physics applies~see
@10# for a recent review of both perturbative and strong
coupled Higgs models!. Our results are consistent with ge
eral group theoretic analyses of flavor changing neutral c
rents in multi-Higgs doublet extensions of the stand
model @11#, which when applied to our models imply tha
flavor changing neutral currents cannot cancel kinematica
but must be eliminated either by fine tuning~an option we
have ruled out by the inequalities of Sec. IV! or by having
some very large Higgs boson masses. From an experime
viewpoint, the most interesting scenario within our mod
corresponds to the third case discussed in Sec. V, in w
01500
t

in

r-
d

y,

tal
s
h

the h Higgs couplings are small enough that their expec
tions play an important role only in determining the fir
family masses and in giving rise toCP violation. In this case
theh Higgs and pseudo Goldstone Higgs states are perm
by our mass bounds to be light enough to be seen in exp
ments at the CERN Large Hadron Collider~LHC!. The sim-
plest model of this type would be one in which thef andh
Higgs self-interactions have similar structures, with a we
f2h coupling. Massiveness of thef Higgs states would
then imply massiveness of the correspondingh Higgs states,
with only one neutral and two charged pseudo Goldsto
Higgs states potentially observable at LHC energies. In s
models, one simultaneously has observable light Higgs st
~the pseudo Goldstone triplet! and ‘‘new physics’’ implied
by the strongly self-coupledf andh Higgs sectors.
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