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We reanalyze our recently proposed mass matrix model based on spontaneously broken discrete chiral
family symmetry, taking into account the additional flavor changing neutral current constraint implied by the
bound on theD;—D, mass difference, and including several corrections to our earlier analysis. When com-
bined, theK;—K, and D;—D, constraints force the masses of the Higgs particles that contribute most
strongly to flavor changing neutral curreritee ¢ Higgs statesto lie above 17 TeV, well beyond the limit of
validity of conventional perturbative Higgs physics. The analogous constraints on the masses ¢ligus
states and the neutral pseudo Goldstone Higgs state depend on the mechanism for realizing small first family
masses. If they Higgs states are the primary contributor to second family masses, the pseudo Goldstone and
7 Higgs states must have masses above 220 GeV, with numerical fits suggesting masses above 1 TeV, while
if the » Higgs states are responsible solely for first family masses, the corresponding mass bounds drop to the
range detectable at the CERN LHC. We show that naturalness of small first family masses favors the latter
alternative, and give an illustrative mass matrix texture md&f556-282199)03713-3

PACS numbgs): 12.60.Fr, 11.30.Hv, 11.30.Rd

[. INTRODUCTION We show that this alternative is favored by requiring natu-
ralness of small first family masses. In addition, we make the
In a recent papefl] we constructed extensions of the following three corrections to the model as originally formu-
standard model, based on the hypothesis that the Higdated:(i) we correct the form of the CKM matrix, as pointed
bosons also exhibit a threefold family structure, and that theut in an Erratum[3] to [1], (ii) we include rephasings
flavor weak eigenstates are distinguished by a discfgte needed to make the diagonalized quark mass matrices posi-
chiral symmetry that is spontaneously broken by the Higggive real, and(iii) we correct combinatoric factors in the
sector. Two models were analyzed[itl, the first with one  flavor changing neutral current amplitud@mounting to an
three-family set of Higgs doublets, and the second with twaoverall factor of 2, and give a more accurate treatment of the
three-family sets of Higgs doublets. In the three-Higgs dou-hadronic matrix elements appearing in the flavor changing
blet model, the leading cyclically symmetric approximation neutral current constraints.
to the quark and lepton mass matrices has the “democratic” This paper is organized as follows. In Sec. Il we give a
form with all matrix elements equal, leading to one massivesynopsis of results needed frgd, including the corrections
and two massless fermion families. In the six-Higgs doubleti) and (ii) noted above. In Secs. Il and IV we analye
model, for a wide range of Higgs potential parametérB,is —K, andD;—D, mixing induced by Higgs exchange, in-
spontaneously broken, and this breaking simultaneouslgluding the correction§ii). In Sec. Il we give formulas for
modifies the democratic Ansatz to give nonzero masses to atalculating theg Higgs, the Higgs, and the pseudo Gold-
additional family(assumed if1] to be the second familyin stone Higgs contributions, in the six-Higgs doublet model, to
leading cyclic approximation. Corrections to the cyclic ap-both theK,;—K, andD;—D, mass differences. In Sec. IV
proximation were used ifi] to give first family masses, and we use the formulas of Secs. Il and Il to derive a series of
a nontrivial Cabibbo-Kobayashi-Maskaw@KM) matrix. bounds on the Higgs boson masses, which are evaluated nu-
In performing numerical fits to the data using the modelsmerically using lattice and model calculations of the relevant
of [1], we took into account bounds on flavor changing neu-hadronic matrix elements, for two possible mechanisms for
tral currents solely through the constraint provided by therealizing the first and second family masses. Irrespective of
K;—K, mass difference, which led to strong asymmetries inthis choice of mechanism, we find that tileHiggs boson
the fits between the up and down quark sectors. Pd&}in masses must be greater than 17 TeV, in accord with analyses
has pointed out the importance of including in the analysi§4] of generic multi-Higgs models. This bound also extends,
experimental bounds on tH&; — D, mass difference, which by specialization to the case in which tlyeHiggs couplings
is the up quark sector analog of thg — K, mass difference vanish, to theC P conserving case of the three-Higgs doublet
constraint. The purpose of this paper is to give the formulasnodel. In Sec. V we analyze the implications of requiring
and numerical results needed for this extension of the analythat small first family masses arise naturally, as opposed to
sis of [1]. We also consider an alternative version of thearising by detailed cancellations between physically unre-
model of[1], in which cyclic asymmetries in the Higgs lated quantities, and give a simple mass matrix texture model
couplings are responsible for second family masses, and thtsrresponding to the case in which Yukawa coupling asym-
7 Higgs contributes significantly only to first family masses. metries are responsible for second family masses. In Sec. VI
we repeat the numerical fits §1], taking into account the
results derived in the preceding sections, and summarize our
*Email address: adler@ias.edu conclusions.
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II. SYNOPSIS OF NEEDED RESULTS M§=3M(3)+Uf, (2a)
FROM THE SIX-HIGGS MODEL

The six-Higgs doublet model dft] is based on the as- we then[1] construct the bi-unitary transformation matrices

f f : fanrr1ftic A ; ; }
sumption that there are two discrete chiral families of HiggsU ' Urg f(r)ré’vihr:CthL:\Atf U\? IIS d'?_?lonfl;r\r’]vi'tz tr:e elgeinvzi]l tat
bosons,¢,, and 5,, n=1,2,3. These are coupled to discrete ues ordere absolute value. 1he termio ass eigenstate

chiral families of fermions to give a Lagrangian that is ex- bﬂz’d“bg to Lephasmgs to be discussed, is related to the
actly discrete chiral invariant, and that is approximately in-PM SIs by

variant under cyclic permutation of the discrete chiral com- f/ —yftgmass
ponents. The model is constructed so that the Higgs fields Looet e (2b)
develop nonvanishing vacuum expectations i€ R violat- fr= Uf‘rfmass f=ud.e

ing phase, and it is assumed that thediggs bosons couple

much more strongly to fermions than thgHiggs bosons, and the CKM matrixU gy is given[3] by

and similarly for their corresponding expectatiofenoted

respectively by, and(),). As a zeroth order approxima- Uekm=ULULT. (29

tion to the model, only theb Higgs expectations are retained , , ,
and cyclic permutation symmetry is assumed, leading to a Since Eq (2a) defines a degenerate perturbation problem,

“democratic” mass matrix with one massive and two mass-the matricedJ|  are constructefil] in two stages: first the
less families, and a CKM matrix of unity. 2% 2 submatrix ofM{ spanned by the first two families is
Deviations from cyclic symmetry, and thgHiggs expec- diagonalized exactly, and then the solution to this problem is
tations, are then added back as a perturbation, giving as ti#sed to perturbatively construct the fulk3 diagonalizing
Lagrangian mass term matrices. Because the analysis of flavor changing neutral
current effects in the next section ignores third family mix-
— , ings, it suffices for this analysis to discuss only thg 2
ﬁmass:fzgd‘e ngEﬁQ¢(3M(3)+Uf)fR' (18 submatrix diagonalization problem. Suppressing for the time
being the flavor superscrift we define the X2 submatrix
HereM(®=diag(0,0,1) is the projector on the third family, m by

g; is the ¢ Higgs Yukawa coupling for flavof, ando' is a
3 3 matrix of perturbations, given explicitly by m= ( 11 ‘712) (33
1 021 022
o1= §Mf11+ S+ wdh+wdl, which is brought to diagongbut not necessarily reaform
by matricesV, g,
ol =yt 3R+ St Wbt w o), 1 0
227 g M2 3 2 , V|_mV£= 0 x| (3b)
f (1b) i
033=0, with | k1| <|«,|. An explicit construction oW/ g is given in
Appendix B of[1]; the results obtained there can be simpli-
1 . — fied by using the symmetry of Eqlc) above, which(in
f J— f . j— j— * H
Tim=gHm,  1FM o=exp2mif3),  e=o®. terms of the quantities defined in Appendix B[ai) implies
that
In Eqg. (1b) the termsy,, arise from small deviations from 5 5
cyclic symmetry in the Yukawa couplings of thg Higgs AL=Ar=loy|*+ [0 *=A

bosons, the termé, arise from deviations from cyclic sym- 2 9
metry in the ¢ Higgs expectations, and the terRi arises BL=Br=|02)"+|01]°=B,

from contributions to the mass matrix of the weakly coupled Lk * _ o % (4a)
n Higgs expectations. Further details of the structurerbf 2=(01y+ 02015, Zr= (011t 03) 01,

are given in Egs(38b) through(39¢ of [1] and are used in 12| =|zel=I7]
Secs. V and VI below. However, the only property needed L RIZ 14

for the analytic calculations of Sec. lll is that, since theThese relations, together with the results in Appendix B of
Yukawa coupling asymmetries are all real because the Le{-l] imply that

grangian in the six-Higgs doublet model is assumed to b

CP invariant, the first order perturbations obey cos® —exp(—i¢ g)sin®

VL,R: . . ,
o= 031 (10 expi ¢ r)SINGO cos® "

This restriction holds even though the mode[bfchooses a it
CP violating ground state.
Defining explio r) =2 /|2, (40)
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and with s;, andc,, both nonnegative. These two phase require-
ments together fix the rephasing matridbéR up to an ir-
(4d) relevant overall phase. N _
To carry this construction out explicitly, we write Eq.
(3b), in the up and down quark sectors, as
Although the construction just given suffices for the com-

putation of the magnitudes of the CKM matrix elements, the ¢ ¢, 1+ | <1/exp(i 6) 0 ud
calculation of the Higgs exchange amplitude in the next sec- - 0 |K;|exp(i 6;) ' =u.d,
tion requires care in the choices of phases. When we rephase (63)

the physical mass eigenstaf¥s®, the matrices/| g trans-

form according to and we write the adjoint of the>22 CKM matrix computed

before rephasing as

VfL,R_>\A/fL,R:DfL,RVfL,R! (5a) dout Cpoexpifi) —Sppexpifgy)
Vi (Slzexm 621  C12€Xpi 02

with unitarity imposing the conditions

Vim'VE (5b) c,+s5,=1,

) ., (6b

with DfL’R diagonal unitary matrices. A correct choice of
phases requires that the diagonalized mass matrix

be real and positive; in other words, the matrit‘.l{sR must 011+ 030= 015+ 65,  (mod 2m). (60)
be chosen to absorb the phases of the diagonal matrix ele-
ments «! , on the right of Eq.(3b) above. In addition, re- Then a simple calculation gives

stricting ourselves now to the up and down quark flavor sec- DY=diad exp(—i6y),exf —i 621)]
tors, we shall require that the phase choices for the physical - ’ ’
states put the matrix¥'Ve", which is the 2<2 submatrix of DY =diad exp(i 69— 61,),expi 69— 6,1)],
the rephased CKM matrix when third family mixings are . _ _ (6d)
neglected, into the standard real form Di=diad 1,exg —i62+i62)],

( C1z 512) 50 Di=diad exp(i 67),expli 65—i 6141 657)].

1 C
—S12 Ci2 Corresponding to these, we find from E¢éb) and(5g) that

exp(—if)cy  —exp—idl—if;)sy
, 7
exp(l ¢>L— i 051)Sq exp(—ify1)Cqy (73
exp(—if+iod)cy  —exp(—igpa—if;+i6d)sq .
L 7
exp(l ¢R |021+|62)sd exp(—i621+i6"2’)cd (70
—exp(—i¢p)s,
I= . 7c
exp(i ¢}'— |621+| 055)S, expl—ify+iby)c, (79
exp(i 6))cy —exp(—igp+if)s,
R= , 7
qu' ¢R | 021"’ | 622"’ | 02)Su eX[I( - | 021“1‘ | 022“1‘ | 02)CU ( d)
|
with ¢4, Sq,y defined in terms of the angle of Eq. (4d) by Il ANALYSIS OF K;—K; AND D;—D, MIXING
INDUCED BY HIGGS EXCHANGE
Cqu=C0YOqy), Squ=SiNOg,). (79 We begin by extending the formulas [f] for the Higgs

exchange contribution to thi€; — K, mass difference to the

case when the; Higgs and pseudo Goldstone Higgs contri-
Equations(4a)—(4d), (6a), (6b), and (7a)—(7e) provide our butions are also included, using the rephased matﬁi’(’éfé
starting point for calculating the Higgs exchange contribu-of Egs.(7a—(7€). Our starting point is Eq45¢ of [1] for
tions to flavor changing neutral current processes. the AS=1 terms in the Higgs Lagrangian density, calculated
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to zeroth order in the perturbatiari, which when extended

to include they and pseudo Goldstone Higgs couplings A(3):|Q—BPG, (8d)
reads ¢
Q
—_ji—¢g®d
Loge'= [df(p) AP+ BF1oys)s Aec IQAVB”R'
§=¢,m p== F=R
+§e(§‘,):)(A(§’,’:)21+ B(‘§F2175)d] Q= (Qiﬁ‘ Qf,)i
+deRAR ,+ B ,ys)s Defining
+5eUA+ BB, 75)d o (10 o [0 0 1 0
_ M3o= 0o o) M3%o= o 1/ P3 0o -1/
+deSe(Apciat Bpaiays)s (9a)
se®) + .
+35epd(Apga1t Bpaarys)d. 88 the matrices8;¥, are given by
The corresponding formula for the effective Hamiltonian \/§ o o
densityH5; 2 for the AS=2 process+s—d+d is BYR = Tgi(VEV%*—V%VET),
1
HASZ——EEEd(A(p)+B ¥5)S N3
PR AT s TH BYR = - 95(VipaVR — VrpsVih),
(9b)
— AR+ BR,y5)s 3 4 ededt L ode
M?@ B = 5 (V0081 + VAU,
1 1
— 5d(AS),+BG R1275)ST VB ey et e e
2 TEEMR) BY )= -4 g4 (VpaVE' + Vipa V"),
X d(AlB;,+B s .
(AGR12+ B Riors) the matricesB{, are given by
1—
— 5d(Apci2t Bpg12Ys)S—5—
2 25 BiR=—Blx >— gllexpi 0)VIME),Va!
X d(Apg1p+ B s. 8b S -
(Apg12t Bpgi12Ys) (8b) —exp(—|6)V‘,iM () Y9,
The eight Higgs boson squared masses appearing it8EQ. N (90
that carry superscript are equal in pairs: - . N
y sup pts¥() q p B(JI-):_B(”I):ng]'[equQ)VEM(l)ZVdT
M2(H) = pm2() M2 = pm2(H) E=o¢,n. (80
¢R g R g o ) A ~
+exp(—i ) VRME), Vi,
Although they(as well asM2{)) are given in terms of La-
grangian parameters by Eg6b) and Table Il of 1], we will ~ and the matrlceB( andBpg are given by
not use these expressions, but rather will treat the Higgs
masses that are independent, after taking account af8ey. (3)_ 6 4 o dag (2) odt
directly as parameters to be bounded. BoR= Tg”[exp(l OVIM3xoVr
The subscripts 12or 21) in Eq.(8a) indicate the row 1 to R R
column 2 (or row 2 to column 1 matrix element of the —exp(—i6)VEaM2), Vit
corresponding X2 matrix expressions for th& andB co- (9d)
efficients, which we now give. Becau€eP invariance of the \/E Q4 . .
X L L __ Yo d C A (2) (dt
Lagrangian for the six-Higgs doublet model implies that the Bpe=— 1 Q—Avgn[exm 0)VLM5 VR

Yukawa couplings appearing in E(Ba) are real, theA co-
efficients appearing in Eq8a are related to thé coeffi-
cients as follows:

+exp(—i0)VEMED, VT

In the above formulasg is the overall phase rotation angle

between thep and » Higgs expectations introduced in Eq.
(21 of [1].
Taking theK to K matrix element of Eq(8b), we get
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(KIS 2) = — 5 SKK| (ds)2[K)~ 5 SE(KI (e KD, 3| (gtye| S5V, STV
94 2(+) M26)
(103 o
1 1
with 390’ NEOREVES
7R ]
© 2 @ o a2 1 4, siPXy  QF cogXy
I (Agg 12) (AbR12°  Abc1z + E(gﬂ) M2(3) Q/Zw M '
A\ 650 5 F5R Mé,(:p) Mfig) M32g ’ !
PU_3| (g)? SirfY,, coszY
AT 94 M2 2
e (B(gg)lz)z (B(773R2 12? Bigi (+) M¢( )
® e = FR MEP M2 M2 1
The corresponding formulas for the Higgs exchange contri- 1 " cogX, 2 SieX,
bution to theD to D transition amplitude are obtained by ( ) 2(3) in M2, '
replacingK by D, d by u, ands by c in the above formulas,
and replacing the explicit factors aofby —i in Eqgs. (9b)— 2y,  sirfY
(9d), with the latter substitution reflecting the fact that the up Pu=3| (g4)2 co + SIM Yy
sector Yukawa couplings involve the charge conjugates of B ¢ M3%) M3
the Higgs fields.
Substituting now the explicit forms given in Eq§a- N w2 N 1
(7¢) for the matrlces\/R !, we get formulas for the sung, 4(9” Mf](R*) MZ(F;)
Sg that determine the Higgs exchange contribution tokhe _ 2
to K transition amplitude, and for the corresponding si8hs L E( s SireX,, cogX, (119
and S that contribute to thé to D transition amplitude . 277 A M2 QAV M2g

With an eye to how these formulas will be used in Sec. IV,

we write them as
Si=s2c2 exp(i®q)PY,
Si=—s2ciexpidq)PY,
Sh=sic;expi®,)P;,
Sp=—sic2expi®,) Py,

with the positive real quantltleE given by

Pt 3| (g2 sinsz+cossz
A 4 Mi(R*') M<2;5(R_)
1 1 1
+20)% 5t o
497 Mn(RH Mr;(R)
2 .
E( 0)2 cos’-xd+ O sinfXy
9 M2® 02 M2 '
7 av Mpg

The mixing and phase angles appearing in Et$a,(11b
are given in terms of the various phase angles defined above
by
1
Ya= 561+ 65),

(119
Xg=0+ > <¢R A (a"+a>,
Dy= 61— 63— 2611+ 26, — (pR+ B,
(129
l u u
Yo=5(6+63),

1
Xy=—0+ = (¢>R b5 (01+63),

D= 0= 05— 20,5+ 2605~ (Pt BL).

As a check on our phase conventions, we note that when
the model iSCP conservmg which impliegl] the additional
condition oh,= o'* , then Eq.(4d) reduces to® = /4, and
the following relations holdmodulo 7):
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g4'=—3=argsdy’, ratio px can also be extracted from lattice calculations that
have been performef7] for kaon matrix elements, giving
di= _argedy'—argody’, the resultp, =0.30+0.05, again of positive sign. Although a
similar lattice calculation is not yet available for tBesys-
%U: _argggéwrargggvlu, (12  tem, we will assume that this follows the same pattern as
observed in th& system, and thapy (as suggested by the
201,=—20,= dfﬁ—d)'ﬂ, vacuum saturation and bag model calculatjoisspositive.
Substituting Egs(10a), (113, and(143 into Eq. (13b), our
201,=—20,=— ¢|'— ¢E . two basic inequalities now take the form

When substituted into Eq123), these relations imply the obs._ 1 — o229 d
vanishing (modulo ) of the phasesby and ®,. Conse- MAM?= S|(K|(dyss)*[K)|sgcil Pe+ PiPal,
qguently, with the phase conventions used in this paper, the (14b)
imaginary parts of the Higgs exchange contributionskto 1 _

—K andD —D mixing are a direct measure of ti@&P vio- MpAME*= §|<D|(U7’5C)2|D>|Sﬁcﬁ| Pg+PoPal,
lating contributions to these amplitudes.

with P‘é’“+ pK,DP%“ both sums of positive terms. Introduc-

IV. HIGGS BOSON MASS BOUNDS ing the definitions
We proceed now to derive bounds on the Higgs boson obs
masses in the six-Higgs doublet model. L&M2" and E 2MgAMy
AM2™ be respectively the measured value of the—K, K $2,c2J(K| (dyss)? K}

mass difference and the experimental upper bound on the (149
D,—D, mass difference. Since it is reasonable to expect obs
. . ; g 2MpAMY)
these to set upper limits on possible Higgs contributions to - 7 ,
these mass differences, given respectively By s2,c2,|(D|(uysc)?|D)|

Ep

, o we rewrite the inequalities of Eql4b) as
|AM9% | =M (K| Heg 2 [K),

(133

|AMB9%, |=Mg*(D[Har D),

Ex ) 1/2> |SCal
PdA| S12€12’

|PE+ Pk

(144

we get the basic inequalities

ED 2 |Sucu|
; ; = :
|Pg+ppPal S12C12

obs_ pp—1 AS=2]1\
AMIC=M K[ Her K)L, Although Eqgs.(14d) are relevant for the numerical fits of

AM®S= M=1(D1HAC-2ID (13D sec. VI, where the products,cy| and|s,c,| are known,
b =Mp [(D|Her ™ “[D). they cannot be used to give fit-independent bounds on the

These inequalities will be used in this section, both indepen.'-_|IggS boson masses, because eifigry| or |s,c| can van-

dently and in combination, to derive a number of usefuI'Sh' Hoyvever, we shall now show that the susmyCy| .
bounds on the Higgs boson masses. +|s,c,| is bounded below by CKM matrix elements, permit-

We begin by rewriting Eqs(103,(10b and (118),(11b) ting us to extract a useful inequality by combining tKe

so as to exhibit the features that play a role in our varioud"€son GEP(D mer?on ﬂaVOL changlng l}eut\r/%!ucurrenth con-
inequalities. Let us definpx andpp as the negatives of the striln:]s. dofsggt S, ¥ve su St'.tUte Ep) grf L Htone.t er
ratios of the scalar to pseudoscalar matrix elements appeafith the definitions of Eq(7e), into Eq.(6b) for the adjoint

ing in Eq. (108 and in itsD meson analog of the unrephased CKM matrix, and take absolute values of

the matrix elements on the first row, giving

(K|(ds)?K) ~ y o
pK:—W, 312—|CuSdeXF(_|¢|_)_Squ exq_|¢L)|\|Cusd|+|squ|’
5
_ (148 ¢ =|c,cqtexplidl —idd)s,sql<|cuCdl+|SuSdl-
. <D|(UC)2|D> 12 u“d L L/>u=d utd u>d (15@

(D](uysc)?|D)’

According to calculations opx and pp by the vacuum in-
sertion method6,7] and the MIT bag model6], they are  $,,C1,=|CySq|(S2+C2) +|cySy|(S3+c3) =|cysq| +|cusul,
positive and smal(roughly of order 0.1 in magnitugeThe (15b

Multiplying these inequalities, we get
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giving the needed lower bound. Adding the two inequalitiespositive, deleting any of these terms serves to make the left

in Eq. (14d), and using Eq(15b), we get the master inequal-

ity
EK 1/2 ED 1/2
—r——g| tlimm——z] =1. (16
|PB+pKPA|) |PE+pDPZ|)

Since all terms in the denominatd3"+ py pP"| are

hand side of Eq(16) larger, giving a number of simpler
subsidiary inequalities that are consequences of the master
inequality. Specifically, if we delete all terms in both de-
nominators that do not refer to a given Higgs boson mass
(i.e., if we set all of the other Higgs boson masses equal to
infinity), we get a lower bound for the Higgs boson mass that
we have retained; performing this in succession for the six
Higgs boson masses we get the following inequalities:

r 11/2 11/2)y -1
M= Ex + Fo :
PR 13(99)%(coSY 4+ pysiYa)] | 3(g4)%(coSY ,+ ppsintY,) |
11/2 11/2) -1
ML= S + S0
R _3(gi)z(sinsz+ PkCOFYy) | | 3(g})(sirPYy+ppcos’Yy) | '
1/2 1/2) -1
M= 4Ex . 4Ep ] |
" Be9) A1+ py) 3(9%)%(1+pp)
1/2 1/2y -1
. 2E¢ . 2Ep
L [3(g9)2(sinPX g+ pico$Xy) 3(g")%(si’X, + ppcogX,) ’
r 1/2 1/2) -1
M _ 2EKQiV " ZEDQ?AV (l7a
" 3(99)%Q5(co$X g+ psintXy) 3(94)%Q5(co$X,,+ ppsireX,,) '

Applying the same procedure of successive deletion of denominator terms to the inequalities(bddEqwe get a set of
analogous inequalitidsvhich, by use of Eq(15b), imply those of Eq(178] that will be used in the numerical work of Sec.

VI,

Ex
| 3(9%)2(cOSY ¢+ pysirPYy) |

MGR= max[ rg

Ex
| 3(9%)2(SirPY 4+ pcCogYy) |

M;R)Bmax[ rg

-1/2
1ru

4E,
| 3(gDA(1+py)

M(ﬁ)zmax|rd
! 3(g

2E,
i 3(gf7)2(sin2Xd+ PKCOSX)

3
M= max| ry

2EQ3,

AE, 1/2]
DA(L+po)| )
—-1/2 2ED —1/2
,r ’
! 3(g%)?(siPX, + ppcos’X,)

ED 1- 1/2]

| 3(9})%(CoSY ,+ ppsirtYy) |
ED T —1/2]

| 3(94)(sirPY+ppcos’Yy) |

—-1/2 2EDQiV

Mpg= max‘ rq

| 3(95)2Q5(CoFX g+ pSintX )

1ru

- 1/2]

3(g5)205(cosX,+ ppsireX,)

(17b
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The bounds in Eq173 still depend on the mixing angles Since the scalar to pseudoscalar raiip has not yet been

Xgu and Yq, defined in Eq.(12a; a set of (necessarily

computed on the lattice, we will assume tpgt=pyx=0.3 in

weakej bounds that do not depend on these angles is obevaluating Eqs(18b).

tained by using the inequalities, valid fp<1,

COSZ+psinfZ=(1—p)coSZ+p=p,

(189
SiPZ+ p co$Z=(1—p)sifZ+p=p,
giving (for px p=<1) the inequalities
[ 1/2 T 1/2y -1
M&Q;[ BT, E_l ] |
13(9%)%px]  [3(99)%Po
11/2
M= B
T [3gAL+po) ]
. 4ED 1/2}—1
3(9%)%(1+pp) ’
2E 1/2 2E 1/2y -1 (18b)
M(3R)> d—K -0 ] ’
™ 13(g5)%pk 3(9%)%po
ZEKQiV 1/2 ZEDQiV 1/2y -1
MPG? 3 d ZQZ 3 u 292 '
1 3(9,)“Q%Pk (9,)°Q%Pp

Equationg173, (17b) and(18b) are our final bounds for the
Higgs boson masses in the six-Higgs doublet model.

To obtain numerical values from the bounds of Eb),
we first need to evaluate the ratiig  defined in Eq(140.
For Ex we use the measured valug8] AMZ*=
3.49x10 2 MeV, together with M =497.7 MeV, My
=6 MeV, M =115 MeV, f =160 MeV, c;,=0.975, s,
=0.221, and the lattice evaluati¢i]

M
Mg+ My

2
M2, (199

|<KI(5755)2|E>|=1.58(

to give

E«=0.44x10 *? (GeV) 2. (19b)
For Ep, we use the experimental upper bour@] AMZ™
=1.58<10 1°MeV, together with Mp=1865 MeV, M,
=3.25 MeV, M.=1.25 GeV, the lattice calculatiorf9]

value fp=1.2f¢, and the vacuum saturation approximation

formula[7]

[(K|(dys9)?|K)  FRMR[LIME(Mg+Mg) 2 +1]

(Dl(uys)?D)|  FAMA[1IM3(M+M,) 2+1]’
(199

to give

Ep=27x10 1?2 (GeV) 2. (190)

To complete the computation of Higgs boson mass
bounds, we need the values of the various Yukawa couplings
appearing in Eqs(18b). Here some assumptions about how

the first and second family masses are generated are needed.

If, following [1], we assume that thé Higgs expectations
generate the third family masses, theHiggs expectations
generate the second family masses, while cyclic asymmetries
in the Yukawa couplings are responsible for the first family
masses, then we get from E®@2b) of [1] the formulas

9= 3'\:; ’ gi:sl\;lzb :
¢ ]

(208
9= 3?20 ’ 937:3“;'; '
7 n

If we now assume equa), and Q,,
=71 GeV, we get the numerical values

so thatQ,=Q,

94=0.82, ¢$=0.020,

(20b)
9%=0.0059, g=0.00054,
giving the Higgs boson mass lower bounds
M{R=24 TeV,
M{Z=470 Gev,
(209

M{B=320 Gev,
Mps=220 GeV.

An alternative possibility, discussed in the next section, is
that the second family masses are generated by cyclic asym-
metries in the¢ Yukawa couplings, with the first family
masses generated by tlgeHiggs expectations. In this case,
the second line of Eq209 is replaced by

u_ MU
9~ 180,’

d_ Mgy
9~ 180,’

(213

giving (for Q,=0Q,) the numerical vaIueg‘,’7=3.1>< 10°°,
g‘,‘]= 5.7x 10>, which imply the much weakes and pseudo
Goldstone Higgs boson mass bounds

M{K=55 GeV,
M{3=3.7 Gev, (21b)
Mps=2.6 GeV.

Finally, we note that the first inequality of E¢L8b) also
applies to theC P conserving case of the three-Higgs doublet
model off 1], for which () ,= J2X71 GeV, so thag‘j;“ are a
factor of y2 smaller than given in Eq20b). This reduces the
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corresponding bounds of E¢L8b) by a factor of2, giving  trix is unity. To get a nontrivial CKM matrix, we must add
for the CP-conserving three-Higgs doublet model the Higgsback the small perturbation, and x|, in Eq. (1b). Accord-

boson mass lower bounds ing to Egs.(4a)—(4d), in each flavor channel we then get
M{R=17 TeV. (22) A—B=—|0y?,
In this model there are n@ Higgs states, and hence no 2|~y (249
possibility of neutral Higgs states that are not supermassive. — 19121922
V. IMPLICATIONS OF REQUIRING NATURALLY 0= Eta —1( 2|0’12|
SMALL FIRST FAMILY MASSES 2 |0'22| '

We saw in the precedin_g section that the bounds omthe \hich by the hypothesis of dominance Bf is much less
and pseudo Goldstone Higgs boson masses depend on they ynity. Hence, in particular, the up channel quargity
coupling pattern assumed for theHiggs discrete chiral trip-  _ gjn @ js much less than unity in magnitude. But referring

let. In this section we classify possiblg Higgs coupling oy 1o the corrected expressiof8] for the CKM elements
patterns, based on a criterion of requiring naturally small flrsg13 ands,s, we have

family masses. Referring to Eg€la) and (1b), we see that
contributions to the mass matrix in the six-Higgs doublet
model are of three distinct types, arising from deviations (24b)
from cyclic symmetry in the¢ Higgs Yukawa couplings, _ d_ u _ v d
deviations from cyclic symmetry in the Higgs expecta- S3=Cy(0157 013),  d3=S,exp(—id) (025~ 023,
tions, and contributions from the weakly coupledHiggs _ )
expectations. Since these three contributions are not directipdicating that the spread sb; ands,; from their geometric
related physically, detailed cancellations between them in thEean is suppressed by the small quansify This in turn
determination of the first family masses areriori unlikely. ~ requires relatively large parameter values and/oro 3 to
Hence as a necessdﬂyut not Sufficien} condition for natu- giVe a Satisfa.ctory fit to the data, Contl‘adicting the Starting
rally small first family masses, we impose the condition thafassumption of a dominai®’. We shall see evidence for this
only one of these three contributions dominates in a leadinghenomenon in the next section, where we find Yukawa
approximation in which the first family masses are exactlyasymmetries comparable in magnitudeRio and hence sub-
zero. stantial fine tuning in achieving small first family masses.
We begin by noting that the deviationzﬂ from cyclic We turn finally to the third case, in which the dominant
symmetry in the¢ Higgs Yukawa couplings cannot domi- C(?ntnbunons tq the mass matrix come from the asymmetnes
nate and lead to naturally zero first family masses. Let ugum Of the ¢ Higgs Yukawa couplings. For the leading ap-
suppose that thé! do dominate, and consider first the caseProximation to the 2 submatrixm of the mass matrix, we
in which the model chooses@P conserving ground state, then have(suppressing the flavor indefy
for which the parameters! are all real. In this case the
magnitudes 1

S13=|S3—d3|/3, spz=|s3+d3|/3,

3 (253

M1 Mlz)
_ Mo1 M22)
ol =65+ w8+ wdl],
(23)  with only two of the matrix elements in E4259 indepen-
|ob|=| 85+ wsh+ w s, dent, sinceC P invariance of thep Higgs Yukawa couplings
implies[1] that
are equal, and so the first and second family masses are
equal. Turning on & P violation results in complex'’s, for Mo1= MYay Moo= MT1- (25b)
which the first and second family masses are no longer the
same, but clearly a fine tuning of the amountG®® violation In order for Eq.(25a to have a zero eigenvalue, we must
would be needed to achieve zero first family masses. Hendenpose the additional condition
dominance of the Higgs expectation asymmetwi{:s’s not
compatible with naturally small first family masses. |1d = m1d © mi=exp —ix) uty, (263
We consider next the case in which the contribuf®Srof

the » Higgs expectations dominates, which is the scenariyn explanation for which must be sought in higher energy
assumed irf1]. In this case they Higgs expectations give physics determining the Yukawa couplings. Taken together,

rise to the second family masses, and the leading approxim@-qs'(%a) and (25b) imply that the matrixm takes the rank
tion to the first family masses is automatically zero, satisfy-gne form

ing our criterion for naturally small first family masses.

However, a potential problem arises when we examine the s *

; . S 1 M1 expl—ix)ui;
structure of the CKM matrix. In the leading approximation in m=— ) . , (26h)
which only R" is retained in the mass matrix, the CKM ma- 3\ explix) u11 M1y
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with eigenvaluegx,|=0 and|«,|= %|u.4|, corresponding 3_ 1 _ . _
respectively to the first and second family mass eigenstateé’.‘ﬂ_ ER_ 5[013_ expli L) o1zl o3~ exp(—idr) oz,
From Eg.(4a), we find that the diagonalizing matric& (28b)

are given by Eq(4b), with with ¢, r given in Eq.(278. When only theR term is re-

- 1 tained, substituting Eq28b) into Eq. (1) yields the formu-
O=— cos®=sin®=— las of Eq.(2139. Within the simplified texture model, we
’ \/E have also calculated th@P violating angled,; appearing in
(279 the standard formi8] CKM matrix as a consequence of the

b=x, dr=x+2 arguyy. CP violation carried by théR term. After considerable alge-

bra, we find
Referrmg_ to _Eq.(lSa), we see that the sine of the Cabibbo 513:2\/§€u[co1( Pl — ¢E)—00t( B +2619)]
angles,, is given now by
—2\2e% csa !~ ), (299
1 1
312=§|exp(—i¢ﬁ)—exp(—i¢E)|= sinE(X”—Xd). \l/)Vith the auxiliary quantities appearing in E@99 defined
ey Y
i i i g —9 Re(uif’R")
Averaging Eq.(24b) and the analogous expression obtained O13=arg o3~ 0ls), e“*d=—udz
from the lower left corner of the CKM matrix, we get the 4\/§|M1’1
following leading order expressions fey; and s,3: (290
To complete the specification of the texture model corre-
S13=|S3—d3|/3, Sp3=|[s3+da|/3, sponding to the third case, we note that since the22di-

agonalizing submatrice¥| g are maximally mixing in this
g " case, wherever “1st” or “2nd” appears in the Higgs meson
S3= T(Uls— 013, (279 fermion family coupling Table Il of 1], there now should
2 appear “1st and 2nd,” indicating couplings of equal magni-
tude of first family to first family, first family to second
g " family, and second family to second family. We also remark
(023~ 029, that the rank one condition of ER6a can be reexpressed
as a model for the Yukawa asymmetri@g,, by using the
inversion formulas

1 i 1
d3=$exp{ - 5(X“+Xd) COS{E(XU—Xd)

in which the coefficient obr3;— '35 in d3 is not now a small
parameter.

To complete the analysis of the third case, let us calculate
the first family mass eigenvalue. There are four possible con-
tributions to a nonzero first family mas@) deviations from
the rank one condition of E¢263 on the 2< 2 submatrixm
of the mass matrix(ii) asymmetries in thep Higgs expec-
tations &,,, (iii) couplings to the third family through the
mass matrix elements,3, o3, and 0,3, 03,, and(iv) ef-
fects of then Higgs expectation terrR in Eq. (1b). (We are
continuing to suppress the flavor indéxvhen not needej.
The simplest way to calculate the first family mass matrix
eigenvalug «4| is to evaluate the absolute value of the de-
terminant of the X3 mass matrixM’ of Eq. (28, which
yields |k,| when divided by the product of the other two

2
B11= §RG(M11+ M1t pizt man),
2 _
B1o= §Re( ot opt pzt opsy),
2 — _
Biz= §Re( opt opt pizt opsy),
2
B21= §Re( optouptougt s,

2 _
Boor= §Re( opt it opzt opsgy),

eigenvalues, giving to leading order in small quantities, (30
detM’|  |de(3M®+ o)) 2 ~ ~
e - (283 B2s= gRE(put oppt o pagt wp3),
! 3|2 2|1y
. . . . 2 — — —
To illustrate this in a simple texture model corresponding to B31= §Re(w,u,11+ w1t Ozt far),

the third case, let us assume that the contribut{onand ii)

above are absent, that is, we assume that the condition of Eq. 2 _

(269 is exact and that cyclic asymmetries in thheHiggs Bar= §Re(/¢11+ WU+ O3t 0g),
expectations are negligible. Then the only relevant contribu-

tions to the determinant in E¢284a are(iii) and(iv) above, 2 o o
and a simple calculation gives the leading order formula Baz= §Re(w,u,11+ Mot ot opsg).
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TABLE |. Six-Higgs doublet model fit to experimental data: TABLE 1l. Six-Higgs doublet model fit to experimental data:

second case of Sec. V. third case of Sec. V.

Quantity Target value Fitted value Quantity Target value Fitted value
M, 0.0033 0.0033 M, 0.0033 0.0032
M 1.25 1.26 M 1.25 1.25
M, 173.8 174.0 M, 173.8 173.9
My 0.0060 0.0064 Mgy 0.0060 0.0065
Mg 0.115 0.111 Mg 0.115 0.096
M, 4.25 4.24 My 4.25 4.25
Mg 0.00051 0.00051 Mg 0.00051 0.00051
M, 0.1057 0.1057 M, 0.1057 0.1057
M 1.777 1.777 M, 1.777 1.777
S1o 0.221 0.221 S1o 0.221 0.221
Si3 0.0059 0.0062 Si3 0.0059 0.0059
Su3 0.039 0.037 Su3 0.039 0.039
|sin &4 0.60 0.48 |sin &4 0.60 0.33
VI. SOME ILLUSTRATIVE NUMERICAL FITS sectors are 0.032, 0.058, and 0.010 respectively. Although

We give in this section illustrative numerical fits, obtained the iteration is started with thg Higgs coupling values of
by the method of minimizing a “cost function” described in Ed- (20D, the converged fit has significantly smaller cou-
detail in Sec. IX of[1]. The mass and CKM cost functions Plings g,=0.0031 andg;=0.00039, indicating that the
are as in Eqs(51b) and (52b) of [1], with the changes that Yukawa asymmetries make substantial contributions to the
we omit the term Q,— Q )2, which had little effect on the Second family masses. This means that theliggs contri-
fits, and take the target values and standard deviations frofutions do not dominate the Yukawa asymmetries, and thus
the latest Particle Data GroUg] compilation. For the pa- substantial fine tuning is involved in achieving small first
rameter cost function, we use E(p33 of [1], with the family masses. For the fit of Table I, the Higgs boson mass
changes that we omit the summation restrictions excludingounds obtained from E¢17b) are
the n=3 andm=n=3 terms, so that all asymmetries are
treated symmetrically, _and we take the exponeas 2 rather _ M E;Ee)? 520 TeV,
than as 1. For the third case of the preceding section, in
which the second family masses arise from Yukawa coupling
asymmetries, we also add to the parameter cost function a Mfij)>440 TeV,

term
2 2 d
Q[ 90)", (9
4 |\M, Mg

designed to keep the Higgs contributions small, and start

the iteration from preliminary parameter values determined

with gf,]:O, f=u,d,e. We omit flavor changing neutral cur- Mpe=1.0 TeV.

rent constraints from the cost function, so that there is no fine

tuning to attempt to suppress flavor changing neutral current |n Table Il we give fitting results for the third case of the

effects; instead we use the inequalities of EtZb), evalu-  preceding section, obtained now with a standard deviation

ated using the parameters determined by the fitting proceor the Yukawa asymmetrieg of O paramete= 0-08. For this

dure, to give lower bounds on the Higgs masses that guaraft, the maximum|g| values in the up, down, and electron

tee sufficiently small flavor changing neutral currentsectors are 0.042, 0.052, and 0.11 respectively, with the rela-

contributions toK —K andD — D mixing. tively large Yukawa coupling asymmetry needed in the elec-
Fitting results for the second case of the proceeding sedron sector reflecting the fact that in this sector the ratio of

tion are given in Table |, obtained with a standard deviationthe second family to third family mass is biggest. For the fit

for the Yukawa asymmetrie8 of oparameter 0-02. For this  of Table I, the Higgs boson mass bounds obtained from Eq.

fit, the maximum|g| values in the up, down, and electron (17h) are

2
+

M{F=13 Tev, (329
: (31)

ge 2
=7
)

M{B=1.1 Tev,
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MgrR)ggm TeV, the » Higgs couplings are small enough that their expecta-
tions play an important role only in determining the first
M E/;R);620 TeV, family masses and in giving rise @P violation. In this case
the » Higgs and pseudo Goldstone Higgs states are permitted
M(ﬂtR)>210 GeV, (32b) by our mass bounds to be light enough to be seen in experi-
ments at the CERN Large Hadron Collidé&HC). The sim-
|\/|(773R)>220 GeV, plest model of this type would be one in which tiheand
Higgs self-interactions have similar structures, with a weak
Mpc=140 GeV. ¢— n coupling. Massiveness of th¢ Higgs states would

then imply massiveness of the correspondingliggs states,

To conclude, in order for flavor changing neutral currentwith only one neutral and two charged pseudo Goldstone
effects in our models to be sufficiently small, theHiggs  Higgs states potentially observable at LHC energies. In such
boson masses must be very large, far outside the regime iodels, one simultaneously has observable light Higgs states
which conventional perturbative Higgs physics appligse (the pseudo Goldstone tripjeaind “new physics” implied

[10] for a recent review of both perturbative and strongly by the strongly self-couplegh and 7 Higgs sectors.
coupled Higgs modeJsOur results are consistent with gen-

eral group theoretic analyses of flavor changing neutral cur-
rents in multi-Higgs doublet extensions of the standard
model[11], which when applied to our models imply that  This work was supported in part by the Department of
flavor changing neutral currents cannot cancel kinematicallyEnergy under Grant No. DE-FG02-90ER40542. | wish to
but must be eliminated either by fine tunitgn option we thank the members of the SLAC Theory Group for stimulat-
have ruled out by the inequalities of Sec.)Ior by having ing comments on a seminar | gave on Héfl, which led to

some very large Higgs boson masses. From an experimenttide writing of this paper. | also wish to thank C. Bernard, B.
viewpoint, the most interesting scenario within our modelsMc Kellar, P. Mackenzie, C. Quigg, S. Sharpe, and S. B.
corresponds to the third case discussed in Sec. V, in whicfireiman for helpful conversations or email correspondence.
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