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Unexpected symmetries in classical moduli spaces

Tonnis A. ter Veldhuis
Department of Physics & Astronomy, University of Hawaii, Honolulu, Hawaii 96822

~Received 13 November 1998; published 25 May 1999!

We analyze the structure of the moduli space of a supersymmetricSU(5) chiral gauge theory with two

matter fields in the10 representation and two fields in the5̄ representation. Inspection of the exact Ka¨hler
potential of the classical moduli space shows that the symmetry group of the moduli space is larger than the
global symmetry group of the underlying gauge theory. As a consequence, the gauge theory has classical
inequivalent vacua which yield identical low energy theories.@S0556-2821~99!06611-4#

PACS number~s!: 12.60.Jv
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I. INTRODUCTION

Depending on the matter content, supersymmetric ga
theories can have large vacuum degeneracies@1#. In the ab-
sence of a superpotential, classical vacua are associated
vacuum expectation values for which theD terms of the
scalar potential vanish. In the Wess-Zumino gauge,
D-flat directions contain those points in the vector space
scalar components of the chiral superfields that satisfy
condition

Da5(
i

f i
†Taf i50, ~1!

where the sum is over all matter multiplets,f i is the scalar
component of the superfieldF i andTa are the generators o
the gauge group in the appropriate representation. In the
where all matter transforms under~anti!fundamental repre-
sentations of the gauge group, it is relatively simple to c
struct solutions to Eq.~1!, but for theories with matter in
tensor representations, the solutions may be rather com
No standard methods to find the most general solution
available in the latter case. Reference@2# gives an overview
of the efforts to parametrize flat directions in various mode

The D-flatness condition Eq.~1! is covariant under the
gauge groupG and invariant under the global symmet
group HG of the gauge theory. The manifold of flat dire
tions is therefore covered withG^ HG orbits. Points in the
manifold that lie on the sameG^ HG orbit are physically
equivalent. The analysis of the flat directions is theref
simplified considerably when the redundancy due to ga
and global symmetry transformations is removed.

To this end, theG orbits in the flat direction manifold can
be labeled by a finite set of basic holomorphic gauge inv
ant polynomialsXn(f i) @3–5#. Any holomorphic gauge in-
variant polynomial in the fieldsf i can be written in terms o
products and sums of the basic invariantsXn , by virtue of
the decomposition rules for the products of representat
of the fields f i . For some theories the invariantsXn are
algebraically independent; for others, relations exist am
them.

The invariantsXn form the coordinates of the modu
space~the flat direction manifold modulo gauge transform
tions! TheHG orbits in the moduli space can be labeled by
finite set$I x% of basic,HG invariant, Hermitian polynomials
0556-2821/99/60~1!/015001~7!/$15.00 60 0150
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in terms ofXn andXn
† . Any HermitianHG invariant on the

moduli space can be expressed as a function of theI x . The
moduli space is, in fact, a Ka¨hler manifold. Its Ka¨hler poten-
tial, induced by the Ka¨hler potential of the gauge theory, i
defined byKM@ I x(Xn

† ,Xn)#5f i
†f i for every point in the flat

direction manifold.
When the Xn are promoted to chiral superfields, th

moduli space becomes equivalent to a supersymmetric c
sigma model@4,6#. This sigma model describes the low e
ergy limit of the underlying gauge theory if the gauge sy
metry is completely broken—the effective, classical theo
describing the low energy limit of the gauge theory built
the classical vacuum with expectation values^f i& is equiva-
lent to the sigma model when it is expanded around
expectation valueŝXn&5Xn(^f i&). This effective theory,
which describes the interactions of the massless degree
freedom, can also be obtained directly by integrating out
massive vector multiplets1 in the gauge theory.

Nonperturbative effects can change the classical pic
of the moduli space dramatically@2,7,8#. In some cases, a
dynamically generated superpotential lifts the moduli spa
in other cases, classical constraints among the moduli fi
are modified, and in still other cases the structure of
moduli space remains unchanged. Holomorphy and sym
tries severely constrain the form of dynamically genera
superpotentials. Unfortunately, modifications to the Ka¨hler
potential are less well understood.

In some situations, however, corrections to the class
Kähler potential are small. This is for example the case
models with calculable dynamical supersymmetry breaki
where the vacuum expectation values of the scalar fields
much larger than the dynamical scale of the gauge theor

By construction, the Ka¨hler potential of the classica
moduli space is invariant under global symmetry groupHG
of the underlying gauge theory. By a detailed analysis of
moduli space of a chiralSU(5) gauge theory with two anti-
symmetric tensors and two anti-fundamentals, we will sh
that the symmetry groupHM of the moduli space can b

1At the classical level, this means considering tree diagrams w
only massless degrees of freedom at the external lines, and con
ing internal propagators of massive degrees of freedom in the l
p2/M2→0.
©1999 The American Physical Society01-1
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larger thanHG . When a superpotential is added and nonp
turbative effects are taken into account, thisSU(5) theory is
one of the classic models with calculable dynamical sup
symmetry breaking@2,9–13#.

The fact thatHM is larger thanHG has some interesting
consequences. Classical vacua which are not related
gauge and global symmetry transformations still give rise
the same effective theory in the low energy limit. Moreov
the unbroken symmetry group in the effective theory exte
the unbroken symmetry group of the full gauge theory. W
have verified that the extended symmetry is not a con
quence of a custodial symmetry. Moreover, as we calcula
theexactclassical Ka¨hler potential, it is not a consequence
a truncation either.

In Sec. III, we present a detailed analysis of the mod
space of theSU(5) theory. However, we first discuss
simple, well-known, vectorlike theory withSU(3) gauge
symmetry@4# in Sec. II; this serves to illustrate our method
and to emphasize the main point of this paper
contrast—as the symmetry group of the moduli space of
SU(3) model coincides with the global symmetry group
the underlying gauge theory.

II. SUPERSYMMETRIC QCD WITH TWO FLAVORS

We consider supersymmetric QCD with three colors a
two flavors@4#. The quark chiral superfields, which are d
noted byQa

i , and Q̄i
a , transform as3 and 3̄ underSU(3).

Here i 51,2,3 is the color index, anda51,2 anda51,2 are
flavor indices. The global symmetry group2 HG of the
theory—the relevant symmetry group at the classi
level—isSU(2)Q^ SU(2)Q̄^ U(1)Q^ U(1)Q̄^ U(1)R . Un-
der HG the quark superfields transform asQa

i ;(2,1,1,0,0)

and Q̄i
a;(1,2,0,1,0). The scalar components of the chi

superfields do not transform underU(1)R , and therefore this
factor cannot be spontaneously broken by expectation va
of the scalar fields.

The nonanomalous subgroupHNA of HG—the relevant
symmetry group at the quantum level—isSU(2)Q
^ SU(2)Q̄^ U(1)B^ U(1)R8 . Under HNA the quark super-
fields transform asQa

i ;(2,1,1,21/2,) and Q̄i
a;(1,2,21,

21/2).
The flat directions of the theory are solutions to the eq

tion

Qi
†aQa

j 2Q̄a
† j Q̄i

a5cd i
j . ~2!

Here c is, a priori, an arbitrary real constant. However,
turns out there are only solutions forc50. Any solution to
Eq. ~2! can be obtained from the solutionQ1

15Q̄1
15a, Q2

2

5Q̄2
25b, with all other components vanishing, by applyin

appropriate gauge and global symmetry transformations.
generic values of the real parametersa and b, the gauge

2According to our conventions forR symmetry, the charge of the
scalar component of a chiral superfield isR, whereas the charge o
the fermionic component isR21. The gaugino has charge 1.
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group is completely broken. Eight of the twelve chiral sup
fields are eaten to give mass to the vector multiplets. A
consequence, the number of moduli fields is four and
moduli space is eight dimensional. The unbroken glo
symmetry group isU(1)^ U(1)^ U(1)R . The moduli space
is therefore spanned by the two parametersa andb, and six
of the nine parameters ofHG transformations.

The basic holomorphic gauge invariants for this theo
are Ma

a5Q̄i
aQa

i , transforming as (2,2,1,1,0) underHG .
These four meson fields form the coordinates of the mod
space, and their vacuum expectation values can be writte
the form M1

15m1 , M2
25m2 and M1

25M2
150 by HG trans-

formations.
The basic Hermitian structures—invariant under the g

bal symmetry transformations and constructed out of the
son fields—areI 15Ma

†aMa
a and I 25Ma

†aMb
†bMa

bMb
a , with

the range ofI 2 limited by the inequality 1/2I 1
2<I 2<I 1

2. The
exactinduced Kähler potential of the classical moduli spac
is defined asKM@ I 1(M†,M ),I 2(M†,M )#[Qi

†aQa
i 1Q̄a

†i Q̄i
a ,

and a simple calculation gives

KM52A1

2
I 11

1

2
A2I 22I 1

212A1

2
I 12

1

2
A2I 22I 1

2.

~3!

This Kähler potential is invariant under the global symmet
groupHG of the underlying gauge theory by construction. A
is conventional,KM is not invariant under any other symme
tries, so that the symmetry groupHM of the moduli space is
equal toHG . As will become clear in the next section, how
ever, even thoughHM always containsHG , it can in fact be
larger.

The Kähler potential of the moduli space is derived
terms of the scalar components of the superfields. Howe
when the the moduli fieldsMa

a are promoted to superfields,
supersymmetric sigma model ensues. The low energy l
of the classical gauge theory constructed on the vacuum
expectation valueŝQa

i & and^Q̄i
a& is equivalent to the sigma

model with vacuum expectation values^Ma
a&5^Q̄i

a&^Qa
i &.

TheHG orbits that cover the moduli space can be labe
by $a,b%, $m1 ,m2%, or $I 1 ,I 2%. Points in the moduli space
that lie on the same orbit yield physically equivalent classi
vacua. The orbits, in turn, can be grouped into strata. Diff
ent orbits that belong to the same stratum yield vacua that
physically inequivalent, but qualitatively similar. Such vac
yield the same symmetry breaking pattern and the same
generacies in the mass spectrum, but the masses are qu
tatively different. The strata can be categorized as follow

~i! For genericHG orbits, labeled by generic values o
$I 1 ,I 2%, the little group isU(1)^ U(1)^ U(1)R . The gauge
symmetry is completely broken.

~ii ! For orbits with I 251/2I 1
2, (b56a; m156m2) the

little group isSU(2)^ U(1)^ U(1)R . The gauge symmetry
is completely broken.

~iii ! For orbits with I 25I 1
2, (b50; m250) the little

group isU(1)^ U(1)^ U(1)^ U(1)R . In the sigma model,
the metric derived from the Ka¨hler potentialKM is singular.
1-2
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UNEXPECTED SYMMETRIES IN CLASSICAL MODULI SPACES PHYSICAL REVIEW D60 015001
Moreover, in the gauge theory the gauge group is broke
SU(2) and therefore, the low energy theory should inclu
the massless gauge multiplets.

~iv! When I 150, none of the gauge and global symm
tries are broken.

The classical picture of the moduli space is altered d
matically by nonperturbative effects. The nonanomalous g
bal symmetry groupHNA of the gauge theory allows
unique, nonperturbative superpotential@4# of the form

Wnp5
L7

Q̄i
aQa

i Q̄j
bQb

j eabeab
. ~4!

Explicit instanton calculations in the semiclassical appro
mation @14,15# show that such an effective superpotential
indeed generated and thatL is the dynamical scale of th
gauge theory. TheF-term contributions to the scalar pote
tial completely lift theD-flat directions. The scalar potentia
does not have a minimum, tends to zero only at infinity, a
renders the theory unstable. However, the scalar potenti
stabilized if a mass term of the form

Wm5ma
aQ̄i

aQa
i ~5!

is added to the superpotential. If the scale of the massesma
a

is much smaller than the dynamical scaleL, then the vacuum
expectation values of the scalar fields are much larger thaL
and the theory is weakly coupled. It is in this limit that th
classical Ka¨hler potential is relevant. The theory below th
dynamical scale can be described in terms of the mo
fields Ma

a , with Kähler potentialKM and superpotential

W5
L7

Ma
aMb

beabeab
1ma

aMa
a . ~6!

The vacuum energy vanishes, and supersymmetry is not
ken in this theory.

III. CHIRAL SU„5… THEORY

The chiral supersymmetricSU(5) gauge theory we dis
cuss in this section contains two matter fields transform
under the10 representation ofSU(5), and twofields trans-
forming under the5̄ representation. These matter fields a
denoted by the two index antisymmetric tensorsTa

i j , andF̄ i
a ,

where i , j 51, . . . ,5 aregauge indices, anda51,2 anda
51,2 are flavor indices. With this matter content, the the
is anomaly free and asymptotically free.

The global symmetry groupHG of the theory isSU(2)T
^ SU(2)F̄ ^ U(1)T^ U(1)F̄ ^ U(1)R . UnderHG , the matter
fields transform asTa;(1,2,1,0,0) andF̄a;(2,1,0,1,0). The
scalar components of the chiral superfields do not transf
underU(1)R . Their vacuum expectation values therefore
not break this symmetry. Under the nonanomalous subgr
of HG , SU(2)T^ SU(2)F̄ ^ U(1)A^ U(1)R8 , the matter
fields transform asTa;(1,2,1,1) andF̄a;(2,1,23,24).

The D-flat directions of the theory are solutions to th
equation
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Ti j
a†Ta

ik2F̄a
k†F̄ j

a5cd j
k , ~7!

where c is an arbitrary real constant. In Refs.@2,9,11,13#,
some incomplete families of solutions to Eq.~7! were pre-
sented. Here, we give the most general solution which
course includes the previously found families. Any soluti
to Eq. ~7! can be obtained from a four-parameter soluti
through gauge and global symmetry transformations. T
four-parameter solution takes the formT2

125a, T2
345b, F̄1

1

5c, F̄5
15d, and

T1
135

c

b
Aa22c2A b2

a22c2
1

d2

a2
,

T1
455

a

b
Aa22c2A b2

a22c2
1

d2

a2
,

T2
235

c

Aa22c2
Ab22~a22c2!,

T2
2552

cd

a
,

T2
455

d

ba
Aa22c2Ab22~a22c2!,

F̄3
152

a

Aa22c2
Ab22~a22c2!,

F̄2
25

c

b
Ab22~a22c2!A b2

a22c2
1

d2

a2
,

F̄4
252Aa22c2A b2

a22c2
1

d2

a2
. ~8!

All other components vanish, anda, b, c, and d are real
parameters. For generic values of$a,b,c,d%, the gauge sym-
metry is completely broken. Therefore, twenty four of t
thirty chiral superfields are eaten to give masses to the ve
multiplets, leaving six moduli fields to function as coord
nates for the twelve dimensional moduli space. The glo
symmetry groupHG is broken toU(1)R . In terms of the
fundamental fields, the moduli space is spanned by the
parameters$a,b,c,d% of the solution given in Eq.~8!, and
eight of the nine parameters ofHG transformations. The ba
sic holomorphic gauge invariants for this theory are given

Xa5eabF̄ i
aF̄ j

bTa
i j ,

Ja
a5e i jklmF̄n

aTa
i j Tb

klTc
mnebc. ~9!

UnderHG , these holomorphic gauge invariants transform
Xa;(1,2,1,2,0) andJa

a;(2,2,3,1,0). By suitableHG trans-
formations, the vacuum expectation values of the basic
1-3
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TONNIS A. ter VELDHUIS PHYSICAL REVIEW D60 015001
lomorphic gauge invariants can be written asX15x1 , X2

5x2 , J1
15 j 1 , J2

25 j 2 andJ1
25J2

150, with x1 , x2 , j 1 and j 2

real parameters. In fact, the expectation values of the h
morphic gauge invariants for the four-parameter soluti
given in Eq.~8!, already have this form:

X152
ad

b
~a22c2!S b2

a22c2
1

d2

a2D ,

X252
a3

b
Ab22~a22c2!S b2

a22c2
1

d2

a2D 3/2

,

J1
1512

a2c2

b2
~a22c2!S b2

a22c2
1

d2

a2D 2

,

J1
250,

J2
150,

J2
25212a2~a22c2!S b2

a22c2
1

d2

a2D . ~10!

The holomorphic invariantsXa and Ja
a provide the coordi-

nates for the moduli space. A completelyHG invariant de-
scription of the moduli space can be given in terms of
four Hermitian invariants

I 15Xa†Xa ,

I 25Ja
a†Ja

a ,

I 35Xa†Jb
b†XbJa

b ,

I 45Ja
a†Jb

b†Ja
bJb

a , ~11!

where the range ofI 4 is limited to 1/2I 2
2<I 4<I 2

2, and the
range of I 3 is limited by (2I 32I 1I 2)2<(2I 42I 2

2)I 1
2. The

moduli space is thus covered byHG orbits, labeled by
$a,b,c,d%, $x1 ,x2 , j 1 , j 2%, or $I 1 ,I 2 ,I 3 ,I 4%. In our previous
work @13#, the exact Ka¨hler potential3 of the classical moduli
space was derived. Invariance underHG dictates that the
Kähler potential has the functional form

KM~X†,X,J†,J!5KM~ I 1 ,I 2 ,I 3 ,I 4!. ~12!

Defining

3The Kähler potential of the moduli spaceKM(I 1 ,I 2 ,I 3 ,I 4)

51/2Ti j
a†Ta

i j 1F̄a
i†F̄ i

a for all values of the parameters$a,b,c,d% of
the four-parameter solution to theD-flatness equation.
01500
o-
,

e

A5125I 1 ,

B5
25

9 SA1

2
I 21

1

2
A2I 42I 2

21A1

2
I 22

1

2
A2I 42I 2

2D ,

~13!

and

p52AB cosS 1

3
arccos

A

B3/2D , ~14!

the Kähler potential of the moduli space is given by

KM5
3

10S p1
B

p D . ~15!

The metric derived from this Ka¨hler potential is singular if
I 45I 2

2. Curiously, KM does not depend onI 3. As a
consequence—and this illustrates the central point of
paper—the symmetry groupHM of the moduli space
SU(2)X^ SU(2)1^ SU(2)2^ U(1)X^ U(1)J^ U(1)R is
larger than the global symmetry groupHG of the underlying
gauge theory. The moduli fields transform underHM as Xa

;(2,1,1,1,0,0) andJa
a;(1,2,2,0,1,0). TheU(1)R factor in

HM is the same factor that appears inHG . Only fermions
transform under this symmetry, and it does not play any r
in the discussion below. We will therefore suppress this f
tor from here on.

Generic HM orbits in the moduli space, labeled b
$I 1 ,I 2 ,I 4%, contain one-parameter families ofHG orbits, la-
beled byI 3. In particular, the points

X15x cosf,

X25x sinf,

J1
15 j 1 ,

J1
250,

J2
150,

J2
25 j 2 , ~16!

for fixed values of$x, j 1 , j 2%, and varyingf, are equivalent
in the moduli space, asf corresponds to the parameter of a
SU(2)X rotation.HM orbits can therefore also be labeled b
$x, j 1 , j 2%, and theHG orbits contained in anHM orbit can be
labeled byf.

When the moduli fields are promoted to superfields
supersymmetric sigma model results. The low energy li
of the gauge theory built on the classical vacuum with e
pectation valueŝTa

i j & and ^F̄ i
a& is equivalent to the sigma

model with vacuum expectation values

^Xa&5eab^F̄ i
a&^F̄ j

b&^Ta
i j &

and
1-4
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UNEXPECTED SYMMETRIES IN CLASSICAL MODULI SPACES PHYSICAL REVIEW D60 015001
^Ja
a&5e i jklm^F̄n

a&^Ta
i j &^Tb

kl&^Tc
mn&ebc.

The extended symmetry of the moduli space has two
portant consequences. First, vacua of the gauge theory
responding to fixed values of$x, j 1 , j 2%, but varyingf, are
physically inequivalent. In particular, the masses4 of the vec-
tor multiplets are a function off. In fact, while for generic
values of f gauge and global symmetries are complet
broken, for the special values off50 andf5p/2 there is a
remaining globalU(1) symmetry. However, all vacua of th
sigma model with fixed values of$x, j 1 , j 2% and arbitrary
value off, either generic or special, are equivalent. The
fore, the low energy limit of the gauge theory, which is o
tained by integrating out the massive vector multiplets in
limit p2/M2→0, is identical for each value off. Physically
inequivalent vacua of the gauge theory, with distinct m
spectra and possibly even distinct global symmetry break
patterns, yield the same low energy theory. Second, for
neric vacua, the global symmetry group of the gauge the
is broken toU(1)R . However, the symmetry groupHM of
the moduli space is broken toU(1)^ U(1)^ U(1)R . There-
fore, the low energy limit of the gauge theory has a larg
symmetry group than expected from the global symme
breaking pattern of the full gauge theory.

The three-parameter solution to theD-flatness condition
Eq. ~7!, obtained by imposing the conditionb25a22c2 on
the four-parameter solution given in Eq.~8!, corresponds to
arbitrary $I 1 ,I 2 ,I 4% and I 350, or, alternatively, arbitrary
$x, j 1 , j 2% and f50. This three-parameter solution, ther
fore, contains a representative point on allHM orbits in the
moduli space. However, it does not contain a representa
point on allHG orbits. Therefore, the corresponding classi
vacua yield all physically inequivalent low energy theorie
yet not all physically inequivalent classical gauge theorie

We will describe the moduli space in terms of strata
HM andHG orbits in turn. The first approach lends itself fo
the study of all inequivalent low energy theories, while t
latter is more suitable for the study of all inequivalent cla
sical gauge theories.

As explained before,HM orbits are labeled by eithe
$I 1 ,I 2 ,I 4% or $x, j 1 , j 2%. For generic orbits, labeled by ge
neric values of$x, j 1 , j 2%, HM is broken toU(1)^ U(1).
One of the U(1) factors is a subgroup ofSU(2)X
^ U(1)X ; the other, a subgroup ofSU(2)1^ SU(2)2
^ U(1)J . The number of broken symmetry generators, 9
larger than the number of moduli fields, 6, and theref
some of the corresponding Goldstone bosons are n
doubled. Apart from the generic stratum, there are strata

4The mass spectrum of the vector multiplets, which we stud
numerically, displays some unusual features. For generic value
$x, j 1 , j 2 ,f% both the gauge and global symmetries of the gau
theory are completely broken. However, the spectrum contains
degenerate pairs of masses, and one degenerate quintuplet.
over, even though the spectrum changes withf for fixed values of
$x, j 1 , j 2%, the sum of the squares of the masses and the mass o
degenerate quintuplet remain independent off.
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which the little group is larger. The strata can be classified
follows.

~i! I 150, I 250; (x50, j 150, j 250). The metric is
singular and there is no spontaneous symmetry break
Therefore, the little group isSU(2)X^ SU(2)1^ SU(2)2

^ U(1)X^ U(1)J . The multiplets transform as~2,0,0,1,0!
and ~1,2,2,0,1!.

~ii ! I 250; ( j 150, j 250). The metric is singular, and th
little group is U(1)^ SU(2)1^ SU(2)2^ U(1)J . The mul-
tiplets transform as~0,2,2,1!, ~0,1,1,0! and ~1,1,1,0!.

~iii ! I 150, I 45I 2
2; (x50, j 250). The metric is singular,

and the little group isSU(2)X^ U(1)^ U(1)^ U(1)X . The
multiplets transform as~2,0,0,1!, ~1,0,22,0!, ~1,21,1,0!, ~1,
21,21,0!, and~1,0,0,0!.

~iv! I 150, I 45 1
2 I 2

2; (x50, j 156 j 2). The little group is
SU(2)X^ SU(2)^ U(1)X . The multiplets transform as
~2,1,1!, ~1,3,0!, and~1,1,0!.

~v! (I 150;x50). The little group is SU(2)X^ U(1)
^ U(1)X . Two multiplets transform as~1,0,0!, while the re-
maining multiplets transform as~2,0,1!, ~1,21,0!, and
~1,1,0!.

~vi! I 45I 2
2; ( j 250). The metric is singular, and the littl

group isU(1)^ U(1)^ U(1). Two multiplets transform as
~0,0,0!, while the remaining multiplets transform as~0,0,22!
~1,0,0!, ~0,21,1!, and~0,21,21!.

~vii ! I 45 1
2 I 2

2; ( j 156 j 2). The little group is U(1)
^ SU(2). Two multiplets transform as~0,1!, while the re-
maining multiplets transforms as~0,3! and ~1,1!.

~viii ! GenericI 1 , I 2 , I 4; ~genericx1 , j 1 , j 2). The little
group isU(1)^ U(1). Three multiplets transform as~0,0!,
while the remaining multiplets transform as~1,0!, ~0,21! and
~0,1!.

HG orbits can be labeled by$I 1 ,I 2 ,I 3 ,I 4%, $x1 ,x2 , j 1 , j 2%,
or $a,b,c,d%. For each stratum, we indicate the subgroup
HG which remains unbroken, and also the remaining s
group of the gauge group in case the gauge symmetry is
completely broken.

~i! I 150, I 250; (x150, x250, j 150, j 250). The
gauge and global symmetries remain unbroken.

~ii ! I 250; (x250, j 150, j 250). The unbroken globa
symmetry group isU(1)^ SU(2)F̄ ^ U(1). Thegauge sym-
metry is broken toSU(3). ThesolutionT1

125a, F̄1
15a, F̄2

2

5a, with x152a3, contains representative points of the o
bits in this stratum.

~iii ! I 150, I 45I 2
2; (x150, x250, j 250). The remaining

global symmetry group isU(1)^ U(1)^ U(1). The gauge
symmetry is broken toSU(2). The solution T1

125a, T2
45

5a, F̄4
15a, with j 1512a4 contains representative points o

orbits in this stratum.
~iv! I 150, I 451/2I 2

2; (x150, x250, j 156 j 2). The un-
broken global symmetry group isSU(2)^ U(1), and the
gauge symmetry is completely broken. The solutionT1

12

5T1
345T2

155T2
245F̄1

15F̄4
25a, with j 152 j 2512a4, con-

tains representative points of orbits in this stratum.
~v! I 150; (x150, x250). The remaining global symme

try group isU(1)^ U(1), and thegauge symmetry is com
pletely broken. The solutionT1

125a, T1
345T2

155Aa21b2,

d
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T2
245b, F̄1

15a and F̄4
25b, with j 1512a2(a21b2) and j 2

5212b2(a21b2), contains representative points of orbits
this stratum. The solution presented in Ref.@9# also contains
representative points of orbits in this stratum.

~vi! I 35I 1I 2 , I 45I 2
2; (x250, j 250). The unbroken glo-

bal symmetry group isU(1)^ U(1), and thegauge symme-
try broken to SU(2). The solution T1

125a, T1
455T2

135b,

F̄1
15a and F̄2

25Aa22b2, with x52a2Aa22b2, j 1

512a2b2 and j 250, contains representative points of orb
in this stratum.

~vii ! (2I 32I 1I 2)25I 1
2(2I 42I 2

2); (x250). The remaining
global symmetry group isU(1), and thegauge symmetry is
completely broken. The flat directions presented in Re
@2,11# contain representative points on the orbits in this s
tum. As shown in Ref.@13#, the classical vacuum of th
SU(5) model with calculable supersymmetry breaking l
on an orbit in this stratum with the propertyj 156 j 2. In
terms ofHG orbits, this additional condition does not lead
a larger little group.

~viii ! I 4
25I 2

2; ( j 250). The remaining global symmetr
group isU(1), and thegauge symmetry is broken toSU(2).

~ix! GenericI 1 , I 2 , I 3 , I 4; ~genericx1 , x2 , j 1 , j 2). Both
global and gauge symmetries are completely broken.

Even though everyHG orbit is contained in anHM orbit,
not every stratum ofHG orbits is completely contained in
stratum ofHM orbits.

As in theSU(3) model discussed in Sec. I, nonperturb
tive effects completely change the classical picture of
moduli space. A nonperturbative effective superpotential

Wnp5
L11

Ja
aJb

beabeab
, ~17!

generated by instantons, lifts the vacuum degeneracy c
pletely. However, instead of a mass term, which is not c
sistent with the chiral nature of theSU(5) theory, a renor-
malizable Yukawa-type interaction in the superpotential c
be introduced to stabilize the scalar potential. As descri
in Refs.@9,10,12,13#, if the coupling constant of this Yukaw
term is sufficiently small, the theory below the dynamic
scale of the gauge interactions is a supersymmetric si
model, which hasXa and Ja

a as coordinates,KM as Kähler
potential, and

W5
L11

Ja
aJb

beabeab
1lX1 ~18!

as the superpotential. In contrast to theSU(3) model, the
vacuum energy does not vanish, and therefore supersym
try is broken. The light mass spectrum, as calculated in R
@12,13# displays some degeneracies which cannot be
plained by the symmetry breaking pattern of the global sy
metry group of the gauge theory including the superpoten
However, as a consequence of theHM invariance of the
Kähler potential, the symmetry group of the sigma mod
extends the global symmetry group of the full gauge theo
In particular, the sigma model is invariant underSU(2)1
01500
.
-

-
e

m-
-

n
d

l
a

e-
s.
x-
-
l.

l
.

^SU(2)2 transformations. The degeneracies in the light sp
trum square with the breaking pattern of the extended s
metry group of the sigma model.

IV. CONCLUSIONS

We have presented a detailed study of the class
moduli space of theSU(5) gauge theory with two antisym
metric tensors and two antifundamentals. We found that
symmetry groupHM of the classical moduli space extend
the global symmetry groupHG of the gauge theory. We ana
lyzed the moduli space in terms of orbits of both symme
groups.

The extended symmetry of the moduli space has two m
consequences. Physically inequivalent classical vacua of
gauge theory may have identical low energy limits, and
effective models that describe the massless degrees of
dom in the low energy limit have a symmetry group that
larger than the unbroken subgroup ofHG . Even though non-
perturbative effects completely lift the classical mod
space, a remnant of the extended symmetry group of
Kähler potential is the origin of degeneracies in the ma
spectrum of the calculableSU(5) model with dynamical su-
persymmetry breaking.

The extended symmetry of the classical moduli space
traced to the fact that the Ka¨hler potential does not depen
on an Hermitian invariant consistent with the global symm
try group of the gauge theory. We calculated the mass sp
trum of the gauge theory for vacua that are related byHM
transformations but not byHG transformations, and we
found that the mass spectrum of the massive vector mu
lets differs. This assured us that the additional symmetry
the moduli space is not realized as a symmetry of the
gauge theory. In fact, the same evidence also eliminates
possibility that just the scalar potential is invariant under
extended symmetry.

As an aside, the degeneracies in the spectrum of the m
sive vector multiplets pose an intriguing question. In a g
neric point of the moduli space, all global and gauge sy
metries are broken, and therefore no degeneracies
expected. However, the existence of a degenerate quintu
hints at some kind of symmetry.

Returning to the question of the extended symmetry of
classical moduli space, we cannot completely rule out
possibility that the full gauge theory, or the just the sca
potential, is invariant under some symmetry other than a
of the extended symmetry transformations of the class
moduli space, maybe even a discrete symmetry, that we
unaware of. If such a symmetry exists and if it forbids t
absent terms in the Ka¨hler potential, then the extended sym
metry of the classical moduli space that we have fou
would be coincidental.

If the latter scenario is not realized, it is possible to ta
the point of view that the classical moduli spaces of sup
symmetric chiral gauge theories with matter in tensor rep
sentations have complicated structure, and that calcula
their Kähler potential provides an apt tool to understand t
structure. However, we find such a perspective somew
unsatisfying and still feel that it is worthwhile to seek a fu
1-6
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damental principle that allows the determination of the sy
metries of the classical moduli space without an explicit c
culation of the Ka¨hler potential.

Finally, we want to address the question whether the c
sical moduli spaces of other supersymmetric gauge theo
have extended symmetries. Nontrivial flavor structure a
matter transforming under nonfundamental representat
of the gauge group seem to be prerequisites. However,
such matter content, the parametrization of generic flat di
tions often is prohibitively complicated, and an explicit ca
culation of the Ka¨hler potential of the classical moduli spac
is impossible. This is particularly the case when the ma
content is chosen so that the gauge symmetry is nonano
lous, although this does not seem to be required in a stud
classical moduli spaces.

Looking at closely related models, the SU~5! model with
one generation—one antisymmetric tensor and
antifundamental—has no flat directions. The model w
three generations has twenty one moduli fields and its
hy

hi-

01500
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l-
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es
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ns
th
c-

r
a-
of

e

-

equivalent classical vacua are labeled by twenty four par
eters. Parametrizing generic flat directions for this model
forbidding task. Nevertheless, the structure of the class
moduli space is of interest: When nonperturbative effects
taken into account, the model is in ans-confining phase@16#,
and the structure of its classical moduli space is conjectu
to be unmodified.
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