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We analyze the structure of the moduli space of a supersymn®U{&) chiral gauge theory with two
matter fields in thelO representation and two fields in tlgerepresentation. Inspection of the exacthia
potential of the classical moduli space shows that the symmetry group of the moduli space is larger than the
global symmetry group of the underlying gauge theory. As a consequence, the gauge theory has classical
inequivalent vacua which yield identical low energy theor[@&0556-282199)06611-4

PACS numbds): 12.60.Jv

I. INTRODUCTION in terms ofX,, and X! . Any HermitianH g invariant on the
moduli space can be expressed as a function of théThe
Depending on the matter content, supersymmetric gauggoduli space is, in fact, a Kéer manifold. Its Kaler poten-
theories can have large vacuum degenergdigsin the ab-  tjal, induced by the Kaler potential of the gauge theory, is
sence of a superpotential, classical vacua are associated Wiilfined byKM[Ix(Xz X)) ]= d)de)i for every point in the flat
vacuum expectation values for which tiie terms of the direction manifold.
scalar potential vanish. In the Wess-Zumino gauge, the When the X, are promoted to chiral superfields, the

D-flat directions contain those points in the vector space Ofnoduli space becomes equivalent to a supersymmetric chiral

igiljli;igr?mponents of the chiral superfields that satisfy thgigma model[4,6]. This sigma model describes the low en-

ergy limit of the underlying gauge theory if the gauge sym-
, metry is completely broken—the effective, classical theory
Da:z_ ¢iTTa¢’IZOa oY) describing the low energy limit of the gauge theory built on

' the classical vacuum with expectation valdgs) is equiva-
where the sum is over all matter multiplets! is the scalar lent to the sigma model when it is expanded around the
component of the superfieli’ andT? are the generators of expectation valuegX,)=X,((¢')). This effective theory,
the gauge group in the appropriate representation. In the ca¥éich describes the interactions of the massless degrees of
where all matter transforms undéant)fundamental repre- freedom, can also be obtained directly by integrating out the
sentations of the gauge group, it is relatively simple to conmassive vector multipletsn the gauge theory.
struct solutions to Eq(1), but for theories with matter in Nonperturbative effects can change the classical picture
tensor representations, the solutions may be rather comple®f the moduli space dramaticalf2,7,8. In some cases, a
No standard methods to find the most general solution aréynamically generated superpotential lifts the moduli space,
available in the latter case. Refererj@g gives an overview in other cases, classical constraints among the moduli fields
of the efforts to parametrize flat directions in various modelsare modified, and in still other cases the structure of the

The D-flatness condition Eq(1) is covariant under the moduli space remains unchanged. Holomorphy and symme-
gauge groupG and invariant under the global symmetry tries severely constrain the form of dynamically g_enerated
group Hg of the gauge theory. The manifold of flat direc- superpotentials. Unfortunately, modifications to thehka
tions is therefore covered witB®Hg orbits. Points in the potential are less well understood.
manifold that lie on the sam&®Hg orbit are physically _In some situations, however, corrections to the classical
equivalent. The analysis of the flat directions is thereforeKahler potential are small. This is for example the case in
simplified considerably when the redundancy due to gaug&odels with calculable dynamical supersymmetry breaking,
and global symmetry transformations is removed. where the vacuum expectation values of the scalar fields are

To this end, thes orbits in the flat direction manifold can Mmuch larger than the dynamical scale of the gauge theory.
be labeled by a finite set of basic holomorphic gauge invari- BY construction, the Kaler potential of the classical
ant polynomialsX,(#') [3-5]. Any holomorphic gauge in- Moduli space is invariant under global symmetry gréi
variant polynomial in the fields' can be written in terms of Of the underlying gauge theory. By a detailed analysis of the
products and sums of the basic invariaits, by virtue of ~ moduli space of a chirgU(5) gauge theory with two anti-
the decomposition rules for the products of representationSymmetric tensors and two anti-fundamentals, we will show
of the fields ¢'. For some theories the invarianks, are that the symmetry groupiy of the moduli space can be
algebraically independent; for others, relations exist among
them.

The invariantsX, form the coordinates of the moduli 1At the classical level, this means considering tree diagrams with
space(the flat direction manifold modulo gauge transforma- only massless degrees of freedom at the external lines, and contract-
tions) The H orbits in the moduli space can be labeled by aing internal propagators of massive degrees of freedom in the limit
finite set{l,} of basic,Hg invariant, Hermitian polynomials p*M2—0.
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larger tharH . When a superpotential is added and nonpergroup is completely broken. Eight of the twelve chiral super-

turbative effects are taken into account, t8ig(5) theory is  fields are eaten to give mass to the vector multiplets. As a

one of the classic models with calculable dynamical supereonsequence, the number of moduli fields is four and the

symmetry breaking2,9-13. moduli space is eight dimensional. The unbroken global
The fact thatH,, is larger thanHg has some interesting symmetry group i$J(1)®U(1)®U(1)g. The moduli space

consequences. Classical vacua which are not related by therefore spanned by the two parametesndb, and six

gauge and global symmetry transformations still give rise tof the nine parameters & transformations.

the same effective theory in the low energy limit. Moreover, The basic holomorphic gauge invariants for this theory

the unbroken symmetry group in the effective theory extendgre M?=Q7Q!, transforming as (2,2,1,1,0) undet.

the unbroken symmetry group of the full gauge theory. WeThese four meson fields form the coordinates of the moduli

have verified that the extended symmetry is not a consespace, and their vacuum expectation values can be written in
quence of a custodial symmetry. Moreover, as we calculateghe formm i: m;, M gz m, and Mi: M%= 0 by Hg trans-

theexactclassical Kaler potential, it is not a consequence of ¢5rmations.

a truncation either. _ _ _ The basic Hermitian structures—invariant under the glo-
In Sec. Ill, we present a detailed analysis of the moduliys| symmetry transformations and constructed out of the me-
space of theSU(5) theory. However, we first discuss a ¢4, ﬁelds_ardleTaMa and |2:MTaM TbM,BMg with
H H . o a a a 1
simple, well-known, vectorlike theory witiBU(3) gauge the range of , limited by the inequality 1/%$|2<|f The

symmetry{4] in Se_c. Il; this SErves to_|llustrate our methods, exactinduced Kaler potential of the classical moduli space
and to emphasize the main point of this paper by

i - t f MY1=0faai 4 otine
contrast—as the symmetry group of the moduli space of thé defined aKy[11(M*,M),1,(M",M)]=Q/*Q,+Q;Qf,
SU(3) model coincides with the global symmetry group of @nd @ simple calculation gives
the underlying gauge theory.

1 1 1 1
_ - iy 12 I Y
Il. SUPERSYMMETRIC QCD WITH TWO FLAVORS Kn=2 2|1+ 2 2lp=11+2 2'1 2 2lp=13.

)

We consider supersymmetric QCD with three colors and

two fl 4]. Th i i [ - .
wo flavors[4] e quark chiral superfields, which are de This Kéhler potential is invariant under the global symmetry

noteq byQs. r?min“, traqsform as3 and3 underSU(3). groupHg of the underlying gauge theory by construction. As
Herei=1,2,3 is the color index, and=1,2 anda=1,2 are 5 conyentionalK,, is not invariant under any other symme-
flavor indices. The global symmetry grotpio of the_ ries, so that the symmetry grotipy, of the moduli space is
theory_—the relevant s;immetry groupiat the CIaSSIcaLqual toHg . As will become clear in the next section, how-
level_'SSU(Z)Q®SU(2)9®U(1)Q®U(1)Q®U(1)R' Un- ever, even thoughl,, always contain$is, it can in fact be
der Hg the quark superfields transform §~(2,1,1,0,0) larger.
and Q{*~(1,2,0,1,0). The scalar components of the chiral The Kéhler potential of the moduli space is derived in
superfields do not transform undé(1)r, and therefore this terms of the scalar components of the superfields. However,
factor cannot be spontaneously broken by expectation valuaghen the the moduli fields are promoted to superfields, a
of the scalar fields. supersymmetric sigma model ensues. The low energy limit
The nonanomalous subgrouthy, of Hg—the relevant  of the classical gauge theory constructed on the vacuum with

symmetry group at the quantum level—iSU(2)q  expectation valuesQh) and(Qf) is equivalent to the sigma
®SU2)ewU(1)g®U(1)r . UnderHya the quark super- g0 itk vacuum expectation valuél ¢)=(Q)(Q.).

fields transform asQ;~(2,1,1;-1/2) and Q'~(1,2-1, TheHg orbits that cover the moduli space can be labeled
—172). L , by {a,b}, {m;,m,}, or {l,1,}. Points in the moduli space
_ The flat directions of the theory are solutions to the equaghat Jie on the same orbit yield physically equivalent classical
tion vacua. The orbits, in turn, can be grouped into strata. Differ-
Ql*Qi —qtige=cél ) ent orbits that belong to the same stratum yield vacua that are
ia Xa ¥i O physically inequivalent, but qualitatively similar. Such vacua
t yield the same symmetry breaking pattern and the same de-
turns out there are only solutions for=0. Any solution to generacies in the mass spectrum, but the masses are quanti-
) = ,  tatively different. The strata can be categorized as follows.
Eq. (2) can be obtained from the solutid@;=Q;=a, Q3 (i) For genericHg orbits, labeled by generic values of
=Qj=b, with all other components vanishing, by applying {I,,1,}, the little group isU(1)®U(1)®U(1)g. The gauge
appropriate gauge and global symmetry transformations. Fagymmetry is completely broken.
generic values of the real parametersand b, the gauge (i) For orbits with|2=1/2|§, (b=+a; my=+m,) the
little group isSU(2)@U(1)®U(1)g. The gauge symmetry
is completely broken.
2According to our conventions fdR symmetry, the charge of the (i) For orbits with I,=13, (b=0; m,=0) the little
scalar component of a chiral superfieldRswhereas the charge of group isU(1)®@U(1)®@U(1)®U(1)g. In the sigma model,
the fermionic component iR— 1. The gaugino has charge 1. the metric derived from the Kder potentialk,, is singular.

Here c is, a priori, an arbitrary real constant. However, i
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Moreover, in the gauge theory the gauge group is broken to TatTik _ EktEa_ ¢ sk @)
SU(2) and therefore, the low energy theory should include neas et I
the massless gauge multiplets. wherec is an arbitrary real constant. In Ref2,9,11,13,
(iv) Whenl;=0, none of the gauge and global symme-some incomplete families of solutions to E{) were pre-
tries are broken. sented. Here, we give the most general solution which of
The classical picture of the moduli space is altered dracourse includes the previously found families. Any solution
matically by nonperturbative effects. The nonanomalous glotg Eg. (7) can be obtained from a four-parameter solution
bal symmetry groupHya of the gauge theory allows a through gauge and global symmetry transformations. This
unique, nonperturbative superpotenfid] of the form four-parameter solution takes the foff§2=a, T3*=b, E}

A7 =c, Fi=d, and
W= ————— . (4)
" QrQLQL Qe e

Explicit instanton calculations in the semiclassical approxi- Y a’?-c? a
mation[14,15 show that such an effective superpotential is
indeed generated and thAt is the dynamical scale of the a
gauge theory. Th&-term contributions to the scalar poten- T‘115=5 a’—c? =
tial completely lift theD-flat directions. The scalar potential
does not have a minimum, tends to zero only at infinity, and
renders the theory unstable. However, the scalar potential is

23_ 2_(Qa2_Q2
stabilized if a mass term of the form 2= a2—c2 b= (a"~c9,
W= mzaiaQia 5 25 cd
2 = T T
is added to the superpotential. If the scale of the masges a
is much smaller than the dynamical scalethen the vacuum d
expectation values of the scalar fields are much larger Ahan T3°=—\a?—c?\b?—(a®-c?),
and the theory is weakly coupled. It is in this limit that the ba
classical Kaler potential is relevant. The theory below the
dynamical scale can be described in terms of the moduli = a \/ﬁ
fieldsM ¢, with Kahler potentialk,, and superpotential Fs=— 72 b®—(a"-c?),
A7
=————+miMj. (6) c b? d?
a b a’’’a E2__ [h2_(32_2 _
MM enpe® F=p b @\ st

The vacuum energy vanishes, and supersymmetry is not bro-

ken in this theory. [ b? d?
E§=—\/a —C m‘*’; (8)

lll. CHIRAL SU(5) THEORY

All other components vanish, ara b, ¢, andd are real
arameters. For generic values{afb,c,d}, the gauge sym-
etry is completely broken. Therefore, twenty four of the

The chiral supersymmetri§U(5) gauge theory we dis-
cuss in this section contains two matter fields transformin

under thelO representation o6U(5), and twofields trans- . ! i .
formi der thes . h field thirty chiral superfields are eaten to give masses to the vector
orming under thes representation. These matter fields are, isinjets; leaving six moduli fields to function as coordi-

denoted by the two index antisymmetric tensBjs andF{,  nates for the twelve dimensional moduli space. The global

wherei,j=1,...,5 aregauge indices, and=1,2 anda  symmetry groupHg is broken toU(1)g. In terms of the
=1,2 are flavor indices. With this matter content, the theoryfundamental fields, the moduli space is spanned by the four
is anomaly free and asymptotically free. parameterga,b,c,d} of the solution given in Eq(8), and

The global symmetry groupig of the theory isSU(2)y  eight of the nine parameters bffg transformations. The ba-
®SU(2)FeU(1)r®U(1)F®U(1)r. UnderHg, the matter  sic holomorphic gauge invariants for this theory are given by
fields transform a3 ,~(1,2,1,0,0) and“~(2,1,0,1,0). The

scalar components of the chiral superfields do not transform Xa= eaﬁFi“FjﬁTg ,

underU(1)g. Their vacuum expectation values therefore do

not break this symmetry. Under the nonanomalous subgroup Ji= fijk|mEﬁT2T'§'Tg‘"€b°- (9)

of Hg, SU(2);®SU(2),®U(1)a,®U(1)r/, the matter

fields transform ag,~(1,2,1,1) and?a~(2,1,—3,—4), UnderHg, these holomorphic gauge invariants transform as
The D-flat directions of the theory are solutions to the X;~(1,2,1,2,0) and;~(2,2,3,1,0). By suitablédg trans-

equation formations, the vacuum expectation values of the basic ho-
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lomorphic gauge invariants can be written dg=x,, X,
=X,, J1=j1, J3=], andJ3=J3=0, with x, X, j; andj,
real parameters. In fact, the expectation values of the ho

morphic gauge invariants for the four-parameter solutionB=

given in Eq.(8), already have this form:

b? d?

_),

a

+

ad
X1=2F(a2—cz)( 5

a’-c

d2 3/2
T2

b2

a2_C2

a3
xzzzgm(

d?)?
2

bZ

=

2 d2
+ —
a2

Jo=— 12a2(a2—02)< (10)

a2_C2 ) ’
The holomorphic invariantX, and J; provide the coordi-
nates for the moduli space. A completdil; invariant de-

scription of the moduli space can be given in terms of th
four Hermitian invariants

I,=X3TX,,
|2:\32TJ§:
13=X3T307X, 5,

PENANPANIN S (11)

where the range of, is limited to 1/25<I,<I3, and the
range ofl3 is limited by (25—141,)%<(21,—13)I12. The

moduli space is thus covered bys orbits, labeled by
{a,b,c,d}, {X1,X2,j1,j2}, Or{l4,l,,l3,14}. In our previous
work [13], the exact Khler potential of the classical moduli
space was derived. Invariance undég dictates that the
Kahler potential has the functional form

Kn(XT, X, 3T, =Ky (11,15,13,14). (12)

Defining
3The Kahler potential of the moduli spac&y(l11,15,13,14)

=1/2T3 I+ FJF for all values of the parametefs,b,c,d} of
the four-parameter solution to thz-flatness equation.

PHYSICAL REVIEW D60 015001

A=125,,

lo-

25/ 1 1 11
3(\/§I2+§\/2I4—I22+ 5'2_5‘/2'4_'2)’

(13
and
1 A
p=2\B cos( 3aIcc08 35, (14)
the Kéehler potential of the moduli space is given by
Kuy= + B 15
M=1g| Pt 5/ (15

The metric derived from this Kder potential is singular if
I4=I§. Curiously, K\, does not depend ori;. As a
consequence—and this illustrates the central point of this
paper—the symmetry groupd,, of the moduli space
SU(2)x®@SU(2);®SU(2),0U(1)x@U(1);®U(1)g is
larger than the global symmetry grotiy; of the underlying
gauge theory. The moduli fields transform undtgy as X,
~(2,1,1,1,0,0) andl3~(1,2,2,0,1,0). TheJ(1)g factor in

Hy is the same factor that appearshiy . Only fermions
transform under this symmetry, and it does not play any role
in the discussion below. We will therefore suppress this fac-
tor from here on.
e Generic Hy, orbits in the moduli space, labeled by
{I1,1,,14}, contain one-parameter families Hifg orbits, la-
beled byl ;. In particular, the points

X{=XCO0S¢,
X,=xsing,
‘]i:jh
J2=0,
Ji=0,

=iz (16)
for fixed values of{x,j1,j,}, and varyinge, are equivalent
in the moduli space, ag corresponds to the parameter of an
SU(2) rotation.H,, orbits can therefore also be labeled by
{X,j1,i2}, and theH orbits contained in ahly, orbit can be
labeled byd.

When the moduli fields are promoted to superfields, a
supersymmetric sigma model results. The low energy limit
of the gauge theory built on the classical vacuum with ex-
pectation valuegT}) and(F{") is equivalent to the sigma
model with vacuum expectation values

(Xa) = €ag(FI)(FP)(TY)

and
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(38y= 6ijk|m<Eﬁ><Tg><TE|><T?n>€bC- which the little group is larger. The strata can be classified as
follows.
(i) 1,=0, I,=0; (x=0, j;=0, j,=0). The metric is
The extended symmetry of the moduli space has two imsingular and there is no spontaneous symmetry breaking.
portant consequences. First, vacua of the gauge theory cofnerefore, the little group isSU(2)yx® SU(2);® SU(2),

responding to fixed values dk,j,,j,}, but varying ¢, are ®U(1)x®U(1),. The multiplets transform a€2,0,0,1,0
physically inequivalent. In particular, the masbsebthe vec- and(1,2,2,0,1.

tor multiplets are a function of. In fact, v_vhile for generic (i) 1,=0: (j,;=0, j,=0). The metric is singular, and the
values of ¢ gauge and global symmetries are comple’[ely“,[,[Ie group is U(1)®SU(2),®SU(2),&U(1),. The mul-
broken, for the special values ¢f=0 andg=m/2 there isa o ancein 05 5y 1(0 11,0 ;nd(l 11 0

remaining globalJ(1) symmetry. However, all vacua of the (i) 1,20, 1,= 2 ’(X’:’o’ j :0) The métr,ic,is. singular
sigma model with fixed values ofi,j1,j} and arbitiary - Bt S o) & (1)@ U(L)@U(L),. The
value of ¢, either generic or special, are equivalent. There-™" ™ group X X

fore, the low energy limit of the gauge theory, which is ob- Multiplets transform a¢2,0,0,3, (1,0,-2,0, (1,-1,1,0, (1,
tained by integrating out the massive vector multiplets in the_l'__l'o)* and(l,?,oz,.o. . ) ) )
limit p2/M?—0, is identical for each value af. Physically (iv) 1,=0, 1,=313; (x=0, j1==*]). The little group is
inequivalent vacua of the gauge theory, with distinct mass>U(2)x®SU(2)@U(1)x. The multiplets transform as
spectra and possibly even distinct global symmetry breakin@zalv])’ (1,3,0, and(1,1,0. ) ]

patterns, yield the same low energy theory. Second, for ge- (V) (11=0:x=0). The little group isSU(2)x®U(1)
neric vacua, the global symmetry group of the gauge theory® U(1)x. Two multiplets transform a&l,0,0, while the re-
is broken toU(1)g. However, the symmetry groud,, of (”j‘_a]'_”(')“g multiplets transform 2€¢2,0,9, (1,-1,0, and
the moduli space is broken td(1)®@U (1)@ U(1)g. There- Lt ) o )
fore, the low energy limit of the gauge theory has a larger (Vi) _|4=|§? (12=0). The metric is singular, and the little
symmetry group than expected from the global symmetngroup isU(1)®@U(1)®U(1). Two multiplets transform as

breaking pattern of the full gauge theory. (0,0,0, while the remaining multiplets transform é%0,-2)
The three-parameter solution to tBeflatness condition (1,0,0, (0,—1,1%, and(0,-1,-1). _ _
Eq. (7), obtained by imposing the conditidsf=a?—c? on (vii) 1,=315; (j1==j,). The little group is U(1)

the four-parameter solution given in E@), corresponds to ®SU(2). Two multiplets transform ag0,1), while the re-
arbitrary {1,,1,,1,} and 1;=0, or, alternatively, arbitrary maining multiplets transforms &9,3) and(1,1).

{X,j1,j»} and ¢=0. This three-parameter solution, there-  (viii) Genericly, I, 1,; (genericxy, j1, j2). The little
fore, contains a representative point onkj), orbits in the  group isU(1)®U(1). Three multiplets transform a®,0),
moduli space. However, it does not contain a representativehile the remaining multiplets transform ék0), (0,—1) and
point on allHg orbits. Therefore, the corresponding classical(0,1).

vacua yield all physically inequivalent low energy theories, Hg orbits can be labeled byt 1,15,13,14}, {X1,X2,j1.]2}

yet not all physically inequivalent classical gauge theories. or {a,b,c,d}. For each stratum, we indicate the subgroup of

We will describe the moduli space in terms of strata ofHg which remains unbroken, and also the remaining sub-
Hy andHg orbits in turn. The first approach lends itself for group of the gauge group in case the gauge symmetry is not
the study of all inequivalent low energy theories, while thecompletely broken.
latter is more suitable for the study of all inequivalent clas- (i) 1,=0, 1,=0; (X;=0, Xx,=0, j;=0, j,=0). The
sical gauge theories. gauge and global symmetries remain unbroken.

As explained beforeH,, orbits are labeled by either (i) 1,=0; (x,=0, j;=0, j,=0). The unbroken global
{l1,15,14} or {X,j1,j-}. For generic orbits, labeled by ge- symmetry group isJ(1)® SU(2)g®U(1). Thegauge sym-
neric values of{x,j1,j,}, Hy is broken toU(1)®U(1).  metry is broken tcSU(3). ThesolutionTi?=a, Fi=a, F2
One of the U(1) factors is a subgroup ofSU(2)x  =a, with x;,=2a3, contains representative points of the or-
®U(1)x; the other, a subgroup oSU(2);®SU(2), bits in this stratum.
®U(1),. The number of broken symmetry generators, 9, is  (jii) |,=0, 1,=13; (x;=0, x,=0, j,=0). The remaining
larger than the number of moduli fields, 6, and thereforegiopal symmetry group i4J(1)®@U(1)®U(1). The gauge

some of the corresponding Goldstone bosons are NORsymmetry is broken tSU(2). The solution T%2=a T‘2‘5

doubled. Apart from the generic stratum, there are strata for’ a, E}‘:a, with j,=12a* contains representative points of

orbits in this stratum.
(iv) 1,=0, 1,=1/22; (x,=0, x,=0, j;=*],). The un-
“The mass spectrum of the vector multiplets, which we studiedyyoken global symmetry group iSU(2)®U(1), and the

numerically, displays some unusual features. For generic values %Iauge symmetry is completely broken. The solutfﬁﬁ
{X,i1,]2,¢} both the gauge and global symmetries of the gauge” 34 15 o4 —1 =2 . _— y _ 4
theory are completely broken. However, the spectrum contains four 11 — 12 — 12 —F1=Fz=a, with j;=—],=12a" con-

degenerate pairs of masses, and one degenerate quintuplet. Mof@ins representative points of orbits in this stratum.

over, even though the spectrum changes witfor fixed values of (V) 11=0; (x;=0, x,=0). The remaining global symme-
{X,j1.j2}, the sum of the squares of the masses and the mass of tfigy group isU(1)®U(1), and thegauge symmetry is com-
degenerate quintuplet remain independeniof pletely broken. The solutiom?=a, T3*=T3=a?+b?,

015001-5



TONNIS A. ter VELDHUIS PHYSICAL REVIEW D60 015001

T3%=b, Ei: a and Eﬁ: b, with j;=12a%(a?+b?) andj, ®SU2),transformations. The degeneracies in the light spec-
= —12b%(a+b?), contains representative points of orbits in trum square with the breaking pattern of the extended sym-
this stratum. The solution presented in Rl also contains Metry group of the sigma mode!.

representative points of orbits in this stratum.

bal symmetry group i€J(1)®U(1), and thegauge symme-
try broken to SU(2). The solution T}?=a, T{°=T3=b, We have presented a detailed study of the classical

Tl_ T2_ 3212 ; —o~2 A2 i moduli space of th&U(5) gauge theory with two antisym-
zllzzzbfggdjlzzzo ?:ontt;ir,ls ;I:grleszntzisve ?)oin?s ’of i)rbits metric tensors and two antifundamentals. We found that the
in this stratum.2 ' symmetry groupH,, of the classical moduli space extends
(Vi) (215~ 1|2)2=|§(2I4—I§); (x,=0). The remaining the global symmetry gro_ubIG of the gauge theory. We ana-
global symmetry group i&)(1), and thegauge symmetry is lyzed the moduli space in terms of orbits of both symmetry
groups.

completely broken. The flat directions presented in Refs: , ,
[2,11] contain representative points on the orbits in this stra- The extended symmetry of the moduli space has two main

tum. As shown in Ref[13], the classical vacuum of the consequences. Physically inequivalent classical vacua of the

. ..~ _gauge theory may have identical low energy limits, and the
SU(s) mo_de_l W't.h calculable Supersymmetry bre"?""“g IIeseffective models that describe the massless degrees of free-
on an orbit in this stratum with the properfy=*j,. In

) . . " dom in the low energy limit have a symmetry group that is
;egzgﬂﬁtﬁeogbrgipthls additional condition does not lead to larger than the unbroken subgrouptbg . Even though non-
o - erturbative effects completely lift the classical moduli
(viii) 12=13; (j,=0). The remaining global symmetry P petely

: : space, a remnant of the extended symmetry group of the
group isU(1), and thegauge symmetry is broken ®U(2).  kahjer potential is the origin of degeneracies in the mass
(ix) Genericl ¢, |5, I3, 14; (genericxy, X5, j1, j2). Both

! spectrum of the calculablgU(5) model with dynamical su-
global and gauge symmetries are completely broken.

S . ) ) persymmetry breaking.
Even though everyi orbit is contained in ay orbit, The extended symmetry of the classical moduli space is

not every stratum oHg orbits is completely contained in @ {r5ceq to the fact that the Kéer potential does not depend
stratum ofH orbits. , _ on an Hermitian invariant consistent with the global symme-
As in the SU(3) model discussed in Sec. I, nonperturba-yy groyp of the gauge theory. We calculated the mass spec-

tive ef_fects completely change the Clgssical picture (_)f th&rum of the gauge theory for vacua that are relatedHgy
moduli space. A nonperturbative effective superpotential  3nsformations but not bH. transformations, and we

found that the mass spectrum of the massive vector multip-
lets differs. This assured us that the additional symmetry of
the moduli space is not realized as a symmetry of the full

gauge theory. In fact, the same evidence also eliminates the

generated by instantons, lifts the vacuum degeneracy confrossibility that just the scalar potential is invariant under the
pletely. However, instead of a mass term, which is not conextended symmetry. o

sistent with the chiral nature of th®U(5) theory, a renor-  AS an aside, the degeneracies in the spectrum of the mas-
malizable Yukawa-type interaction in the superpotential carfive vector multiplets pose an intriguing question. In a ge-
be introduced to stabilize the scalar potential. As describe@€ric point of the moduli space, all global and gauge sym-
in Refs.[9,10,12,13, if the coupling constant of this Yukawa Metries are broken, and. therefore no degeneraqes are
term is sufficiently small, the theory below the dynamical expected. However, the existence of a degenerate quintuplet
scale of the gauge interactions is a supersymmetric sigm@ints at some kind of symmetry.

All

ne JgJ'geaﬁeab’

17

model, which hasX, andJ¢ as coordinatesK,, as Kaler Re_turning to t.he guestion of the extended symmetry of the
potential, and classical moduli space, we cannot completely rule out the
possibility that the full gauge theory, or the just the scalar

AlL potential, is invariant under some symmetry other than any

=—————+\X; (18) of the extended symmetry transformations of the classical

J;’Jffea[geab moduli space, maybe even a discrete symmetry, that we are

unaware of. If such a symmetry exists and if it forbids the
as the superpotential. In contrast to t8&(3) model, the absent terms in the Kder potential, then the extended sym-
vacuum energy does not vanish, and therefore supersymmmetry of the classical moduli space that we have found
try is broken. The light mass spectrum, as calculated in Refsyould be coincidental.
[12,13 displays some degeneracies which cannot be ex- If the latter scenario is not realized, it is possible to take
plained by the symmetry breaking pattern of the global symihe point of view that the classical moduli spaces of super-
metry group of the gauge theory including the superpotentialsymmetric chiral gauge theories with matter in tensor repre-
However, as a consequence of thie, invariance of the sentations have complicated structure, and that calculating
Kahler potential, the symmetry group of the sigma modeltheir Kahler potential provides an apt tool to understand this
extends the global symmetry group of the full gauge theorystructure. However, we find such a perspective somewhat
In particular, the sigma model is invariant undetJ(2), unsatisfying and still feel that it is worthwhile to seek a fun-
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damental principle that allows the determination of the sym-equivalent classical vacua are labeled by twenty four param-
metries of the classical moduli space without an explicit cal-eters. Parametrizing generic flat directions for this model is a
culation of the Kaler potential. forbidding task. Nevertheless, the structure of the classical
Finally, we want to address the question whether the clasmoduli space is of interest: When nonperturbative effects are
sical moduli spaces of other supersymmetric gauge theoriggken into account, the model is in aonfining phas¢16],

have extended symmetries. Nontrivial flavor structure andynd the structure of its classical moduli space is conjectured
matter transforming under nonfundamental representationg pe unmodified.

of the gauge group seem to be prerequisites. However, with

such matter content, the parametrization of generic flat direc-

tions often is prlohlbltlvely c_ompllcated, ar_1d an expl_|C|t cal- ACKNOWLEDGMENTS
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