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Spin-momentum correlations in inclusive semileptonic decays of polarizedLb baryons

J. G. Körner and D. Pirjol*
Johannes Gutenberg-Universita¨t, Institut für Physik (THEP), Staudingerweg 7, D-55099 Mainz, Germany

~Received 25 January 1999; published 14 June 1999!

We consider spin-momentum correlations between the spin of the bottom baryonLb and the momenta of its
decay products in its inclusive semileptonic decay. We define several polar and azimuthal spin-momentum
correlation measures in different event coordinate systems. The values of the spin-momentum correlation
measures are calculated up toO(1/mb

2) using the standard OPE und HQET methods. Some of the measures
turn out to be sufficiently large to make them good candidates for a determination of the polarization of theLb

in e.g.Z decays.@S0556-2821~99!07313-0#

PACS number~s!: 13.88.1e, 13.30.Ce, 13.38.Dg
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I. INTRODUCTION

A few years ago the ALEPH Collaboration measured
polarization of bottom baryonsLb’s originating fromZ de-
cays@1#. The ALEPH Collaboration quoted a value for th
polarization ofP520.2320.20

10.2460.08 which is significantly
smaller than what would be expected theoretically in
standard model@P52(0.60–0.70)# @2#. Recently a new
measurement of the polarization has become available f
the OPAL Collaboration@3#. They obtain the resultP5
20.5620.13

10.2060.09 which is in agreement with theoretical e
pectations.

The measurement of the ALEPH Collaboration is bas
on the observation of Bonvicini and Randall@4# that, with
negatively polarizedLb’s, the spectra of the decay electro
and antineutrinos become harder and softer relative to un
larized decay, respectively, and that the fragmentation
pendence ofb→Lb practically drops out in the ratioy
5^El&/^En̄&. In a previous paper we explored possible im
provements on such spectra related polarization meas
@5#. A promising candidate measure is, among others,
ratio y25^El

2&/^En̄
2
&, a measurement of which may help

reduce the errors in the original ALEPH analysis.
The method used by the OPAL Collaboration@3# is to

compare the observed distribution of the ratioEl /En against
a simulation of this ratio using aJETSETMonte Carlo event
generator. It is perhaps worth mentioning that the distri
tion of this ratio is sensitive to the precise shape of theb
→Lb fragmentation function@5#, which is not the case with
the ratiosyn5^El

n&/^En̄
n
&. A modified method was propose

in @5# which avoids this problem, wherein the fragmentati
dependence is eliminated between the two ratios^El /En̄&
and ^En̄ /El&.

In this paper we explore possibilities to determine t
polarization of theLb through angular spin-momentum co
relations of the spin of theLb and the momenta of its deca
products in its inclusive semileptonic decays~the results of a
preliminary version of the present work have been presen
in @6#!. We work in the rest frame of the decayingLb

*Present address: Floyd R. Newman Laboratory of Nuclear S
ies, Cornell University, Ithaca, New York 14853.
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throughout and define various polarization measures wh
we compute up toO(1/mb

2) in the heavy mass expansio
using the standard operator product expansion~OPE! and
heavy quark effective theory~HQET! approach to inclusive
semileptonic decays developed in@7–10#. TheO(as) radia-
tive corrections to some of these asymmetry parame
(B1 ,B3) have been previously computed@13,14#.

The analysis of the spin-momentum correlation measu
in Sec. II makes use of so-called helicity systems, in wh
the plane spanned by the three final state momentapW X , pW l

andpW n ~event plane! is in the (x,z) plane. The orientation of
the polarization vectorPW is specified by two angles (q,w)
for which we compute the angular decay distributions.
Sec. III we do the same exercise for so-called transver
systems, where the event plane defines the (x,y) coordinate
plane.

II. SPIN-MOMENTUM CORRELATIONS
IN THE HELICITY SYSTEM

As we are analyzing the decayLb→Xc(pX)1 l 2(pl)
1 n̄ l(pn) in the rest frame of theLb , the three-momenta
pW X ,pW l and pW n lie in a plane — the event plane. It is then
matter of choice how to orient the event coordinate syst
relative to the event plane and thereby relative to the po
ization vector of theLb . In this section we will discuss
so-called helicity systems in which thez axis is in the event
plane. It is then convenient to define three coordinate s
tems according to the orientation of thez axis. Also one has
to specify the orientation of thex axis for which one has two
possible choices in each system. We thus define our coo
nate systems as

system 1: pW l iz, a: ~pW n̄ !x>0 b: ~pW X!x>0

system 2: pW Xiz, a: ~pW l !x>0 b: ~pW n̄ !x>0

system 3: pW n̄iz, a: ~pW X!x>0 b: ~pW l !x>0.
~2.1!

In this paper we shall always work in systems 1a, 2a and
such thatpW n̄ , pW l andpW X , respectively, have positivex com-
ponents. When using systems 1b, 2b and 3b the sign of

d-
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coefficientB in the angular decay distribution defined in E
~2.2! below remains unchanged while the sign of the coe
cientC changes as can be seen by making the transforma
cosw→cos(w1p)52cosw.

It should be clear that the choice of thez axis in the event
plane is optional. Other possible choices would be to take
directions bisecting any two of the three momenta directi
pW X ,pW l ,pW n , etc. The above choice has been made for exp
mental convenience.

In generic form the five-fold decay distribution~differen-
tial in q0 ,q2,cosu,cosq andw) reads

dG

dq0dq2d cosud cosqdw

5
1

4p
GbH dĜA

dq̂0dq̂2d cosu
1PS dĜB

dq̂0dq̂2d cosu
cosq

1
dĜC

dq̂0dq̂2d cosu
sinq cosw D J ~2.2!

where

Gb5
GF

2 uVcbu2mb
5

192p3
~2.3!

is the reference rate of the decay into three massless
particles. Other symbols appearing in Eq.~2.2! are defined as
follows. The energy and the invariant mass squared of
virtual boson are denoted byq0 and q2 respectively, with
corresponding reduced quantitiesq̂05q0 /mb and q̂2

5q2/mb
2 . The polar angle of the leptonl 2 in the (l 2,n̄ l) rest

frame relative to the direction ofpW X is denoted byu. There is

one unpolarized reduced rate function dĜA and two polarized

rate functions dĜB and dĜC . We shall sometimes also em
ploy the notation

dĜ I

dq̂0dq̂2d cosu
5I ~ q̂0 ,q̂2,cosu!, I 5A,B,C, ~2.4!

with a corresponding notation for the once, twice and thr
integrated forms. The polar angleq and the azimuthal angle
w define the orientation of the polarization vectorPW in the
helicity system as drawn in Fig. 1. Finally,P5uPW u is the
magnitude of the polarization of theLb .

In Eq. ~2.2! we have chosen the set of phase space v
ables (q̂0 ,q̂2,cosu!. One could have equally well chosen th
set (q̂0 ,q̂2,y52El /mb) whereEl denotes the energy of th
lepton. Using the relation

y52 p̂ cosu1q̂0 ~2.5!

one has
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dĜ

dq̂0dq̂2dy
52 p̂

dĜ

dq̂0dq̂2d cosu
~2.6!

where p̂5Aq̂0
22q̂2. However, the choice of variable

(q̂0 ,q̂2,cosu) has technical advantages when calculating
O(1/mb

2) contributions to the rate expressions. This can
seen as follows. The absorptive parts of the OPE expan
give rise to higher order derivatives of thed function, of the
form

d (n)S q̂02
1

2
~12r1q̂2! D ~2.7!

wherer5mc
2/mb

2 . When doing theq0 integration the deriva-
tives of thed function can be shifted to the integrand usin
partial integration, plus possible surface term contributio
When using the (q̂0 ,q̂2,cosu) set of phase-space variable
the surface term contributions are identically zero@15#,
whereas there are nonvanishing surface term contribution
(q̂0 ,q̂2,y) phase space. In particular formlÞ0 the surface
term contributions can become technically quite involved
the latter case and lead to spurious singularities which h
to be treated with care@16#. Thus, when using the
(q̂0 ,q̂2,cosu) set of variables theq̂0 integration can easily be
done.

Next we turn to the remainingq̂2 and cosu integrations. It
turns out that the cosu dependence of the unpolarized ra
function A(q̂2,cosu) and the polarized rate function
B(q̂2,cosu),C(q̂2,cosu) is particularly simple in system 2
and can easily be integrated. The cosu dependence is so
simple in this system since it is determined by bilinear for
of the matrix elements of the Wignerdmm8

1 (u) function. The
requisite cosu integrations can easily be done and one h
@15#

dĜA

dq̂2
54p̂@22q̂41q̂2~11r!1~12r!2#~12Kb! ~2.8!

dĜB

dq̂2
58p̂2~11«b!~2q̂21r21!2KbS 4q̂61

2

3
q̂4

26q̂4r1
8

3
q̂2~12r!22~12r!3D ~2.9!

FIG. 1. Helicity coordinate system defining the polar angleq
and the azimuthal anglew. The decay plane is in the (x,z) plane.
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TABLE I. Values of spin independent reduced ratesGAªA and spin dependent ratesGBi
ªBi andGCi

ªCi in the helicity systemsi 51,2,3 for different values of the mass ratior5mc
2/mb

2 . Also shown are
asymmetry parametersa i andg i . In brackets are shown the changes induced by the inclusion ofO(1/mb

2)
contributions corresponding to the valuesKb50.01 @16,11# and«b52

2
3 Kb @12#.

r 0.081 0.091 0.101 0

A 0.554(12Kb) 0.516(12Kb) 0.481(12Kb) 12Kb

B1a 20.147(11«b2Kb) 20.134(11«b2Kb) 20.122(11«b2Kb) 2
1
3 (11«b2Kb)

C1a 0.413(11«b2Kb) 0.386(11«b2Kb) 0.360(11«b2Kb) 8p

35
(11«b2Kb)

a1a 20.265(11«b) 20.259(11«b) 20.253(11«b) 2
1
3 (11«b)

g1a 0.586(11«b) 0.587(11«b) 0.589(11«b) 2
2p2

35
(11«b)

B2a 20.231(11«b) 20.219(11«b) 20.207(11«b) 2
1
3 (11«b)2

5
9 Kb

10.397Kb 10.383Kb 10.368Kb

~10.005! ~10.005! ~10.005!

C2a 20.382(11«b) 20.355(11«b) 20.329(11«b) 2
8p

35
(11«b)1

8p

21
Kb

10.446Kb 10.405Kb 10.369Kb

~10.007! ~10.006! ~10.006!

a2a 20.418 20.424 20.430 2
1
3 (11«b)2

8
9 Kb

~10.006! ~10.006! ~10.006!

g2a 20.542 20.540 20.538 2
2p2

35
(11«b)1

4p2

105
Kb

~10.004! ~10.004! ~10.004!

B3a A(11«b) A(11«b) A(11«b) 11«b2Kb

C3a 20.898Kb 20.827Kb 20.761Kb 2
64p

105
Kb

a3a 11«b 11«b 11«b 11«b

g3a 21.274Kb 21.258Kb 21.243Kb 2
16p2

105
Kb
ue
f

l-

e

ted;
ap-

0

dĜC

dq̂2
53p p̂Aq̂2S ~11«b!~ q̂21r21!

1
2

3
Kb~ q̂22r11! D ~2.10!

wherep̂5 1
2
Aq̂422q̂2(11r)1(12r)2, Kb is the mean ki-

netic energy of the heavy quark in theLb baryon and«b is a
spin dependent forward matrix element on theLb . They are
defined by@9#

Kb52
1

2MB
K Lb~v !U b̄~ iD !2

2mb
2

bULb~v !L
spin aver.

,

^Lb~v !ub̄gmg5buLb~v !&5~11«b!ūgmg5u. ~2.11!

We will use in the numerical evaluations below the val
Kb50.01, following from the QCD sum rule calculation o
@11#. The parameter«b will be taken to saturate the mode
independent inequality«b<2 2

3 Kb @12#. As discussed in this
reference, this inequality is saturated if certain double ins
01402
r-

tions of the chromomagnetic operator can be neglec
QCD sum rule calculations indicate that this is a good
proximation.

The final q̂2 integration has to be done in the limits

<q̂2<(12Ar)2. The integration is simple forA(q̂2) and

B(q̂2), but the integration ofC(q̂2) leads to hypergeometric

functions because of the extra square root factorAq̂2. One
obtains

ĜA5~128r18r32r4212r2 logr!~12Kb! ~2.12!

ĜB2
5~11«b!S 2

1

3
230r22

40

3
r31r41

32

3
rAr~113r! D

1KbF2
5

9
240r2

110

3
r21

64

9
r32r41

32

3
Ar

3S 11
17

3
r D G ~2.13!
1-3
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J. G. KÖRNER AND D. PIRJOL PHYSICAL REVIEW D60 014021
ĜC2
5

3p2

32 H ~11«b!F ~12Ar!6~11Ar!2F1S 2
1

2
,
5

2
;4;zD

22~12Ar!5~11Ar!2
2F1S 2

1

2
,
3

2
;3;zD G

1
2

3
KbF ~12Ar!6~11Ar!2F1S 2

1

2
,
5

2
;4;zD

12~12Ar!5~11Ar!2
2F1S 2

1

2
,
3

2
;3;zD G J ~2.14!

where the hypergeometric function in Eq.~2.14! is defined as
usual by

2F1~a,b;c;z!5
G~c!

G~b!G~c2b!
E

0

1

dx xb21~12x!c2b21

3~12zx!2a ~2.15!

and its argument is

z5S 12Ar

11Ar
D 2

. ~2.16!

In Table I we list the values ofĜAªA,ĜB2
ªB2 and

ĜC2
ªC2 for four different values of the mass ratior, includ-

ing the nonperturbativeO(1/mb
2) corrections. In the bracket

we list the numerical value of theO(1/mb
2) corrections,

which are very small and amount to 1–2% of the tree-le
contribution. The three choices of the mass ratio squarer
5mc

2/mb
2 in Table I are taken from the discussion in@5#. The

valuer50 is relevant for theb→u transitions and also rel
evant for a comparison with the well-known results inm
decay.

Next we calculate the reduced rate functions in system
It is clear that the unpolarized rate functionA is the same in
both systems, and that the polarized rate functionsB andC in
the two systems are related to each other. In fact, it is
difficult to see that the relation between the two sets of
larized rate functions is given by

S B1a~ q̂2,cosu!

C1a~ q̂2,cosu!
D 5S cosu12 sinu12

2sinu12 cosu12
D S B2a~ q̂2,cosu!

C2a~ q̂2,cosu!
D

~2.17!

whereu12 is the~polar! angle betweenpW X andpW l . This angle
can be related toq̂2 and cosu by

cosu125~ q̂0 cosu2 p̂!/~2Êe!. ~2.18!

From Eq.~2.17! it is evident that the cosu dependence of the
polarized rate functions in system 1 is somewhat more c
plicated than that in system 2.

We do not pursue this possible line of approach any f
ther here but compute the rate functionsA, B1 and C1 di-
01402
l
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rectly in the kinematic configuration at hand. Expressed
terms of the hadronic and leptonic tensorsWmn , Lmn , the
rate functions are given by

A1P~B1cosq1C1sinq cosw!512LmnWmn dxdydq̂2.
~2.19!

This differential rate is evaluated most conveniently by in
grating first overq̂2 within the limits (0,xy) and subse-
quently over the neutrino energyx5(12r2y,x0), with x0
512r/(12y). Let us first list the results of these two inte
grations which agree with the corresponding results obtai
in @16#. One has

dĜA

dy
52y2x0

2@23y161x0~y23!#1Kb

4y3

~12y!2

3S 2~y22!y22x0~y223y15!1x0
2~2y228y115!

2
2

3
x0

3~y225y110! D ~2.20!

dĜB1

dy
52~11«b!y2x0

2@23y1x0~y11!#1Kb

4y3

~12y!2

3S 2y222x0y~y24!1x0
2~2y226y25!

2
2

3
x0

3~y222y25! D ~2.21!

dĜC1

dy
5~11«b!

3

2
py2A12yx0

2~22x0!1Kb

p

8

y3

~12y!3/2

3@16y18x0~y210!16x0
2~25y120!

15x0
3~3y210!#. ~2.22!

While the calculation of the rate functionsA(y) and
B1(y) is rather straightforward one encounters certain sin
lar expressions in the case ofC1(y). In @16# a method for
dealing with these problems has been proposed~see also
@17#!. In the following we present an alternative treatme
which offers perhaps a better perspective on the phys
origin of these singularities. After inserting the OPE res
for the hadronic tensor into the rate formula~2.19! one ob-
tains

C1~x,y,q̂2!5sinuen@Fd~ q̂22q̂0
2!1Gd8~ q̂22q̂0

2!

1Hd9~ q̂22q̂0
2!#, ~2.23!

with q̂0
25x1y1r21 and cosuen5122q̂2/(xy). The integra-

tion over q̂2 can be performed straightforwardly with th
result
1-4
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C1~x,y!5u~xy2q̂0
2!u~ q̂0

2!H sinuen~F2G81H9!2
2

xy

cosuen

sinuen
~G22H8!2

4

x2y2

1

sin3uen

HJ
q̂25q̂

0
2

2
1

~12y!2
@sinuenH# q̂25xyd8~x2x0!1@sinuenH# q̂250d8~x211r1y!

1
1

12y H sinuen~G2H8!2
2

xy

cosuen

sinuen
HJ

q̂25xy

d~x2x0!2H sinuen~G2H8!2
2

xy

cosuen

sinuen
HJ

q̂250

3d~x211r1y!. ~2.24!
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The primes onG,H denote differentiation with respect toq̂2.
The difficulty with this expression is that the last two surfa
terms are divergent, since sinuen50 for q̂250 and q̂25xy.
Therefore the result~2.24! is ill defined as it stands and mu
be defined in some way. We choose to do this by imposin
cut off « on the angleuen such thatuen5(«,p2«).

Such a cut off is implicit in any experimental extraction
the rate functionC. At uen50 andp the decay products ar
collinear in the decay rest frame and consequently the or
tation of the decay plane is undetermined. ThereforeC is
practically undefined at this kinematic point, which has to
excluded from the analysis.

In our calculation this cutoff is implemented by integra
ing only over q̂2 within the limits q̂min

2 5xy«2/4, q̂max
2 5xy(1

2«2/4). The limits on the neutrino energyx will have to be
modified too, as follows:

xmin8 5
12y2r

12y«2/4
5~12y2r!1y~12r2y!

1

4
«21O~«4!

~2.25!

xmax8 5
12y2r

~12y!1y«2/4
5x02

y~12r2y!

~12y!2

1

4
«21O~«4!.

~2.26!

With this regularization the boundary terms in Eq.~2.24!
give poles of the form 1/«. These poles are cancelled aft
integration overx by similar singular terms arising from th
last term in the first line of Eq.~2.24!. TheH term is singular
at the end points of thex interval, as can be seen explicitl
from the expression for sinuen

@sinuen# q̂25q̂
0
25

2A12y

xy
A~x02x!~x211r1y!.

~2.27!

Integration of theH term in Eq. ~2.24! over x within the
limits ~2.25!, ~2.26! will give, as mentioned, 1/« poles which
exactly cancel those present in the boundary terms. Th
fore the correct result forC1(y) is obtained, in the limit of a
vanishingly small cut off«!1, by simply ignoring the sur-
face terms and evaluating the integral overx of the first line
01402
a
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e

e-

in Eq. ~2.24! in a minimal subtraction prescription, whic
subtracts the 1/« poles arising from the modified integratio
limits ~2.25!, ~2.26!.

The y integration has to be done in the limits 0<y<1
2r. Of relevance are only the spin dependent rate functi
dGB1

and dGC1
since the result of integrating the spin ind

pendent piece dGA can be checked to reproduce the res
Eq. ~2.12!. One obtains

ĜB1
5~11«b2Kb!S 2

1

3
14r112r22

44

3
r32r4

1~1218r!r2 logr D ~2.28!

ĜC1
5

8p

35
~11«b2Kb!@127r135r2135r32r5/2

3~5618r!#. ~2.29!

whereĜB1
ªB1 andĜC1

ªC1. In Table I we list the numeri-

cal values for the reduced spin dependent rate functi

ĜB1
ªB1 and ĜC1

ªC1 for the same four values ofr

5mc
2/mb

2 . The discussion of the numerical results will b
deferred to until after the corresponding results in system
are written down.

The spin dependent rate functions in system 3 can
obtained using similar methods. The simplest way to tr
this case is by exchanging the electron and neutrino m
menta in the lepton tensorLmn . We obtain the following
results:

dĜB3

dx
5~11«b!S 12r2

12x
212x3224x2r112x2212xr2

212r2D1KbS 8~12y0!2

12x
212y0

2112y0~21r!

220x3112xr2116r2212r212D ~2.30!
1-5
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dĜC3

dx
52Kb4px2y0

2A12x. ~2.31!

In these expressionsy0512r/(12x) denotes the maximum
value taken by the electron energy at a given neutrino ene
x.

The integrated angular rate functions in system 3 can
easily obtained by integration in thex interval @0,12r#.
They are given by

ĜB3
5~11«b2Kb!~128r18r32r4212r2 logr!

~2.32!

ĜC3
52Kb

64p

105
@1214r235r21r3/2~35114r2r2!#,

~2.33!

where againĜB3
ªB3 and ĜC3

ªC3.

It is noteworthy that the polar analyzing powera in sys-
tem 3 takes the maximal value of 1 for the leading order f
quark decay contribution. This has been made manifes
Table I by rewriting the angular rateB3a in terms of the
unpolarized rate functionA dropping aO(1/mb

4) contribu-
tion. The fact thata51 can be understood by rewriting th
(V2A)(V2A) form of the matrix element into a (S
1P)(S2P) form with the help of the Fierz transformatio
of the second type@18#. One obtains, in this way,

@ ū~c!gm~12g5!u~b!#@ ū~ l 2!gm~12g5!v~ n̄ !#

52@ ū~c!~11g5!CūT~ l 2!#@vT~ n̄ !C21~12g5!u~b!#

52@ ū~c!~11g5!u~ l 2!#@ v̄~ n̄ !~12g5!u~b!# ~2.34!

with C the charge conjugation matrix. In the Fier
rearranged form it is clear that theb spin is aligned with the
spin direction of then̄ which points along its momentum
direction. Thus the polar angle dependence in system
given by 11cosq, corresponding to a maximal polar an
lyzing power in this system. Note that this argument is ind
pendent of the value of the charm quark mass, such tha
maximal value of this asymmetry parameter is obtained
any value of the mass ratior. This can be seen directly from
comparing Eqs.~2.12! and~2.32! where ther-dependent co-
efficients of the free quark decay contribution~and theKb
contribution for that matter! can be seen to be equal to on
another.

As mentioned above, the positivity of the decay rate
any values of (q,w) requires the asymmetry parameterB3 to
be smaller than or equal to 1. From this and the result~2.32!
for this parameter one can obtain the constraint«b<0 on the
nonperturbative matrix element«b to leading order inas .
This is compatible with, although less stringent than,
inequality «b<2 2

3 Kb obtained in@12# from a zero recoil
sum rule.

The azimuthal asymmetry vanishes at leading order
1/mb since the polar asymmetry takes the maximal value o
in system 3. This can be understood by noting that the p
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tivity of the differential rate requires the combinationuBu2

1uCu2 cos2 f to be smaller than the unity for anyf. This
gives thatC must vanish ifB51.

When comparing the results of systems 1 and 2 one n
the equality of the free quark decay~FQD! angular rate func-
tions B15B2 and C152C2 when r50, i.e. the case rel-
evant forb→u transitions. This can be seen to be a con
quence of the fact that theu quark and the electron are Fier
symmetric partners in the decay. In the case of mass de
eracy as for the case discussed here, the FQD decay d
butions are symmetric under exchange of the two and t
are the same in systems 1 and 2. The minus sign in
relation C152C2 comes about because one is compar
system 1a with system 2b when exchanging the Fierz par
ners.

Up to now we have given results for the fully integrate
rate coefficientsBi andCi ( i 51,2,3) for the processb→c

1e21 n̄e apart from the rate functionA which is the same in
all systems. In Table II we give the corresponding coe
cients for the processesb̄→ c̄1e11ne , c→s1e11ne and
c̄→ s̄1e21 n̄e . They can be obtained from theCP invari-
ance of the interaction and the symmetry under the excha
e2→ne when going fromb→c to c→s in the integrated
rate formula or by direct calculation. In the latter case
have used a generalV1xA interaction in order to obtain a
nonvanishing result for the ‘‘C3a’ ’ entries. In addition,
when going fromb→c to c→s andc̄→ s̄ one has to replace
r5mc

2/mb
2 by r5ms

2/mc
2 .

As concerns the numerical values of the polarization
pendent contributions forr50 we want to draw an analog
to muon decay. For this purpose we arrange the decay p
ucts in muon decay in the same weak isospin order as in
b→u case. One has

~2.35!

where we have drawn the braces connecting the Fierz p
ners for added emphasis. From comparing the two decays
valueB15B2521/3 in Table I should be well familiar from
m decay, when the electron mass is neglected. The re
C152C258p/35 has not been widely publicized inm de-
cay for the obvious reason that its determination requires

TABLE II. Fully integrated angular coefficientsBi and Ci ( i

51,2,3) for the processesb→c1e21 n̄e , b̄→ c̄1e11ne , c→s

1e11ne and c̄→ s̄1e21 n̄e for the three coordinate systems 1a,
2a and 3a defined in Eq.~2.1!. Results for systems 1b, 2b and 3b
can be obtained usingBib5Bia andCib52Cia .

1a 2a 3a 1a 2a 3a

b→c1e21 n̄e
B1a B2a B3a C1a C2a C3a

b̄→ c̄1e11ne
2B1a 2B2a 2B3a 2C1a 2C2a 2C3a

c→s1e11ne B3a B2a B1a 2C3a 2C2a 2C1a

c̄→ s̄1e21 n̄e
2B3a 2B2a 2B1a C3a C2a C1a
1-6
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azimuthal measurement which cannot be done inm decay
because of the two undetected neutrinos in the final stat

Instead of analyzing the full (q,w) two-fold angular de-
cay distribution one can reduce the two-fold distribution
single angle decay distributions by doing either theq inte-
gration or thew integration. One obtains

dĜ

d cosq
}11aPP cosq ~2.36!

and

dĜ

dw
}11gPP cosw ~2.37!

where, in terms of the angular coefficientsA,B and C, the
polar and azimuthal asymmetry parameters are given byaP
5B/A andgP5pC/(4A), respectively. Note that the asym
metry parameters lie in the following intervals:

21<aP<1 and

2
3p2

32A2
<gP<

3p2

32A2
S 3p2

32A2
.0.654D .

~2.38!

Table I also contains the numerical values of the asymm
parametersaP andgP .

III. SPIN-MOMENTUM CORRELATIONS IN THE
TRANSVERSITY SYSTEM

In the transversity coordinate systems the event plane
the (x,y) plane. The orientation of the polarization vectorPW

is specified by the polar angleq̃ and w̃ as drawn in Fig. 2.
The relation between the transversity angles (q̃,w̃) and the
helicity angles (q,w) can be easily seen to be given by

cosq̃5sinq sinw ~3.1!

sinq̃ sinw̃5sinq cosw ~3.2!

sinq̃ cosw̃5cosq. ~3.3!

FIG. 2. Transversity coordinate system defining the polar an

q̃ and the azimuthal anglew̃. The decay plane is in the (x,y) plane.
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Correspondingly one has the two-fold angular decay dis
bution

dĜ

d cosq̃dw̃
5Gb@A1P sinq̃~B cosw̃1C sinw̃ !# ~3.4!

after internal three-fold phase space integration. We shall
discuss the two-fold angular decay distribution in the tra
versity system any further but immediately turn to the sin
angle decay distributions. Again there are the two possib
ties of integrations overw̃ or over cosq̃.

Integrating Eq.~3.4! over w̃ leads to a flat cosq̃ distribu-
tion while integrating over cosq̃ one obtains

dĜ

d cosw̃
}11g̃P cos~ w̃2b! ~3.5!

where

g̃P5
AB21C2

4A
p ~3.6!

and the phase angleb is given by

b5arcsin
C

AB21C2
. ~3.7!

In Table III we list the values of the asymmetry parame
g̃P and the phase angleb for two typical values ofr
5mc

2/mb
2 in systems 1, 2 and 3.

IV. CONCLUSIONS

We presented in this paper a study of the spin-momen
correlations inLb decays, including nonperturbative corre
tions of order 1/mb

2 . Numerically the nonperturbative correc
tions to the various inclusive asymmetries are rather sm
of the order of or smaller than 1%. This is very similar to t
situation encountered for radiative QCD corrections to sp
momentum correlations, which were computed in@13#. They

le

TABLE III. Transversity system asymmetries in systemi
51,2,3 for two typical values of the quark mass ratior5mc

2/mb
2 .

The nonperturbative 1/mb
2 corrections have been neglected.

r 0.091 0

g̃P1
0.622 0.622

b1 1.237 1.136

g̃P2
0.635 0.622

b2 21.018 21.136

g̃P3
0.785 0.785

b3 0 0
1-7
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were found to be smaller than 1% in all cases of pract
interest, due to a cancellation in the ratio of polarized a
unpolarized decay rates respectively. One concludes th
fore that the free-quark decay model can be expected to
accurate results for the asymmetries considered. The re
of our paper could be expected to be useful in measuring
polarization ofLb produced ine1e2 annihilation through
their semileptonic decay products, complementing the m
ods already proposed in@4,5#.
.
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