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Spin-momentum correlations in inclusive semileptonic decays of polarized , baryons
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We consider spin-momentum correlations between the spin of the bottom bagyamd the momenta of its
decay products in its inclusive semileptonic decay. We define several polar and azimuthal spin-momentum
correlation measures in different event coordinate systems. The values of the spin-momentum correlation
measures are calculated up(tlﬁl/mﬁ) using the standard OPE und HQET methods. Some of the measures
turn out to be sufficiently large to make them good candidates for a determination of the polarization gf the
in e.g.Z decays[S0556-282(99)07313-0

PACS numbegps): 13.88+¢, 13.30.Ce, 13.38.Dg

I. INTRODUCTION throughout and define various polarization measures which
we compute up td?(llmg) in the heavy mass expansion

A few years ago the ALEPH Collaboration measured theusing the standard operator product expangiORPE and
polarization of bottom baryond ,’s originating fromZ de-  heavy quark effective theorfHQET) approach to inclusive
cays[1]. The ALEPH Collaboration quoted a value for the semileptonic decays developed[ii-10. The O(«s) radia-
polarization ofp:_o_zgjg:%io_og which is significantly tive corrections to some of these asymmetry parameters
smaller than what would be expected theoretically in the(B1.B3) have been previously computgi3, 14.
standard mode[ P=—(0.60-0.70) [2]. Recently a new The analysis of the spin-momentum correlation measures
measurement of the polarization has become available frott Sec. Il makes use of so-called helicity systems, in which
the OPAL Collaboration[3]. They obtain the resulP= the plane spanned by the three final state momegtap,

—0.56t8€gi 0.09 which is in agreement with theoretical ex- andﬁv (event plangis in the (x,z) plane. The orientation of

pectations. the polarization vectoP is specified by two anglesd, )

The measurement of the ALEPH Collaboration is basedqr which we compute the angular decay distributions. In
on the observation of Bonvicini and Rand@dl] that, with  gec. |11 we do the same exercise for so-called transversity

negativgly po_larized\b’s, the spectra of the decay_ electrons systems, where the event plane defines thg)( coordinate
and antineutrinos become harder and softer relative to unpgsjane.

larized decay, respectively, and that the fragmentation de-
pendence ofb— A, practically drops out in the ratiy
=(E)/{E;). In a previous paper we explored possible im-
provements on such spectra related polarization measures
[5]. A promising candidate measure is, among others, the As we are analyzing the decag,— X.(px)+!"(p)

ratio y2=<E|2>/<E%>, a measurement of which may help to +,(p,) in the rest frame of the\,, the three-momenta

reduce the errors in the original ALEPH analysis. Px.p; andp, lie in a plane — the event plane. It is then a
The method used by the OPAL Collaboratif3] is to  matter of choice how to orient the event coordinate system
compare the observed distribution of the rd0E, against  relative to the event plane and thereby relative to the polar-
a simulation of this ratio using 2TseTMonte Carlo event jzation vector of theA,. In this section we will discuss
generator. It is perhaps worth mentioning that the distribuso-called helicity systems in which tizeaxis is in the event
tion of this ratio is sensitive to the precise shape of bhe plane. It is then convenient to define three coordinate sys-
— Ay, fragmentation functiof5], which is not the case with tems according to the orientation of th@xis. Also one has
the ratiosyn=<E,“>/<E%>. A modified method was proposed to specify the orientation of theaxis for which one has two
in [5] which avoids this problem, wherein the fragmentationpossible choices in each system. We thus define our coordi-
dependence is eliminated between the two rafl6g/E,)  nate systems as
and(E,/E)). R - -
In this paper we explore possibilities to determine the ~ System1: plz, a: (p,)=0 b: (px)x=0
polarization of theA , through angular spin-momentum cor- . . .
relations of the spin of thd , and the momenta of its decay system 2: pylz, a: (p)x=0 b: (p,)=0
products in its inclusive semileptonic decdyse results of a
preliminary version of the present work have been presented system 3: p;iz, a: (px)x=0 b: (p)x=0.
in [6]). We work in the rest frame of the decayiny, (2.1

Il. SPIN-MOMENTUM CORRELATIONS
IN THE HELICITY SYSTEM

In this paper we shall always work in systems 1a, 2a and 3a

*Present address: Floyd R. Newman Laboratory of Nuclear Studsuch thatﬁ;, 5| andﬁx, respectively, have positivecom-
ies, Cornell University, Ithaca, New York 14853. ponents. When using systems 1b, 2b and 3b the sign of the
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coefficientB in the angular decay distribution defined in Eq. T
(2.2 below remains unchanged while the sign of the coeffi- R
cientC changes as can be seen by making the transformation i
COS@—COS(p+ )= —COS. 9

It should be clear that the choice of thaxis in the event i
plane is optional. Other possible choices would be to take the

directions bisecting any two of the three momenta directions J
Px.Pi,P,, etc. The above choice has been made for experi- : 27
mental convenience. -
In generic form the five-fold decay distributiddifferen-
il 2
tial in qo,q°,cosf,cos? and ¢) reads FIG. 1. Helicity coordinate system defining the polar angle
and the azimuthal angle. The decay plane is in the(z) plane.

dr . .

dgodg?d coshd cosdde _ dl: =P Adl“ (2.6)
. . dgodg?dy dgodg?d cosé
1 dr' s dl'g R
“an b dG,dq2d cost +P dGde2d cos&bos{} where p=+/g3—q? However, the choice of variables
R (ao,az,COSO) has technical advantages when calculating the
dr'c ) O(1/m?) contributions to the rate expressions. This can be
+da dq2d cosd sin cose (22 seen as follows. The absorptive parts of the OPE expansion
0 give rise to higher order derivatives of tié&function, of the
form
where
~ 1 o
b= 5 2.3
192m wherep=m2/mZ . When doing the, integration the deriva-

_ _ _ tives of theé function can be shifted to the integrand using
is the reference rate of the decay into three massless finghtial integration, plus possible surface term contributions.
particles. Other symbols appearing in E2.2) are defined as When using theci 612 cosf) set of phase-space variables
follows. The energy and the invariant mass squared of thrtnhe surface termo 'cor’1tributions are identically zeft5] '

virtual bos",” are denoted by a.n_quz respectively, V\A"Eh whereas there are nonvanishing surface term contributions in
corresgondmg reduced quantitiego=do/m, and g (0o,9%y) phase space. In particular fam #0 the surface
=g?/m; . The polar angle of the leptdn inthe (~,») rest  term contributions can become technically quite involved in
frame relative to the direction qfy is denoted byd. There is  the latter case and lead to spurious singularities which have
one unpolarized reduced rate functiondand two polarized 10 be treated with caref16]. Thus, when using the
rate functions B and d'c. We shall sometimes also em- 9o.q°, cost) set of variables th integration can easily be

(
ploy the notation done. -
Next we turn to the remaining® and co9 integrations. It

turns out that the co8 dependence of the unpolarized rate
=1(q,9%,cosh), |1=A,B,C, (2.4 function A(g%cosf) and the polarized rate functions
B(qg?,cos#),C(q?,cosh) is particularly simple in system 2

and can easily be integrated. The @dodependence is so

with a corresponding notation for the once, twice and thricegimpe in this system since it is determined by bilinear forms
integrated forms. The polar angfeand the azimuthal angle of the matrix elements of the Wignelﬁ]m,(a) function. The

¢ define the orientation of the polarization vec!%rin the  requisite co® integrations can easily be done and one has
helicity system as drawn in Fig. 1. Finallp=|P| is the [15]
magnitude of the polarization of thi,, .

dr,
daodg?d cosé

In Eq. (2.2) we have chosen the set of phase space vari- de_ . ~g | A2 )
ables f15,9%,cos6). One could have equally well chosen the quz_ 4L =297+ q%(1+p)+(1=p)"J(1=Kp) (2.9
set @o,0%y=2E,/my) whereE, denotes the energy of the
lepton. Using the relation dig - - n n
F:8p2(1+8b)(2q2+p_1)_|<b 49°+ 39"
y=—p cosf+qp (2.5 a
~6%+ 532(1-p) 21 p)° 2.9
one has P73 P P '
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TABLE I. Values of spin independent reduced ral&s=A and spin dependent raté‘s;gi :=B; and Fci
:=C; in the helicity systemg=1,2,3 for different values of the mass ratio= mﬁ/mﬁ. Also shown are
asymmetry parameteis; and y; . In brackets are shown the changes induced by the inclusi@d( bin?)
contributions corresponding to the valu€g=0.01[16,11] ande,= — %Kb [12].

p 0.081 0.091 0.101 0
A 0.554(1-Kp) 0.516(1-Ky) 0.481(1-Ky) 1-K,
Bia —0.147(l+ey—Kp) —0.134(1te,—Kp) —0.122(1ep—Ky) — 11+ ep—Kyp)

Cia 0.413(1+ep—Ky) 0.386(1+ &, —Kp) 0.360(1+ &, — Ky) 83_7;(1+3b_Kb)
a1y —0.265(1+ &) —0.259(1+ &) —0.253(1+ &) —3(1+ey)
2
Y1a 0.586(1+ &) 0.587(1+ &) 0.589(1+ &) _ %(1+8b)
Bsa —0.231(1+ &) —0.219(1+ &) —0.207(1+ &) —I(1+ep) - 2K,
+0.39%K,, +0.38%K, +0.36%,
(+0.005 (+0.005 (+0.005
8w 8w
c —0.382(1+ &) —0.355(1+ &) —0.329(1+ &) _o7 om
2a 35(1+8b)+ 21 Kb
+0.446K, +0.40%, +0.36%K,
(+0.007) (+0.008 (+0.006
aza -0.418 -0.424 —0.430 —3(1+ey) -2k,
(+0.006 (+0.008 (+0.006
272 472
y —0.542 —0.540 —0.538 _em o
2a 35 (1+8b)+ 105Kb
(+0.009 (+0.004 (+0.009
B3a A(l+8b) A(1+8b) A(l+8b) l+8b_Kb
Can —0.89,, ~0.82K, ~0.76K, _ 84T
105 P
C(3a 1+8b 1+8b 1+8b 1+8b
_ _ _ 1672
Y3a 1274<b 1258(b 1243<b - —K
105 P

ar .
fc= 37Tp\/?
dq

(1+ep)(Q%+p—1)

2 . .
proximation.
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tions of the chromomagnetic operator can be neglected;
QCD sum rule calculations indicate that this is a good ap-

+

2 A
§Kb(q2—p+ 1 (2.10

wherep=2g*—2G2(1+p) + (1—p)2, K,, is the mean ki-
netic energy of the heavy quark in thhg, baryon anc, is a
spin dependent forward matrix element on thg. They are
defined by[9]

The final g? integration has to be done in the limits 0
<g?<(1- Vp)? The integration is simple foA(q%) and
B(g?), but the integration o€(g?) leads to hypergeometric

functions because of the extra square root fa@fg. One
obtains

1 (iDY? Ta=(1-8p+8p°~p*~12%logp)(1-Kp) (2.1
Kp=—=—1{ Ay(v)|b bl Ay(v ,
b ZMB< b( ) ng b( )> .
spin aver.
. - [g,=(1 L agpr- 0 By h1es
(Ap(v)|by,¥sb|Ap(v))=(1+ep)uy,ysu. (2.11) B, = (1 ep)| =3 =307 p"+p"+ ZpVp(1+3p)
We will use in the numerical evaluations below the value 5 110 , 64 ., 32
K,=0.01, following from the QCD sum rule calculation of +Kp =g 40— —=p Tt gt ?‘/;
[11]. The parameteg,, will be taken to saturate the model-
independent inequality,< — 3K, [12]. As discussed in this x| 1+ 1_7 ) 2.13
reference, this inequality is saturated if certain double inser- 3F ’

014021-3




J. G. KCRNER AND D. PIRJOL PHYSICAL REVIEW D60 014021

15 rectly in the kinematic configuration at hand. Expressed in
(1= \p)®(1+ \p)oF4| — 51542 terms of the hadronic and leptonic tensa,,, L,,, the
rate functions are given by

'—p

(1+8b)

uvo

—2(1—p)%(1+p)2,F —E§32) ~
21 T o0y A+P(B;cosd+Cysind cose) =121, W** dxdydq?.
(2.19
2 6 1 5 .
+ §Kb{(1_ Vo o1+ ‘/;)ZFl( 5'5’4'2) This differential rate is evaluated most conveniently by inte-
grating first overg? within the limits (Oxy) and subse-
+2(1— \/—)5(1+ \/—)zzpl( 3,33;2) ] (2.14 guently over the neutrino energy=(1—p—Y,Xg), With X
2°2 =1-pl(1—y). Let us first list the results of these two inte-

grations which agree with the corresponding results obtained
where the hypergeometric function in Bg.14) is defined as  jn [16]. One has

usual by

dr 4y3
I'(c) . o — A 2y — 3y +6+xo(y—3)]+K
zFl(a’b;C;Z):—F(b)]"(c_b)J'O dXXb 1(1_X)c b-1 dy y 0[ y O(y )] b(l_y)2

X(1l—zx)~2 (2.15

X| = (y—2)y—2%o(y?—3y+5) +x5(2y?— 8y + 15)

and its argument is

—Ex3( 2—5y+10) (2.20
2 3%y y .
1-\p
z= \/_ . (2.19
1+ dF , 4y3
. - —2(1+s )Y —3y+Xo(y+1)]+K
In Table | we list the values of x:=A,I'g =B, and dy ° 0 ° b(1—y)2

fc :=C, for four different values of the mass ratio includ-
2

ing the nonperturbativ®(1/m2) corrections. In the brackets
we list the numerical value of thé)(llmﬁ) corrections,
which are very small and amount to 1-2% of the tree-level _ Ex3(y2—2y—5)) 2.21)
contribution. The three choices of the mass ratio squared 0 )
=mZ/m? in Table | are taken from the discussion[Bi. The

X

—y2—2xXoy(y—4) +x5(2y*>—6y—5)

valuep=0 is relevant for théo—u transitions and also rel- fc 3 - 3
evant for a comparison with the well-known results 4n _1:(1+8b)_ my? /1—yxg(2—x0)+Kb—y—
d 2 8 1— 3/2
decay. (1-vy)
Next we calculate the reduced rate functions in system 1. 5
It is clear that the unpolarized rate functiéris the same in X[16y+8xq(y—10) +6x5(— 5y +20)
both systems, and that the polarized rate funct®asdC in n 5X8(3y_ 10)]. (2.22

the two systems are related to each other. In fact, it is not
difficult to see that the relation between the two sets of po-

larized rate functions is given by While the calculation of the rate function&(y) and

B4 (y) is rather straightforward one encounters certain singu-
5 lar expressions in the case 6f;(y). In [16] a method for
B2a(Q", cos0) dealing with these problems has been propo&s also
C,a(% cosh) [17]). In the following we present an alternative treatment,
(2.17  Wwhich offers perhaps a better perspective on the physical

origin of these singularities. After inserting the OPE result
whered,, is the(polay angle betweepy andp, . This angle for the hadronic tensor into the rate formy219 one ob-

B1a(G%,cosb) cosfy, sinéy,
| —sing, cosby,

C1a(G%,cos0)

can be related tg? and cos by tains
CosOu,= (8 CoSO— P)I(2E,). 218 C1(x,y,q%) =sinbe,[F 5(4°—a3) + G (9°— q)
1 N2 N2
From Eq.(2.17) it is evident that the cog dependence of the THI(@ o), (223
polarized rate functions in system 1 is somewhat more com- ~
plicated than that in system 2. with g5= X+y+p 1 and cod,,=1-2q7(xy). The integra-
We do not pursue this possible line of approach any furtion over g2 can be performed straightforwardly with the

ther here but compute the rate functiohs B; and C; di- result

014021-4
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Ca(x,Y)=6(xy—03)6(q3){ Sin e, (F—G'+H") Zcosee”(e 2H") * Ly
X,¥) = 6(xy— sin @, (F— —-——— - - =
i Y~ ) %o ¢ Xy sinfe, X%y? Si0g, |-y -
92=qg
—(1 )z[sinHeVH]az=xy5’(x—xo)+[sinOeVH]azzoé’(x—1+p+y)
-y
N 1 6 (G—H’ 2 coseeyH s 6. (G—H’ 2cosee,,H
Ty | SN0eG—H) = L G B(X=X0)=| SN0, (G—H) = S0 g H |
q2=xy q2=0
X 6(X—1+p+y). (2.29

The primes orG,H denote differentiation with respect &3

in Eq. (2.24 in a minimal subtraction prescription, which

The difficulty with this expression is that the last two surfacesubtracts the /poles arising from the modified integration

terms are divergent, since gig=0 for g?=0 andg?®=xy.

Therefore the resul2.24) is ill defined as it stands and must

limits (2.25), (2.26.
The y integration has to be done in the limitss¢<1

be defined in some way. We choose to do this by imposing a p- Of relevance are only the spin dependent rate functions

cut off ¢ on the angled,, such thatd,,=(e,7—¢).

dl“B1 and d“c1 since the result of integrating the spin inde-

Such a cut off is implicit in any experimental extraction of pendent piece Id, can be checked to reproduce the result

the rate functiorC. At 6,,=0 and the decay products are

Eqg. (2.12. One obtains

collinear in the decay rest frame and consequently the orien-

tation of the decay plane is undetermined. TherefOrés

practically undefined at this kinematic point, which has to be

excluded from the analysis.

In our calculation this cutoff is implemented by integrat-

ing only overg? within the limits g, =xys%4, 92 ,=xy(1
—&%/4). The limits on the neutrino energywill have to be
modified too, as follows:

, _17y=p 1, 4
min:mz(l—y—PHY(l—P—WZs +0(e”)
(2.29
, l1-y-p y(1-p—y) 1
Xmax™ o, x0T T T 5 ZSZ+O(£4).
(1-y)+ye/4 (1-y)
(2.26

With this regularization the boundary terms in E@-24

give poles of the form X. These poles are cancelled after

integration overwx by similar singular terms arising from the
last term in the first line of Eq2.24). TheH term is singular
at the end points of thg interval, as can be seen explicitly
from the expression for sif,

21—y

Xy

V(Xo=X)(X—1+p+y).
(2.2

[sin Gey]az:agz

Integration of theH term in Eq.(2.24) over x within the
limits (2.25), (2.26) will give, as mentioned, %/ poles which

exactly cancel those present in the boundary terms. There-

fore the correct result fo€4(y) is obtained, in the limit of a
vanishingly small cut offe<1, by simply ignoring the sur-
face terms and evaluating the integral oxesf the first line

. 1 , 44 .,
Ig,=(1+ep=Kp)| =3 +4p+120"— 5p°—p

+(12+8p)p? |ng) (2.28

[ :8_77 _ _ 2 3_ 52
Fcl 35(1+8b Kp)[1—7p+350°+350°—p

X (56+8p)]. (2.29

wheref“BlzzBl andfclzzcl. In Table | we list the numeri-
cal values for the reduced spin dependent rate functions
fBl:=Bl and fc1==Cl for the same four values op

=mZ/m¢. The discussion of the numerical results will be
deferred to until after the corresponding results in system 3
are written down.

The spin dependent rate functions in system 3 can be
obtained using similar methods. The simplest way to treat
this case is by exchanging the electron and neutrino mo-
menta in the lepton tensdr,,. We obtain the following
results:

dl'g 12p2
_S_ 13 242 2_ 2
ix (1+ep) T—x 12x°—24x“p+ 12X“— 12xXp
8(1-yo)?
—12p2)+Kb(T—12y3+12y0<2+p>

—203+ 12xp2+ 16p2— 12p— 12 (2.30
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TABLE II. Fully integrated angular coefficient8; and C; (i
=—Kb47-rX2y(2) /_1_X_ (2.30) =1,2,3) for trf gocessd_sec+e’+ve, b—c+e"+v,, c—s
dx +e*+ v, andc—s+e” + v, for the three coordinate systema,1

Inth . —1— (1 d h . 2a and 3 defined in Eq(2.1). Results for systemsh], 2b and J
n these expressiong=1-p/(1—x) denotes the maximum . e obtained usinBy, =B;, andCyp= —Ci, .

value taken by the electron energy at a given neutrino energy

X. _ o la 2a 3a la 2a 3a
The integrated angular rate functions in system 3 can be

easily obtained by integration in the interval [0,1-p]. b—c+e +v, Bia Baa Bz Cia  Coa  Cag
They are given by b—c+e"+v, —Bia —Bza —Bza —Cia —Coa —Cgy
c—ste’ + Ve Bsa B2a Bia —Cza —Cya —Cyq
coste” +;e —Bsa —Baa —Bia Caa Coa Cia

dl'c,

F'g,=(1+ e Kp)(1-8p+8p°—p*~12p%log )
(2.32

- T b 3 ) tivity of the differential rate requires the combinatioB|?
Pe,=—Kpggl1— 140 =35+ p" 35+ 14— p9)].  +|C|2cod ¢ to be smaller than the unity for ang. This
(2.33 gives thatC must vanish ifB=1.
When comparing the results of systems 1 and 2 one notes

where agairf“Bszz B; and fc3==C3- the equality of the free quark decéyQD) angular rate func-

. , ) _ tions B;=B, and C;=—C, whenp=0, i.e. the case rel-
It is noteworthy that the polar analyzing powerin sys evant forb—u transitions. This can be seen to be a conse-

tem 3 takes the maximal value of 1 for the leading order free uence of the fact that thequark and the electron are Fierz

guark decay contribution. This has been made manifest i . .
Table | by rewriting the angular ratBs, in terms of the symmetric partners in the decay. In the case of mass degen-

. . . . eracy as for the case discussed here, the FQD decay distri-
unpolarized rate functioi dropping aO(l/mﬁ) contribu- butions are symmetric under exchange of the two and thus
tion. The fact thatw=1 can be understood by rewriting the are the same in systems 1 and 2. The minus sign in the
(V-A)(V—A) form of the matrix element into a '

_ ) * relation C;=—C, comes about because one is comparing
+P)(S—P) form with the help of the Fierz transformation . : . :
of the second typgL8]. One obtains, in this way, system 1}, with system 2 when exchanging the Fierz part

ners.

— _ — _ — Up to now we have given results for the fully integrated

[u(e)y*(1=ys)u(b)J[u(1 )7, (1= ys)v(v)] rate coefficients3; andC; (i=1,2,3) for the procesb—c
=2[u(c)(1+ y5)Cu'(1 ) [T (»)CY(1— ys)u(b)] +e~ + v, apart from the rate functioA which is the same in

- o all systems. In Table Il we give the corresponding coeffi-
=2[u(c)(1+ys)u(l ") J[v(¥)(1—ys)u(b)] (2.34  cients for the processés—c+e* +v,, c—>s+e’ +v, and
, . . . .., C—s+e” +v.. They can be obtained from tHeP invari-
with C the charge conjugation matrix. In the Fierz ance of the interaction and the symmetry under the exchange

rearranged form it is clear that thespin is aligned with the e v, when going fromb—¢ to c—s in the integrated

spin direction of thev which points along its momentum ate formula or by direct calculation. In the latter case we
direction. Thus the polar angle dependence in system 3 ifaye ysed a gener®l+xA interaction in order to obtain a

given by 1+cosd, corresponding to a maximal polar ana- honyanishing result for the €, entries. In addition,
lyzing power in this system. Note that this argument is inde-

pendent of the value of the charm quark mass, such that th\ghenZ/gogng froib?/c 0c—s andc—s one has to replace
maximal value of this asymmetry parameter is obtained fof’ —Ar\nc m;, Dy p_hms M. vl fth larization d
any value of the mass ratj@ This can be seen directly from S concerns the numerical values of the polarization de-

comparing Eqs(2.12 and(2.32 where thep-dependent co- pendent contributions fqn=0 we want to draw an analogy
efficients of the free quark decay contributiéand theK, to muon decay. For this purpose we arrange the decay prod-

contribution for that mattercan be seen to be equal to one UCtS in muon decay in the same weak isospin order as in the
another. b—u case. One has

As mentioned above, the positivity of the decay rate for
any values of {,¢) requires the asymmetry parameiayto
be smaller than or equal to 1. From this and the reQu82
for this parameter one can obtain the constrajst 0 on the (2.39
nonperturbative matrix element, to leading order inag.
This is compatible with, although less stringent than, thewhere we have drawn the braces connecting the Fierz part-
inequality e,< — $K,, obtained in[12] from a zero recoil ners for added emphasis. From comparing the two decays the
sum rule. valueB,;=B,=—1/3 in Table | should be well familiar from
The azimuthal asymmetry vanishes at leading order inu decay, when the electron mass is neglected. The result
1/m, since the polar asymmetry takes the maximal value of IC; = —C,=8#/35 has not been widely publicized jm de-
in system 3. This can be understood by noting that the posieay for the obvious reason that its determination requires an

1 1
bou+l™ 4y = p v te +i
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o TABLE Ill. Transversity system asymmetries in system
=1,2,3 for two typical values of the quark mass ratie mﬁ/mﬁ.
The nonperturbative ﬁdﬁ corrections have been neglected.

p 0.091 0
z ;/Pl 0.622 0.622
: : . B 1.237 1.136
g S Ve, 0.635 0.622
B> —1.018 —1.136
. . . Ve 0.785 0.785
FIG. 2. Transversity coordinate system defining the polar angle’ 3 0 0
3

9 and the azimuthal angie. The decay plane is in thes(y) plane.

azimuthal measurement which cannot be_ donqu_nulecay Correspondingly one has the two-fold angular decay distri-
because of the two undetected neutrinos in the final state. bution

Instead of analyzing the full{,¢) two-fold angular de-
cay distribution one can reduce the two-fold distribution to

single angle decay distributions by doing either thénte- dr _ L~ ~ .~
gration or they integration. One obtains d cosdde =T[A+Psin¥(Bcose+Csing)] (3.4
df after internal three-fold phase space integration. We shall not
d cosd *1+apPcosd (2.36 discuss the two-fold angular decay distribution in the trans-

versity system any further but immediately turn to the single
and angle decay distributions. Again there are the two possibili-
ties of integrations ovep or over cosd.
Integrating Eq(3.4) over ¢ leads to a flat co# distribu-

dar
——x1+ ypP cosep (2.37 ~
de P tion while integrating over co8 one obtains

where, in terms of the angular coefficiemsB and C, the P

polar and azimuthal asymmetry parameters are given by 1+ %0 cod o — 3
=B/A andyp=7C/(4A), respectively. Note that the asym- O|COSZDoc YpcOde—p) 3.9
metry parameters lie in the following intervals:

—1l<ap<l and where
372 372 ( 2 ) - BZtC? 39
- < yp< =(0.654| . Y= a7 .
3202 7 3202 \322 4A

(2.39 and the phase angje is given by

Table | also contains the numerical values of the asymmetry

parametersyp and yp . . C
B=arcsin—=——. (3.7

vB“+C

In Table Il we list the values of the asymmetry parameter
In the transversity coordinate systems the event plane is ifyp and the phase angl@ for two typical values ofp

the (x,y) plane. The orientation of the polarization vecibr ~=mz/m; in systems 1, 2 and 3.

is specified by the polar angi® and¢ as drawn in Fig. 2.

The relation between the transversity anglés¢) and the IV. CONCLUSIONS
helicity angles @,¢) can be easily seen to be given by

lll. SPIN-MOMENTUM CORRELATIONS IN THE
TRANSVERSITY SYSTEM

We presented in this paper a study of the spin-momentum
correlations inA, decays, including nonperturbative correc-

cosd=sindsine @D tions of order ]nhfJ Numerically the nonperturbative correc-
o~ o~ tions to the various inclusive asymmetries are rather small,
sind sinp=sin{ cose (32 of the order of or smaller than 1%. This is very similar to the
3 5 situation encountered for radiative QCD corrections to spin-
sind cosep=cosd. 3.3 momentum correlations, which were computed18]. They
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