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Chiral quark soliton model with Pauli-Villars regularization
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The Pauli-Villars regularization scheme is often used for evaluating parton distributions within the frame-
work of the chiral quark soliton model with the inclusion of the vacuum polarization effects. Its simplest
version with a single subtraction term should, however, be taken with some caution, since it does not fully get
rid of divergences contained in scalar and psuedoscalar quark densities appearing in the soliton equation of
motion. To remedy this shortcoming, we propose here its natural extension, i.e., the Pauli-Villars regularization
scheme with multisubtraction terms. We also carry out a comparative analysis of the Pauli-Villars regulariza-
tion scheme and more popular proper-time one. It turns out that some isovector observables such as the
isovector magnetic moment of the nucleon are rather sensitive to the choice of the regularization schemes. In
the process of tracing the origin of this sensitivity, a noticeable difference of the two regularization schemes is
revealed]S0556-282(99)02913-4

PACS numbgs): 12.39.Fe, 12.38.Lg, 12.39.Ki, 13.40.Em

[. INTRODUCTION has been settled by now, since stable soliton solutions seem
to exist at any rate if Pauli-Villars regularization is applied to
The recent calculations of nucleon-parton distributionsquark seas only, not to the discrete bound state sometimes
within the chiral quark soliton moddlCQSM) exclusively  called the valence quark orbital. Unfortunately, this is not the
utilize the so-called Pauli-Villars regularization schemeend of the story. In fact, soliton solutions of the CQSM with
[1-6]. This is to be contrasted with the fact that most of theuse of the Pauli-Villars regularization scheme were obtained
past calculations of the nucleon static observables were camany years ago by Ding et al. [15]. (To be more precise,
ried out by using the proper-time regularization schemehe model used by them is not the CQSM but the Nambu—
[7-9]. There are some reasons for it. The first reason igona-Lasinio model. In fact, they were forced to impose an
mainly technical. For obtaining parton distributions, onead hocnonlinear constraint for scalar and pseudoscalar me-
needs to evaluate the nucleon matrix elements of the quarkon fields at a later stage of manipulation. Otherwise, they
bilinear operators which are nonlocal in two space-time cowould not have obtained any convergent solutifg®.) The
ordinates. The problem is that we have no unanimous idetact that the single-subtraction Pauli-Villars scheme cannot
about how to generalize the proper-time scheme for the reregularize the vacuum quark condensate was already noticed
guralization of such unusual quantities. The second but morin an earlier papef17] as well as in this paperl5]. To
positive reason for using the Pauli-Villars regularizationremove this divergence, which is necessary for obtaining a
scheme has been advocated by Diakoebel. [1,2]. They finite gap equation, Dxing et al. propose to add some coun-
emphasize that this regularization scheme preserves certai@rterms, which depend on the meson fields, to the original
general properties of parton distributions such as positivityeffective action. It is very important to recognize that this
factorization properties, sum rules, etc., which are easily vioprocedure is not workable within the CQSM, since their
lated by other regularization schemes such as the proper-tintwunterterms reduce to mere constants under the chiral circle
one. (Still another choice for introducing regularization into condition which we impose from the very beginning. Thus,
the model is to use the momentum-dependent constituemne must conclude that the simplest Pauli-Villars scheme
quark mass motivated from the instanton picture of QCDwith the single-subtraction term is unable to fully get rid of
vacuum[10]. This possibility has been investigated in a re-the divergence of the vacuum quark condensate at least in
cent paper by Gollet al. [11]. A physical motivation and a the nonlinear model. One should take this fact seriously, be-
general discussion on the regularization of the model can beause it brings about trouble also in the physics of the soliton
found in a recent review on the chiral quark soliton model bysector. To understand it, one has only to remember the fact
Diakonov[12].) that the scalar quark density appearing in the soliton equation
Recently, there was a controversial debate on the stabilitgf motion is expected to approach a finite and nonzero value
of soliton solutions in the CQSM regularized with the Pauli- characterizing the vacuum quark condensate as the distance
Villars subtraction schemd3,14. It seems that the problem from the soliton center becomes largks]. This necessarily
means that the scalar quark density appearing in the soliton
equation of motion cannot also be free from divergences.

*Email address: kubota@kern.phys.sci.osaka-u.ac.jp The purpose of the present study is then twofold. On the
"Email address: wakamatu@miho.rcnp.osaka-u.ac.jp one hand, we want to show that the single-subtraction Pauli-
*Email address: watabe@rcnp.osaka-u.ac.jp Villars scheme is not a fully satisfactory regularization
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scheme, and that at least one more subtraction term is nec- 1

essary for a consistent regularization of the effective theory. Sm[U]:j d*x; F2m2 U (x) + U T(x) - 2].

This will be made convinced through the formal discussion @)

given in Sec. Il and also the explicit numerical results shown

in Sec. llIA. On the other hand, we also want to know the|y gq. (), the coefficient

regularization-scheme dependence of the CQSM through a

comparative analysis of typical static observables of the 4 1

nucleon predicted by the two regularization schemes, i.e., the [,(M)=—i f (8

Pauli-Villars one and the proper-time one. A discussion of (2m)* (k*—M?)?

this second issue will be given in Sec. Il B. We then sum-

marize our conclusion in Sec. IV. of the pion kinetic term diverges logarithmically. In fact, by
introducing a ultraviolet cutoff momenture that should

Il. PAULI-VILLARS REGULARIZATION SCHEME eventually be made infinity, one finds that

We begin with the effective Lagrangian of the chiral

guark model with an explicit chiral symmetry breaking term (M)~ 5
as 167

{Ina®—InM?-1}. 9

Leom=Lot+ L7, (1)  This logarithmic divergence can be removed if one intro-

duces a regularized action as follows:
where L, denotes the chiral symmetric p4it9] given by g

o reg _ Qreg

£0=l//[i¢9—MU75(X)]1// (2) Seff[U] Sf [U]+Sm[U], (10)
with where

. 1+ 1- M \?
UTs(x)=e s 7= Y504 = Tyty) (3) SeUI=S[U]— | —]| S"PYu]. (11)
2 2 Mpy/ ~f

while Here S?"PV is obtained fromS;[U] with M replaced by the

1, ., Pauli-Villars regulator masMl p\,. Further requiring that the

L£'=—f2m2t{U(x)+UT(x)—2] (4)  above regularized action reproduce the correct normalization

4 ™7 ; L= . "
for the pion kinetic term, one obtains the condition
is thought to simulate a small deviation from the chiral-
symmetric limit. Here the trace in E¢4) is to be taken with NM2  (Mpy|?
respect to flavor indices. From the fundamental viewpoint, 472 | ™ =fa
this form of effective action may not be enough to fully take

account _of the effect of explicit chiral symmetry V|olgt|on N\ nich can be used to fix the regulator mads, . Once the
QCD. still we would expect that the above Lagrangian pro- ) L ; : ;
vides us with some qualitative information about the eﬁecteffectlve act!o_n IS regulanzed, the_ static soliton energy
of explicit chiral symmetry breaking, though the main inter- should be a finite functional of the SOI'tOr‘ p[oﬂ?e(r) url1der
est of the present study is not to seeMaturally, one could the standard hedgehog ansaifx) =exdir-rF(r)]. Since
have taken an alternative choice that introduces explicith® Soliton equation of motion is obtained from the stationary
chiral-symmetry-breaking effect in the form of quark masscondition of the static energy against the variatiorFgf),
term. We did not do so, because of the reason explained igvVerything seems to be going well with the above single-
the Appendix. subtraction Pauli-Villars regularization procedure. Unfortu-
The idea of the Pauli-Villars regularization can most easlately, this is not the case. To understand what the problem
ily be understood by examining the form of the effectiveiS, We first recall the fact that the scalar quark density ap-
meson action derived from E¢l) with the help of the stan- P€arng in the soliton equation of motion is expected to ap-

(12

dard derivative expansion: proach a finite and nonzero constant characterizing the
vacuum quark condensate as the distance from the soliton
Sei{U]=S[U]+ S, [U], (5)  center becomes lardd8]. [This is a natural consequence of
our demand that both of the solitoB€1) and vacuum
where (B=0) sectors must be described by the saimesingle

equation of motior]. On the other hand, it has been known

= — i i —_— i
SiLU] INcSpInid=MU) that the vacuum quark condensate contains quadratic diver-

gences that cannot be removed by the single-subtraction
:j d*x{4N M2l ,(M) tr(a,Ua*U") Pauli-Villars schemd15,17. This then indicates that the
scalar quark density appearing in the soliton equation of mo-
+ higher derivative ternjs (6)  tion cannot also be free from divergences.
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To get rid of all the troublesome divergences, we proposavith
here to increase the number of subtraction terms, thereby v
starting with the following action H— ai—+,8M[COSF(I’)+i‘y57- fsinF(n], (23

S UI=SE U1+ S, U], (13
while the energie&(®) denote the energy eigenvalues of the
where vacuum Hamiltonian given by Eq23) with F(r)=0 or U
=1. Equation(19) means that the quark part of the static
energy is given as a sum of the contribution of the discrete
bound-state level and that of the negative energy Dirac con-
tinuum. The latter part is regularized by subtracting from the
with N being the number of subtraction terms. The logarith-Dirac sea contribution a linear combination of the corre-
mic divergence of the original action is removed if the con-sponding sum evaluated with the regulator mAssnstead
dition of the dynamical quark mas[££i in these subtraction terms
N A are the eigenenergies of the Dirac Hamilton{28) with M
I
1 21 c,( Vi

N
SEUI=S(Ul- 2 ¢S U], (14)

2

-0 (15) replaced byA; and with the same background pion figld.

Now the soliton equation of motion is obtained from the
stationary condition ofELS;JF(r)] with respect to the
is satisfied. Similarly, the normalization conditi¢t?) is re-  variation of the profile functiorF(r):

placed by
OEstatid F(r
, N , ) :M:4Wr2{—M[S(r)sinF(r)
N M A, A ) OF(r)
2 G vl ) = (16)
a2 =1 —P(r)cosF(r)]+ f2m2sinF(r)}, (24)
The single-subtraction Pauli-Villars scheme corresponds tq -1, gives

taking N=1,A;=Mp,, andc,;=(M/Mpy)2. This is natu-

rally the simplest case that satisfies both conditidrs and P(r)

(16). F(r)= arctar( %
To derive soliton equation of motion, we must first write S(r)—fZmz/M

down a regularized expression for the static soliton energy. )

Under the hedgehog ansat-z(x)=f7TFF(r) for the back- HereS(r) andP(r) are regularized scalar and pseudoscalar

ground pion fields, it is obtained in the form densities given as

. (25

N
EGSdF(NI=EFIF(NI+E(F(], (17 SN=S,u(1+ 3, S(1-3, Ci% S s,
where the meson part is given by (26)
2,2 NOOA
EAFI== 2 [ e (-1l 18 b py S -3 6l S RN
A<0 i1 <o "7
while the fermion(quark part is given as (27)
EY[F ()] =E o+ EL, (19 W
i N, S(|x|—
i S.1)= 32 [ dxinlo w°—(|xr'2 D, (29
EvalzNCE01 (20)
N _Ne [ 5 o .A5(|X|_r)
E;e;)g: NCE (En_Ego))_z CiNc Pn(r)_ 477_] d X(I’]|X>I Y V5T r rz <X|n>;
n<0 =1 (29)
x 3 (Ey—EPY). (2D andS,ai(r)=Sa=o(r) aNdPai(r)=Py—o(r), while S)'(r)

and Pﬁi(r) are the corresponding densities evaluated with
Here E, are the quark single-particle energies, given as théhe regulator mas4; instead of the dynamical quark mass
eigenva|ues of the static Dirac Hamiltonian in the back-M. As usual, a self-consistent soliton solution is obtained in
ground pion fields: an iterative way. First by assuming an approprigteugh
arbitrary) soliton profileF(r), the eigenvalue problem of the
H|n)=E,|n), (22 Dirac Hamiltonian is solved. Using the resultant eigenfunc-
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tions and their associated eigenenergies, one can calculagences can, respectively, be removed if the subtraction con-
the regularized scalar and pseudoscalar quark denSigigs  stants are chosen to satisfy the following conditions:
and P(r). Equation(25) can then be used to obtain a new

soliton profileF(r). The whole procedure above is repeated N

2 2__
with this new profileF(r) until the self-consistency is satis- M _Zl CiAT=0, (35
fied.
Now we recall an important observation made before. The N
scalar quark densit$(r) at spatial infinityr = o with respect M4— E CiAi4: 0. (36)

to the soliton center should coincide with the scalar quark i=1
density in the vacuumB=0) sector, which is nothing but

the familiar vacuum quark condensafeer unit volum¢  Using the first of these conditions, the finite part(%p)vac
(4, ac. Thatis, the following simple relation must hold: Can @lso be expressed as

— 1 3 - _NCM3 N Ai 4 Ai 2
<¢¢>vac = VJ S(r=0)d*r = §(r=). (30 <¢'//>vac—? 21 Ci(M) IH(M) . (37)

(Later, this relation will be checked numericajljivhat we |t s now obvious that the single-subtraction Pauli-Villars
must do now is to find necessary conditions for the subtracscheme cannot satisfy both conditiais) and(36) simulta-

tion constants; andA; in the multisubtraction Pauli-Villars neously. Although the quadratic divergence may be re-
scheme to make the vacuum quark condensate finite. Th

can be achieved by examining the expression of the vacuu
guark condensate obtained consistently with the solito

equation of motion;

_ _ N A\ —
(i L%%:<‘/’¢>vac_21 Ci(ﬁ)<‘/’¢>é\e‘1c’ (3D
where
(YY) yac=—4N MJ—dsk 2 (32
i)blp vac C (277)3 E(k0)7

with EQ)=(k?+M?)Y'2, while ()" are obtained from

<E¢/>vac with the replacement ol by A;. Using the inte-
gration formula

fa k1 L 262 M2Ina?+(1-2In2)M?2
—————=—"—{24’-MZna« —-21n
(2m)® Jk¥+M?2 8n?

+M2nM?}, (33

with « being a ultraviolet cutoff momentum, we obtain

N N2
- [ -3 ol ] }Zaz

<
|l\)
M=
o
=
T w
-~
Z,
0
N
=3
D
—+
<
-
S
<
N

(34)

which clearly shows that),,c contains quadratic and
logarithmic divergences as going to infinity. These diver-

Foved, the logarithmic divergence remains(ifi), .. and
rE‘onsequently also i8(r =) in view of relation(30). To get

"Nid of both these divergences, we need at least two subtrac-
tion terms, which contain four parameters c, andA,A».

The strategy for fixing these parameters is as follows. First
by solving the two equation@5) and(36) with N=2 for c;
andc,, we obtain

(M)ZAg—MZ -
ci=|+—| 5.
FIAL AZ- A2

( M )ZA"{—MZ 39
co=—|+| 53
27 1Az AZ-p2

which constrains the values of andc,, onceA; and A,
are given. For determining; andA,, we can then use two
conditions (16) and (37), which amounts to adjusting the
normalization of the pion kinetic term and the value of
vacuum quark condensate.

IIl. NUMERICAL RESULTS AND DISCUSSION

A. Single- versus double-subtraction Pauli-Villars
regularization

The most important parameter of the CQSM is the dy-
namical quark masM, which plays the role of the quark-
pion coupling constant, thereby controlling basic soliton
properties. Throughout the present investigation, we use the
valueM =400 MeV favored from previous analyses of static
baryon observables. In the case of the single-subtraction
Pauli-Villars scheme, the regulator makk,, is uniquely
fixed to beMpy,=570.86 MeV by using the normalization
condition(12) for the pion kinetic term, and there is no other
adjustable parameter in the model. In the case of the double-
subtraction Pauli-Villars scheme, we have four regularization
parametersc,,c,,A;, and A,. From the divergence-free
conditions(35) and (36), ¢c; andc, are constrained as Eqs.
(38) and (39), while A; and A, are determined from Eqgs.
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FIG. 1. Thek,,a, dependence of the scalar quark denSify) and the pseudoscalar densRyr) in the single-subtraction Pauli-Villars
scheme.

(16) and (37) with f_=93MeV and <J¢>Uac: are thus able to solve the self-consistent Hartree problem and
—(286.6 MeVY. In spite of their nonlinearity, the two con- @is0 to calculate any nucleon observables with full inclusion

ditions (16) and (37) are found to uniquely fix the two pa- of the sea—querk degrees of freedom. If the theory is consis-
rametersA; and A, within the physically acceptable range tently regularized, final answers must be stable against in-

of parameters. The solution that we found is crease ofk,,, and D (especially against the increase of
Kmax - Now we show in Fig. 1 thé,,,, dependence of the

c,=0.445, c,=-0.00612, theoretical pseudoscalar and scalar quark densities in the
single-subtraction Pauli-Villars scheme. These curves are ob-
A1=630.01 MeV, A,=1642.13MeV. (400  tained for a fixed value dd asMD=12. The corresponding
kmax dependence of the quark densities in the double-
As usual, all the numerical calculations are carried out bysubtraction Pauli-Villars scheme is shown in Fig. 2. Compar-
using the so-called Kahana-Ripka ba$R0]. Following ing the two figures, one immediately notices that the quark
them, the plane-wave basis, introduced as a set of eigenstatésnsities obtained in the single-subtraction Pauli-Villars
of the free HamiltoniarH,=a- V/i+ BM, is discretized by = scheme do not cease to increase in magnitude,gsgrows.
imposing an appropriate boundary condition for the radialundoubtedly, this must be a signal of logarithmic diver-
wave functions at the radiuB chosen to be sufficiently gences contained i&(r =) [and generally also i(r) and
larger than the soliton size. The basis is made finite by inS(r)]. On the other hand, in the case of the double-
cluding only those states with the momentuknas k  subtraction Pauli-Villars scheme, the magnitudesPgf)
<kmax- The eigenvalue problerf22) is then solved by di- andS(r) are seen to grow much more slowly. To convince
agonalizing the Dirac HamiltoniaH in the above basis. We ourselves more clearly of the above qualitative difference of

3.0 T T T T r 4.0
— Kk M=7 e o marm e
25 | R ——= ke M=14 | .z
’ { ---- kaM=21 20 4
—-—- Kk, M=28
20
0.0 t }
a?’ 15 1 a)T'
-2.0 4
1.0 —— K M=7
——= Kk, M=14
05 -4.0 -—-- kmaxM=21 7
—-—- k. M=28
0.0 1 1 I L -6.0 1 1 1 L 1
00 20 40 60 80 10.0 120 0.0 20 40 6.0 80 10.0 120
Mr Mr

FIG. 2. Thek,,,, dependence of the scalar quark denSity) and the pseudoscalar densRyr) in the double-subtraction Pauli-Villars
scheme.
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FIG. 3. The scalar quark densities at the spatial infiSity= ) as functions ok,,,/M and as functions of I,,,/M) in the single- and
double-subtraction Pauli-Villars schemes.

the two regularization schemes, we plot in Fig. 3 the value ohonlinear model(not in the original Nambu—Jona-Lasinio
S(r=), i.e., the scalar quark density at spatial infinity, asmode). After evaluating the pseudoscalar and scalar quark
functions ofk,,,x and also as functions of lk{,,/M). Con-  densities with soméarge buj finite model spac¢especially
trary to the case of the single-subtraction scheme in which aiith finite k,,,5,), @ new profile functiorF(r) to be used in
clear signal of logarithmic divergence is observed, the valughe next iterative step is obtained from Eg5). SinceP(r)
of S(r=«) obtained in the double-subtraction scheme isandS(r) appear, respectively, in the numerator and denomi-
seen to converge to some limiting value. Although the rate ohator of the argument of arctangents, it can happen that the
this convergence is rather slow, it appears that this limitingogarithmic divergences contained in bd¥r) andS(r) are
value certainly coincides with the prescribed value of theoffset from each otheWe point out that the effect of the
vacuum quark condensaté i), ..= —(286.6 MeVy=  term f2m2/M accompanying the scalar quark density is
—3.062fm 3. rather small, anyway In fact, Fig. 4 shows thé&,,, depen-
Now that one is convinced of the fact that the naive Pauli-dence of the self-consistent profile functibr) in both the
Villars scheme with the single-subtraction term contains asingle-subtraction scheme and the double-subtraction
logarithmic divergence in the quark densities appearing irscheme. One sees that the result&iit) is quite stable
the soliton equation of motion, one may come to the follow-against an increase &, even in the single-subtraction
ing question. Why could the authors of REf2] obtain self- scheme, in spite of the fact that it shows logarithmically
consistent soliton solutions despite the presence of thdivergent behavior for bottP(r) and S(r). Undoubtedly,
above-mentioned divergences? The answer lies in ththis is the reason why the authors[df5] succeeded in ob-
method of obtaining a self-consistent soliton profile in thetaining a self-consistent soliton profile(r) despite the di-

4.0 ————— 4.0
— K M=7 — K M=7
---- k, M=14 w7 ke M=14
——= k M=21 ——= k M=21
3.0 ——-k  M=28 1 3.0 —-— K M=28 ]

F(r)

20 |

10 | 10

0.0 L . . 0.0 L = : t
0.0 20 40 6.0 8.0 100 120 00 20 40 6.0 80 10.0 120
Mr Mr

FIG. 4. Thek,,.x dependence of the self-consistent soliton profiiés) in the single- and double-subtraction Pauli-Villars schemes. The
curves with differenk,,, are almost indistinguishable.
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140 ' ' advocated the Pauli-Villars subtraction scheme as a “good”
regularization scheme for evaluating leading-twist parton
distribution functions of the nucleon within the chiral quark
139 ¢ ] soliton model[1,2]. The reason is that it preserves several
T general properties of the parton distributidissich as posi-

=7 tivity, factorization properties, sum rules, gtcwhich can

138 / / 1 easily be violated by a naive ultraviolet regularization. On

/ the other hand, Schwinger’'s proper-time regularization has
/ most frequently been used for investigating low energy
137 1/ ] nucleon properties within the chiral quark soliton model
[7-9]. One might then wonder how these predictions ob-
tained by using the proper-time regularization scheme are
altered if one uses the Pauli-Villars one.

Before entering into this discussion, we think it useful to
recall some basic properties of the proper-time regularization
15 25 35 scheme. In this scheme, the regularized effective meson ac-

K /M tion takes the same form as E@.0) except thatS;* U] is

. . how given in the form
FIG. 5. Thek,,.x dependence of the nucleon isovector axial-

chargesg{®) in the single- and double-subtraction Pauli-Villars 1 odr : t
schemes. S U= §|ch0 790(7) Spe ™0~ DoPo),

)]
9

13} - single—subtr.

double-subtr.

1.35
5

vergences remaining in each B{r) and S(r). Because of (42)

this fortunate accident, self-consistent soliton profitgs) with

in the nonlinear model can be obtained with a good accuracy

by using a modest value df,,, not only for the double- D=i4—MU”, Dy=id—M. (43
subtraction scheme but also for the single-subtraction one,

and besides the resulta®¢r) are not much different in these The regularization functiorp(7) is introduced so as to cut
two schemes. This also applies to most nucleon observabledf ultraviolet divergences which now appear as a singularity
which depend only orfr(r) and have no direct dependence at 7=0. For determining it, we can use a similar criterion as
on S(r) and/orP(r). The previous calculation of parton dis- what was used in the Pauli-Villars scheme. That is, we re-
tributions with use of the single-subtraction Pauli-Villars quire that the regularized theory reproduce the correct nor-
scheme may be justified in this sense. To verify the validitymalization of the pion kinetic term as well as the empirical
of this expectation, we investigate tkg,,, dependence of a value of the vacuum quark condensate. This gives two con-
typical nucleon observable which contains only a logarithmicditions [21]

divergence, i.e., the isovector axial-vector coupling constant

08>, Figure 5 show thekn., dependence ofy®) in the NM? [=dr M2 .2

single- and double-subtraction Pauli-Villars regularization 42 J; T‘P(T)e =15 (44)
schemes. One sees that this quantity certainly shows a ten-

dency of convergence in both regularization schemes, though NM F=dr

the rate of convergence in the double-subtraction scheme is c f _(P(T)effwﬁ:(%p) .

much faster than for the scalar and pseudoscalar densities in 272 Jo 72 v

the same regularization scheme. Nonetheless, one must be (45

very careful if one is interested in nucleon observables, ] , o ) ]
which have a direct dependence 8¢r) or P(r). The most Schwinger's original choice corresponds to taking
important nucleon observable, which falls into this category,

is the nucleon scalar charder the quark condensate in the (H=0| r— i (46)
nucleon given by ¢ A2]’
- _ 3 L afr— with A being a physical cutoff energy. However, this sim-
(N[#9IN) j dr[S(r) = S(r=2)]. 1) plest choice cannot satisfy the two conditiddg) and (45)

o _ simultaneously. Then, we use here a slightly more compli-
The superiority of the double-subtraction scheme to theated form as

single-subtraction one must be self-explanatory in this case,
since this quantity is convergent only in the former scheme.

1
+(1—C)6( T—P), (47)

(7) 0( L
e(7)=C T—
A? s

B. Pauli-Villars versus proper-time regularization 1

How to introduce an ultraviolet cutoff into our effective which contains three parametets A;, and A, [22]. Al-
chiral theory is a highly nontrivial problem. Diakon@t al. ~ though the above two conditions are not enough to uniquely
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fix the above three parameters, we find that solution sets o -

(¢,A1,A,) lie only in a small range of parameter space and  {O)yp=Nc¢ >, (n|O[n)—Pauli-Villars subtraction
that this slight difference of regularization parameters hardly n=o

affects the soliton properties. We use the following set of - o )
parameters in the numerical investigation below: = _Ncnzo (n|O[n) — Pauli-Villars subtraction.

c=0.720, A,=412.79MeV, A,=1330.60MeV. (54)

48
“8) Note that the first form is given as a sum over the occupied
Within the framework of the chiral quark soliton model, Single-quark levels, while the second form given as a sum

which assumes slow collective rotation of a hedgehog solitof?Ver the nonoccupied levels. The equivalence of the two ex-
as pressions follows from the identity

U7s(x,t) =A(HUB(x)AT(L), A()CSUD2), (49 0=Spf)=n§0 <n|6|n>+n§0 (n|O|n), (55)

the nucleon matrix element of any quark bilinear operatofyhich holds for most operators including the isovector mag-
O is given as a perturbative series in the collective anguhetic moment operator investigated below, if it is combined
lar velocity operatoK) defined by with the fact that a similar identity holds also for the corre-
sponding Pauli-Villars subtraction terms. The situation is a
d little different for the proper-time regularization scheme. The
QZiAT(t)aA(t)- (50)  regularized Dirac sea contribution in this scheme is given in

the following form[8]:

It is shown below that a noteworthy difference between the o N 5
proper-time regularization and the Pauli-Villars one appears (O)l‘}p =— ?C sgnE,)g(En){n|O|n), (56)
at the zeroth order term if). We recall that, in both n=all

schemes, th®©(Q°) contribution to this matrix element is with

given as
(En=— fwdTlEl “E 57
0 * 0 g =—| — e En,
(0)*'= f DAYy [AKO)a ¥R AL (5D "o Valo 7 "
. To compare this with the corresponding expression in the
with Pauli-Villars scheme, it is convenient to rewrite it as
0 00_ 0 90+ 0 QO, 52 o 1 . _
(O)a =(O)yat(O)yp (52 (o)f}p: > NCnZo g(En)(n|O|n>—Nan0 g(En)(n|O|n) ;.
where\If(MJ)JMT[A] is a wave function describing the collec- (59)
tive rotational motion. In Eq(53), One sees that here the answer is given as an average of the
00 _ L two expressions, i.e., the one given as a sum over the occu-
(0)y2=Nc(0]0|0), with O=ATOA, (53)  pied levels and the others given as a sum over the nonoccu-

pied levels.(This feature is a consequence of the starting
represents the contribution of the discrete bound-state levelovariant expression for an operator expectation value in the
called the valence-quark one. Within the Pauli-Villars proper-time schemeHowever, contrary to the previous case
scheme, the contribution of the Dirac continuum can bean which ultraviolet regularization is introduced in the form
given in either of the following two forms: of the Pauli-Villars subtraction, now there is no reason to

TABLE I. The static soliton energy in the proper-time regularization scheme anddléle-subtraction
Pauli-Villars oneE, 5 andE,?] , respectively, stand for the valence quark contribution and the Dirac sea one
to the fermionic energy, whil&,, represents the mesonic part of the energy. The sum of these three parts

. . reg
gives the total static enerdyg;a;ic-

E,a [MeV] Es [MeV] E. [MeV] Ectdic [MeV]

Proper-time (n,=138 MeV) 633.0 617.6 37.2 1287.9
Pauli-Villars (m,=138 MeV) 447.6 569.2 51.3 1068.1
Proper-time (n,=0 MeV) 555.6 688.6 0 1244.2
Pauli-Villars (m_,=0 MeV) 351.5 655.4 0 1006.9
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TABLE Il. The quark spin content of the nuclediz ;) in the  content of the nucleok ;). The theoretical predictions for

proper-time regularization scheme and the Pauli-Villars one. this quantities in the two regularization schemes are shown
in Table II. In evaluating this quantity, we did not introduce
(Zadoar  (Zahup. (23 any regularization, because it is related to the imaginary part
Proper-time (n., =138 MeV) 0.484 0.005 0.489 Of the (Euclidean effective action and is convergent itself.
Pauli-Villars (m, =138 MeV) 0.391 0.008 0.399 This means that the difference between the two schemes
purely comes from that of the self-consistent solutions. One
Proper-time (n,=0 MeV) 0.374 0.007 0.380  sees that the Pauli-Villars scheme leads to smaller quark spin
Pauli-Villars (m,=0 MeV) 0.286 0.011 0.298 content. The reason can easily be understood. Within the

framework of the chiral-quark soliton model, the rest of the
nucleon spin is carried by the orbital angular momentum of
believe that the above two terms give the same answer. lquark fields and this latter portion increases as the deforma-
fact, the introduction of the energy dependent cutoff factortion of the soliton becomes largg#]. A similar tendency is
g(E,) generally breaks the equivalence of the two expresalso observed when one goes from the finite pion mass case
sions because of the spectral asymmetry of the positive- an@d the chiral limit.
negative-energy levels induced by the background pion field There are different kinds of nucleon observables, which
of hedgehog form. contain (potentia) logarithmic divergence and thus depend
Now we start a comparative analysis of the two regulardirectly on how they are regularized. Most typical are the
ization schemes on the basis of the numerical results. Fap(Q°) contribution to the isovector axial-vector coupling
reference, we also solve the soliton equation of motion in th%onstantgf’) and the isovector magnetic momeuny, of the
chiral limit. By assuming ndor at least weakm, depen-  nucleon. Let us first show the results for the isovector mag-
dence of(¢¢),.c appearing in Eqs(16) and (37), this cal-  netic moment, since it turns out to have stronger dependence
culation can be done by settimg, =0 in Eqg.(18) and(25  on the choice of the regularization scheme. Table Il shows
without changing the sets of regularization parameters givethe O(Q2°) contribution to the isovector magnetic moment.
in Eq. (40) and (48). Since the method of cutting off the For each regularization scheme, the second column repre-
ultraviolet component is totally different for the two regular- sents the answer obtained with the occupied expression,
ization schemes, it naturally affects solutions of the solitorwhile the third column gives the answer obtained with the
equation of motion. Although the detailed contents of thenonoccupied one. In the case of the Pauli-Villars scheme, the
soliton energy are highly model-dependent concepts and aexjuivalence of the two expressions is nicely confirmed by
not direct observables, they are anyhow very sensitive to thithe explicit numerical calculation. In the case of the proper-
difference of the self-consistent solutions. Table | shows thisime scheme, however, we encounter quite a different situa-
comparison. Comparing the answers of the two regularization. First, the answer obtained with the occupied expression
tion schemes, one finds that the Pauli-Villars scheme leads e about 30% larger than the corresponding answer of the
a more strongly deformed soliton, which means a deepePauli-Villars scheme, while the answer obtained with the
binding of the discrete valence level and larger vacuum pononoccupied expression is about 80% smaller than the an-
larization energy. One sees that the total soliton energy iswer obtained with the occupied one. Since the final answer
lower for the Pauli-Villars scheme than for the proper-timeof the proper-time scheme is given as an average of the oc-
scheme. One also observes that the soliton energy is vegupied and nonoccupied expressions, the consequence is that
sensitive to the pion mass. When one goes from the finitéhe prediction of the proper-time scheme for ®€2°) con-
pion mass case to the chiral limit, one obtains much lowetribution to u\ is about 14% smaller than the corresponding
soliton energy. prediction of the Pauli-Villars scheméSee the fourth col-
Probably, the most important observable which has strongmn of Table Ill) Note that the difference between the two
sensitivity to the above difference of the self-consistent sofegularization schemes becomes much more drastic when
lutions is the flavor-singlet axial charge or the quark spinone goes to the chiral limit. This is due to the fact that the

TABLE IIIl. The O(Q°) contributions to the isovector magnetic moment of the nucleon in the proper-time
regularization scheme and the Pauli-Villars one. The second column represents for the valence quark contri-
bution. The third and fourth columns stand for the answers for the vacuum polarization contributions,
respectively, obtained with occupied and nonoccupied formulas, while the fifth column gives the average of
the two answers. The tot@(Q°) contributions are shown in the sixth column.

ENQ0) pEAQ0) p(QO)
Occupied Nonoccupied Average
Proper-time (n,= 138 MeV) 1.611 1.312 0.210 0.761 2.372
Pauli-Villars (m,=138 MeV) 1.762 0.996 0.996 0.996 2.759
Proper-time (n,=0 MeV) 1.623 1.908 0.588 1.248 2.875
Pauli-Villars (m_.=0 MeV) 1.810 1.738 1.738 1.738 3.547
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TABLE IV. The final predictions for the isovector magnetic moment of the nucleon, given as sums of the
0(Q°% andO(QY) contributions.

r(Q0) pAQY) pQ0+0Y
Proper-time (n,=138 MeV) 2.372 1.072 3.445
Pauli-Villars (m,=138 MeV) 2.759 1.211 3.970
Proper-time (n,=0 MeV) 2.875 1.032 3.907
Pauli-Villars (m,,=0 MeV) 3.547 1.182 4.729

0(0% vacuum polarization contribution to the isovector structure functions within the framework of the CQSM, can-
magnetic moment is extremely sensitive to the pion massot be regarded as a fully consistent regularization scheme in
effect such that it is much larger in the chiral limit. that it still contains ultraviolet divergences in the scalar and
Before comparing our theoretical predictions with the 0b-psyedoscalar quark densities appearing in the soliton equa-
served isovector magnetic moment of the nucleon, we musjon of motion. However, these divergences can easily be
take account of theD(£") contribution, 100, Since it iS on4ved by increasing the number of subtraction terms from
known to give a sizable correction to the leading-order resul to 2. After this straightforward generalization, the effective

[23,24). Although we do not go into details here, it turns out X X .
that thisO(Ql)gpiece is not sgo sensitive to the difference of theory is totally divergence free. Especially, both the vacuum

the regularization scheme as ¢Q°) piece is. The reason quark condensate a_nql the isoscalar piece of the_ nucleon sca-
is that thisO(QY) term is given as a double sum over the lar charge become finite now. Nonetheless, we find that, ow-
occupied levels and the nonoccupied ones and the formul&g to the accidental cancellation explained in the text, one
has some symmetry under the exchange of these two types 6&n obtain a finite soliton profil&(r) even in the single-
single-quark orbitals[25]. The final predictions for the subtraction scheme, and besides the resultant soliton solution
nucleon isovector magnetic moment obtained as a sum of this not extremely different from the corresponding one ob-
0(Q° and O(Q?Y) contributions are shown in Table IV. tained in the double-subtraction scheme. Furthermore, it
After all, the prediction of the Pauli-Villars scheme is aboutturns out that, for most nucleon observables, which contain
15% larger than that of the proper-time scheme and a littl®nly the logarithmic divergence, the predictions of the two
closer to the observed moment. The effect is much morgegularization schemes are not much different. The previous
drastic in the chiral limit. The prediction of the Pauli-Villars calculations of quark distribution functions with use of the
scheme is about 20% larger than that of the proper-timgjngle-subtraction Pauli-Villars regularization scheme would
scheme and nearly reproduces the observed isovector magg justified in this sense.
netic moment of the nucleon, i.eu(=4.71. . We have also carried out a comparative analysis of typical
Finally, we show in Table V the predictions for the is- nycleon observables based on the Pauli-Villars regularization
ovector axial charge of the nucleon obtained as a sum of thgcheme and the proper-time one. A nice property of the
0(Q° and O(Q*) contributions. Also for this quantity, payji-villars regularization scheme, which is not possessed
there are some detailed differences between the predlc'uorb%/ the proper-time one, is that it preserves a nontrivial sym-
of the two regularization schemes. Nonetheless, the final a’}ﬁetry of the original theory, i.e., the equivalence of the oc-
swers forg§ turn out to be not so sensitive to the difference pied and nonoccupied éxbréssions @¢Q°) contribu-
of th_e regularization s_chemes as com_pared with the case %ﬁns to nucleon observables. The improvement obtained for
the Isovector magnetic moment. Bes'des' one also no.t'cetﬁe isovector magnetic moment of the nucleon was shown to
that the finite pion mass effect hardly influences the final . -
prediction for this particular quantity. be_relgted to this favorable_property of the Pa_ull-Vlllars regu-
larization scheme. How to introduce an ultraviolet cutoff into
V. CONCLUSION an effective low energy model should in principle be predict-
able from the underlying QCD dynamics. For lack of precise
In summary, the single-subtraction Pauli-Villars regular-information about it, however, phenomenology must provide
ization scheme, which is often used in evaluating nucleorys with an important criterion for selecting regularization
TABLE V. The final predictions for the isovector axial-coupling S(_:hemes. The_ regularization scheme base_d on the _Pal“!l"
constant of the nucleon, given as sums of 1% ando(Qt)  Villars subtraction appears to be a good candidate also in this

contributions. respect.

g (%) gf(@Y) gd(Q’+0?h
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APPENDIX: EFFECTIVE LAGRANGIAN WITH CURRENT . M
QUARK MASS e~ | | 2 n9)
The effective Lagrangian of the chiral-quark model with .
nonzero current quark mass is given by or, equivalently,
— — m
L=y[id—MU75(x)—mo]y. (A1) Mo( G yac= —| 1+ WO f2m? . (A10)

We want to explain below what complication arises when
regularizing the above Lagrangian in the Pauli-Villars sub-
traction scheme. Let us begin with the unregularized effec:
tive meson action corresponding to the above Lagrangian:

Except for the higher order correction ing/M, this is es-

sentially the celebrated Gell-Mann—Oakes—Renner relation

[18]. After all, the cutoff functione(7) in the proper-time

scheme can be determined so as to satisfy the two conditions
1 ; (AB) and(A7), for a given value ofng or (), ac, Which is

Sert=~ 51NASP ID'D —SpInD{Dy}, (A2)  consistent with Eq(A10).

Next, we turn to the Pauli-Villars scheme. The regularized
action in this scheme is defined by

where
J— + N
D'D=9?+M?+mgM(U”+U" —2)+iM AU s, Se9=5[U]— 2 [U] (A11)
(A3) =
J— ith
DiDo= %+ M2. (agy I
S[U]=—iN.SpIn(ié—MU”s—my), (A12)
Here

. while SfAi[U] is obtained fromS;[ U] with the replacement
M=M+mq (A5)  of the dynamical quark madd by the regulator mas4; .
Now we can proceed as before. In order to reproduce the
denotes the quark mass in the physical vacuu_?‘ﬁé 1).As  pion kinetic term, we need the following two conditions:

will become clear soon, the fact that bdthandM appear in N
Eq. (A3) makes the regularization in the Pauli-Villars 2 a2
scheme rather complicated. Before discussing why it is so, M ,21 GiAT=0, (A13)

let us first show that the regularization in the proper-time
scheme can be done without any problem. The regularization N, A2

function ¢(7) in this scheme is usually determined by the 5 > ciA?In(z) =f2, (A14)
combined use of the derivative expansion and the perturba- =1 M

tive expansion irmy. The condition that reproduces the cor-
rect normalization of the pion kinetic term is given by

with the definitionXiEAi+mo. Here, the first condition is
necessary for removing logarithmic divergence. Next, the
pion mass term is reproduced under the following condi-

N M2 fxdT 2 ;
- e~ ™ —§2 A6 tions:
2.2 Jo 7 e(7) - (AB) .
On the other hand, the correct normalization of the pion mass M _izl CiAi=0, (A15)
term is reproduced if the following condition is satisfied
[21]: N
MM2— > ¢AjA?=0, (A16)
=1
(e~ ™ =m? A7
Zfzf# ) A7 NVE N A (A2 (A
[ i i i 2 2
Mo 2 2 Cil =|| = In| = =—f77mw.
We also require that the vacuum quark condensate be finite, 2m" =1 M/\M M
which gives (A17)
Here, the first and second conditions are, respectively, for
°°d_7' (re M2_ _<$¢> (A8) removing quadratic and logarithmic divergences. Finally, the
0 2 i vac: finite value of the vacuum quark condensate is obtained with

the conditions

What is noticeable here is that a common integral appears in N
Egs. (A7) and (A8), thereby ensuring, irrespective of the 2 _ (A18)
form of ¢(7), the identity =
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N
M Ma_i;[ CiAiA_SiZO,

(A19)
3

In

N.M3 N . : 4
C ECI I | ﬁl

i=1

( M) -
M :<¢¢>uac-
(A20)

Among the five conditiongA13), (A15), (A16), (A18), and
(A19), which are to remove ultraviolet divergences, not all of
them are independent. In fact, one can easily verify that the
reduce to the following four conditions:

2

N

_21 cAi=M, (A21)
“

N
241 ciAZ=M?, (A22)
N
> cAY=M?, (A23)

=1

PHYSICAL REVIEW D 60014016

N

E CiAiA':M“.
i=1

(A24)

Here we point out that different powers &f, /M appear in
Egs.(A17) and (A20). [We recall that these two conditions
(A17) and (A20), respectively, correspond to Eq#7) and
(A8) in the proper-time regularization schem&his appears

to originate from the fact that relatiqih17) is obtained from

the perturbative expention img, thereby containing the pa-
rametem, with mass dimension, while EgA20) does not.

As a consequence, the Gell-Mann—Oakes—Renner relation
Yoes not follow automatically, i.e., for an arbitrary choice of
the regularization parametersandA; . This is in contrast to
the proper-time regularization scheme in which the same
identity holds irrespective of the form of the cutoff function
@(7).

To sum up, it seems that consistent regularization of the
effective LagrangiariAl) with the finite current quark mass
within the framework of the Pauli-Villars subtraction scheme
demands that four finiteness conditio@e1), (A22), (A23),
and (A24) and three normalization conditioltd14), (A17),
and(A20) be satisfied. This means that we need at least four
subtraction terms with eight parameters énd A; with i
=1,...,4). We are not yesure whether there is a reason-
able set of parameters which satisfies all the above condi-
tions.
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