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Chiral quark soliton model with Pauli-Villars regularization
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The Pauli-Villars regularization scheme is often used for evaluating parton distributions within the frame-
work of the chiral quark soliton model with the inclusion of the vacuum polarization effects. Its simplest
version with a single subtraction term should, however, be taken with some caution, since it does not fully get
rid of divergences contained in scalar and psuedoscalar quark densities appearing in the soliton equation of
motion. To remedy this shortcoming, we propose here its natural extension, i.e., the Pauli-Villars regularization
scheme with multisubtraction terms. We also carry out a comparative analysis of the Pauli-Villars regulariza-
tion scheme and more popular proper-time one. It turns out that some isovector observables such as the
isovector magnetic moment of the nucleon are rather sensitive to the choice of the regularization schemes. In
the process of tracing the origin of this sensitivity, a noticeable difference of the two regularization schemes is
revealed.@S0556-2821~99!02913-6#

PACS number~s!: 12.39.Fe, 12.38.Lg, 12.39.Ki, 13.40.Em
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I. INTRODUCTION

The recent calculations of nucleon-parton distributio
within the chiral quark soliton model~CQSM! exclusively
utilize the so-called Pauli-Villars regularization schem
@1–6#. This is to be contrasted with the fact that most of t
past calculations of the nucleon static observables were
ried out by using the proper-time regularization sche
@7–9#. There are some reasons for it. The first reason
mainly technical. For obtaining parton distributions, o
needs to evaluate the nucleon matrix elements of the q
bilinear operators which are nonlocal in two space-time
ordinates. The problem is that we have no unanimous i
about how to generalize the proper-time scheme for the
guralization of such unusual quantities. The second but m
positive reason for using the Pauli-Villars regularizati
scheme has been advocated by Diakonovet al. @1,2#. They
emphasize that this regularization scheme preserves ce
general properties of parton distributions such as positiv
factorization properties, sum rules, etc., which are easily v
lated by other regularization schemes such as the proper-
one.~Still another choice for introducing regularization in
the model is to use the momentum-dependent constit
quark mass motivated from the instanton picture of QC
vacuum@10#. This possibility has been investigated in a r
cent paper by Golliet al. @11#. A physical motivation and a
general discussion on the regularization of the model can
found in a recent review on the chiral quark soliton model
Diakonov @12#.!

Recently, there was a controversial debate on the stab
of soliton solutions in the CQSM regularized with the Pau
Villars subtraction scheme@13,14#. It seems that the problem
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has been settled by now, since stable soliton solutions s
to exist at any rate if Pauli-Villars regularization is applied
quark seas only, not to the discrete bound state someti
called the valence quark orbital. Unfortunately, this is not
end of the story. In fact, soliton solutions of the CQSM wi
use of the Pauli-Villars regularization scheme were obtain
many years ago by Do¨ring et al. @15#. ~To be more precise
the model used by them is not the CQSM but the Namb
Jona-Lasinio model. In fact, they were forced to impose
ad hocnonlinear constraint for scalar and pseudoscalar m
son fields at a later stage of manipulation. Otherwise, t
would not have obtained any convergent solutions@16#.! The
fact that the single-subtraction Pauli-Villars scheme can
regularize the vacuum quark condensate was already no
in an earlier paper@17# as well as in this paper@15#. To
remove this divergence, which is necessary for obtainin
finite gap equation, Do¨ring et al. propose to add some coun
terterms, which depend on the meson fields, to the orig
effective action. It is very important to recognize that th
procedure is not workable within the CQSM, since th
counterterms reduce to mere constants under the chiral c
condition which we impose from the very beginning. Thu
one must conclude that the simplest Pauli-Villars sche
with the single-subtraction term is unable to fully get rid
the divergence of the vacuum quark condensate at leas
the nonlinear model. One should take this fact seriously,
cause it brings about trouble also in the physics of the sol
sector. To understand it, one has only to remember the
that the scalar quark density appearing in the soliton equa
of motion is expected to approach a finite and nonzero va
characterizing the vacuum quark condensate as the dist
from the soliton center becomes large@18#. This necessarily
means that the scalar quark density appearing in the so
equation of motion cannot also be free from divergences

The purpose of the present study is then twofold. On
one hand, we want to show that the single-subtraction Pa
Villars scheme is not a fully satisfactory regularizatio
©1999 The American Physical Society16-1
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scheme, and that at least one more subtraction term is
essary for a consistent regularization of the effective theo
This will be made convinced through the formal discuss
given in Sec. II and also the explicit numerical results sho
in Sec. III A. On the other hand, we also want to know t
regularization-scheme dependence of the CQSM throug
comparative analysis of typical static observables of
nucleon predicted by the two regularization schemes, i.e.,
Pauli-Villars one and the proper-time one. A discussion
this second issue will be given in Sec. III B. We then su
marize our conclusion in Sec. IV.

II. PAULI-VILLARS REGULARIZATION SCHEME

We begin with the effective Lagrangian of the chir
quark model with an explicit chiral symmetry breaking ter
as

LCQM5L01L 8, ~1!

whereL0 denotes the chiral symmetric part@19# given by

L05c̄@ i ]”2MUg5~x!#c ~2!

with

Ug5~x!5eig5t•p(x)/ f p5
11g5

2
U~x!1

12g5

2
U†~x!, ~3!

while

L 85
1

4
f p

2 mp
2 tr@U~x!1U†~x!22# ~4!

is thought to simulate a small deviation from the chir
symmetric limit. Here the trace in Eq.~4! is to be taken with
respect to flavor indices. From the fundamental viewpo
this form of effective action may not be enough to fully ta
account of the effect of explicit chiral symmetry violation
QCD. Still we would expect that the above Lagrangian p
vides us with some qualitative information about the eff
of explicit chiral symmetry breaking, though the main inte
est of the present study is not to see it.~Naturally, one could
have taken an alternative choice that introduces exp
chiral-symmetry-breaking effect in the form of quark ma
term. We did not do so, because of the reason explaine
the Appendix.!

The idea of the Pauli-Villars regularization can most e
ily be understood by examining the form of the effecti
meson action derived from Eq.~1! with the help of the stan-
dard derivative expansion:

Se f f@U#5Sf@U#1Sm@U#, ~5!

where

Sf@U#52 iNcSp ln~ i ]”2MUg5!

5E d4x$4NcM
2I 2~M ! tr~]mU]mU†!

1higher derivative terms%, ~6!
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Sm@U#5E d4x
1

4
f p

2 mp
2 tr@U~x!1U†~x!22#.

~7!

In Eq. ~6!, the coefficient

I 2~M ![2 i E d4k

~2p!4

1

~k22M2!2
~8!

of the pion kinetic term diverges logarithmically. In fact, b
introducing a ultraviolet cutoff momentuma that should
eventually be made infinity, one finds that

I 2~M !;
1

16p2
$ lna22 lnM221%. ~9!

This logarithmic divergence can be removed if one int
duces a regularized action as follows:

Se f f
reg@U#5Sf

reg@U#1Sm@U#, ~10!

where

Sf
reg@U#[Sf@U#2S M

M PV
D 2

Sf
M PV@U#. ~11!

Here Sf
M PV is obtained fromSf@U# with M replaced by the

Pauli-Villars regulator massM PV . Further requiring that the
above regularized action reproduce the correct normaliza
for the pion kinetic term, one obtains the condition

NcM
2

4p2
lnS M PV

M D 2

5 f p
2 , ~12!

which can be used to fix the regulator massM PV . Once the
effective action is regularized, the static soliton ener
should be a finite functional of the soliton profileF(r ) under
the standard hedgehog ansatzU(x)5exp@it• r̂F(r )#. Since
the soliton equation of motion is obtained from the station
condition of the static energy against the variation ofF(r ),
everything seems to be going well with the above sing
subtraction Pauli-Villars regularization procedure. Unfort
nately, this is not the case. To understand what the prob
is, we first recall the fact that the scalar quark density
pearing in the soliton equation of motion is expected to
proach a finite and nonzero constant characterizing
vacuum quark condensate as the distance from the so
center becomes large@18#. @This is a natural consequence
our demand that both of the soliton (B51) and vacuum
(B50) sectors must be described by the same~or single!
equation of motion.# On the other hand, it has been know
that the vacuum quark condensate contains quadratic d
gences that cannot be removed by the single-subtrac
Pauli-Villars scheme@15,17#. This then indicates that the
scalar quark density appearing in the soliton equation of m
tion cannot also be free from divergences.
6-2
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To get rid of all the troublesome divergences, we prop
here to increase the number of subtraction terms, ther
starting with the following action

Se f f
reg@U#5Sf

reg@U#1Sm@U#, ~13!

where

Sf
reg@U#[Sf@U#2(

i 51

N

ciSf
L i@U#, ~14!

with N being the number of subtraction terms. The logari
mic divergence of the original action is removed if the co
dition

12(
i 51

N

ci S L i

M D 2

50 ~15!

is satisfied. Similarly, the normalization condition~12! is re-
placed by

NcM
2

4p2 (
i 51

N

ci S L i

M D 2

lnS L i

M D 2

5 f p
2 . ~16!

The single-subtraction Pauli-Villars scheme corresponds
taking N51,L15M PV , and c15(M /M PV)2. This is natu-
rally the simplest case that satisfies both conditions~15! and
~16!.

To derive soliton equation of motion, we must first wri
down a regularized expression for the static soliton ene
Under the hedgehog ansatzp(x)5 f p r̂F(r ) for the back-
ground pion fields, it is obtained in the form

Estatic
reg @F~r !#5Ef

reg@F~r !#1Em@F~r !#, ~17!

where the meson part is given by

Em@F~r !#52 f p
2 mp

2 E d3x@cosF~r !21#, ~18!

while the fermion~quark! part is given as

Ef
reg@F~r !#5Eval1Evp

reg , ~19!

with

Eval5NcE0 , ~20!

Evp
reg5Nc(

n,0
~En2En

(0)!2(
i 51

N

ciNc

3 (
n,0

~En
L i2En

(0)L i !. ~21!

HereEn are the quark single-particle energies, given as
eigenvalues of the static Dirac Hamiltonian in the bac
ground pion fields:

Hun&5Enun&, ~22!
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with

H5
a•¹

i
1bM @cosF~r !1 ig5t• r̂sinF~r !#, ~23!

while the energiesEn
(0) denote the energy eigenvalues of t

vacuum Hamiltonian given by Eq.~23! with F(r )50 or U
51. Equation~19! means that the quark part of the sta
energy is given as a sum of the contribution of the discr
bound-state level and that of the negative energy Dirac c
tinuum. The latter part is regularized by subtracting from t
Dirac sea contribution a linear combination of the cor
sponding sum evaluated with the regulator massL i instead
of the dynamical quark mass.@En

L i in these subtraction term
are the eigenenergies of the Dirac Hamiltonian~23! with M
replaced byL i and with the same background pion field.#

Now the soliton equation of motion is obtained from th
stationary condition ofEstatic

reg @F(r )# with respect to the
variation of the profile functionF(r ):

05
dEstatic@F~r !#

dF~r !
54pr 2$2M @S~r !sinF~r !

2P~r !cosF~r !#1 f p
2 mp

2 sinF~r !%, ~24!

which gives

F~r !5arctanS P~r !

S~r !2 f p
2 mp

2 /M
D . ~25!

HereS(r ) andP(r ) are regularized scalar and pseudosca
densities given as

S~r !5Sval~r !1 (
n,0

Sn~r !2(
i 51

N

ci

L i

M (
n,0

Sn
L i~r !,

~26!

P~r !5Pval~r !1 (
n,0

Pn~r !2(
i 51

N

ci

L i

M (
n,0

Pn
L i~r !,

~27!

with

Sn~r !5
Nc

4pE d3x^nux&g0
d~ uxu2r !

r 2
^xun&, ~28!

Pn~r !5
Nc

4pE d3x^nux& ig0g5t• r̂
d~ uxu2r !

r 2
^xun&,

~29!

and Sval(r )5Sn50(r ) and Pval(r )5Pn50(r ), while Sn
L i(r )

and Pn
L i(r ) are the corresponding densities evaluated w

the regulator massL i instead of the dynamical quark mas
M. As usual, a self-consistent soliton solution is obtained
an iterative way. First by assuming an appropriate~though
arbitrary! soliton profileF(r ), the eigenvalue problem of th
Dirac Hamiltonian is solved. Using the resultant eigenfun
6-3
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tions and their associated eigenenergies, one can calc
the regularized scalar and pseudoscalar quark densitiesS(r )
and P(r ). Equation~25! can then be used to obtain a ne
soliton profileF(r ). The whole procedure above is repeat
with this new profileF(r ) until the self-consistency is satis
fied.

Now we recall an important observation made before. T
scalar quark densityS(r ) at spatial infinityr 5` with respect
to the soliton center should coincide with the scalar qu
density in the vacuum (B50) sector, which is nothing bu
the familiar vacuum quark condensate~per unit volume!

^c̄c&vac . That is, the following simple relation must hold:

^c̄c&vac 5
1

VE S~r 5`!d3r 5 S~r 5`!. ~30!

~Later, this relation will be checked numerically.! What we
must do now is to find necessary conditions for the subtr
tion constantsci andL i in the multisubtraction Pauli-Villars
scheme to make the vacuum quark condensate finite.
can be achieved by examining the expression of the vac
quark condensate obtained consistently with the sol
equation of motion:

^c̄c&vac
reg5^c̄c&vac2(

i 51

N

ci S L i

M D ^c̄c&vac
L i , ~31!

where

^c̄c&vac524NcME d3k

~2p!3

1

Ek
(0)

, ~32!

with Ek
(0)5(k21M2)1/2, while ^c̄c&vac

L i are obtained from

^c̄c&vac with the replacement ofM by L i . Using the inte-
gration formula

Ea d3k

~2p!3

1

Ak21M2
5

1

8p2
$2a22M2ln a21~122 ln 2!M2

1M2ln M2%, ~33!

with a being a ultraviolet cutoff momentum, we obtain

^c̄c&vac
reg52

NcM

2p2 H F12(
i 51

N

ci S L i

M D 2G2a2

2 FM22(
i 51

N

ci S L i

M D 2

L i
2G ln a2

1FM22(
i 51

N

ci S L i

M D 2

L i
2G ~122 ln 2!1M2ln M2

2(
i 51

N

ci S L i

M D 2

L i
2ln L i

2J , ~34!

which clearly shows that̂ c̄c&vac contains quadratic and
logarithmic divergences asa going to infinity. These diver-
01401
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e

k
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gences can, respectively, be removed if the subtraction c
stants are chosen to satisfy the following conditions:

M22(
i 51

N

ciL i
250, ~35!

M42(
i 51

N

ciL i
450. ~36!

Using the first of these conditions, the finite part of^c̄c&vac
can also be expressed as

^c̄c&vac5
NcM

3

2p2 (
i 51

N

ci S L i

M D 4

lnS L i

M D 2

. ~37!

It is now obvious that the single-subtraction Pauli-Villa
scheme cannot satisfy both conditions~35! and~36! simulta-
neously. Although the quadratic divergence may be
moved, the logarithmic divergence remains in^c̄c&vac and
consequently also inS(r 5`) in view of relation~30!. To get
rid of both these divergences, we need at least two subt
tion terms, which contain four parametersc1 ,c2 andL1 ,L2.
The strategy for fixing these parameters is as follows. F
by solving the two equations~35! and~36! with N52 for c1
andc2, we obtain

c15S M

L1
D 2L2

22M2

L2
22L1

2
, ~38!

c252S M

L2
D 2L1

22M2

L2
22L1

2
, ~39!

which constrains the values ofc1 and c2, onceL1 and L2
are given. For determiningL1 andL2, we can then use two
conditions ~16! and ~37!, which amounts to adjusting th
normalization of the pion kinetic term and the value
vacuum quark condensate.

III. NUMERICAL RESULTS AND DISCUSSION

A. Single- versus double-subtraction Pauli-Villars
regularization

The most important parameter of the CQSM is the d
namical quark massM, which plays the role of the quark
pion coupling constant, thereby controlling basic solit
properties. Throughout the present investigation, we use
valueM5400 MeV favored from previous analyses of sta
baryon observables. In the case of the single-subtrac
Pauli-Villars scheme, the regulator massM PV is uniquely
fixed to beM PV5570.86 MeV by using the normalizatio
condition~12! for the pion kinetic term, and there is no oth
adjustable parameter in the model. In the case of the dou
subtraction Pauli-Villars scheme, we have four regularizat
parametersc1 ,c2 ,L1, and L2. From the divergence-free
conditions~35! and ~36!, c1 and c2 are constrained as Eqs
~38! and ~39!, while L1 and L2 are determined from Eqs
6-4
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FIG. 1. Thekmax dependence of the scalar quark densityS(r ) and the pseudoscalar densityP(r ) in the single-subtraction Pauli-Villars
scheme.
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~16! and ~37! with f p593 MeV and ^c̄c&vac5
2(286.6 MeV)3. In spite of their nonlinearity, the two con
ditions ~16! and ~37! are found to uniquely fix the two pa
rametersL1 and L2 within the physically acceptable rang
of parameters. The solution that we found is

c150.445, c2520.00612,

L15630.01 MeV, L251642.13 MeV. ~40!

As usual, all the numerical calculations are carried out
using the so-called Kahana-Ripka basis@20#. Following
them, the plane-wave basis, introduced as a set of eigens
of the free HamiltonianH05a•¹/ i 1bM , is discretized by
imposing an appropriate boundary condition for the rad
wave functions at the radiusD chosen to be sufficiently
larger than the soliton size. The basis is made finite by
cluding only those states with the momentumk as k
,kmax. The eigenvalue problem~22! is then solved by di-
agonalizing the Dirac HamiltonianH in the above basis. We
01401
y

tes

l

-

are thus able to solve the self-consistent Hartree problem
also to calculate any nucleon observables with full inclus
of the sea-quark degrees of freedom. If the theory is con
tently regularized, final answers must be stable against
crease ofkmax and D ~especially against the increase
kmax). Now we show in Fig. 1 thekmax dependence of the
theoretical pseudoscalar and scalar quark densities in
single-subtraction Pauli-Villars scheme. These curves are
tained for a fixed value ofD asMD512. The corresponding
kmax dependence of the quark densities in the doub
subtraction Pauli-Villars scheme is shown in Fig. 2. Comp
ing the two figures, one immediately notices that the qu
densities obtained in the single-subtraction Pauli-Villa
scheme do not cease to increase in magnitude askmax grows.
Undoubtedly, this must be a signal of logarithmic dive
gences contained inS(r 5`) @and generally also inP(r ) and
S(r )]. On the other hand, in the case of the doub
subtraction Pauli-Villars scheme, the magnitudes ofP(r )
andS(r ) are seen to grow much more slowly. To convin
ourselves more clearly of the above qualitative difference
FIG. 2. Thekmax dependence of the scalar quark densityS(r ) and the pseudoscalar densityP(r ) in the double-subtraction Pauli-Villars
scheme.
6-5
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FIG. 3. The scalar quark densities at the spatial infinityS(r 5`) as functions ofkmax/M and as functions of ln(kmax/M) in the single- and
double-subtraction Pauli-Villars schemes.
o
as

h
lu
i
o

in
th

ul
s

i
w

th
th
he

o
ark

mi-
the

is

tion

n
lly
the two regularization schemes, we plot in Fig. 3 the value
S(r 5`), i.e., the scalar quark density at spatial infinity,
functions ofkmax and also as functions of ln(kmax/M). Con-
trary to the case of the single-subtraction scheme in whic
clear signal of logarithmic divergence is observed, the va
of S(r 5`) obtained in the double-subtraction scheme
seen to converge to some limiting value. Although the rate
this convergence is rather slow, it appears that this limit
value certainly coincides with the prescribed value of
vacuum quark condensatêc̄c&vac52(286.6 MeV)35
23.062 fm23.

Now that one is convinced of the fact that the naive Pa
Villars scheme with the single-subtraction term contain
logarithmic divergence in the quark densities appearing
the soliton equation of motion, one may come to the follo
ing question. Why could the authors of Ref.@12# obtain self-
consistent soliton solutions despite the presence of
above-mentioned divergences? The answer lies in
method of obtaining a self-consistent soliton profile in t
01401
f
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nonlinear model~not in the original Nambu–Jona-Lasini
model!. After evaluating the pseudoscalar and scalar qu
densities with some~large but! finite model space~especially
with finite kmax), a new profile functionF(r ) to be used in
the next iterative step is obtained from Eq.~25!. SinceP(r )
andS(r ) appear, respectively, in the numerator and deno
nator of the argument of arctangents, it can happen that
logarithmic divergences contained in bothP(r ) andS(r ) are
offset from each other.~We point out that the effect of the
term f p

2 mp
2 /M accompanying the scalar quark density

rather small, anyway.! In fact, Fig. 4 shows thekmax depen-
dence of the self-consistent profile functionF(r ) in both the
single-subtraction scheme and the double-subtrac
scheme. One sees that the resultantF(r ) is quite stable
against an increase ofkmax even in the single-subtractio
scheme, in spite of the fact that it shows logarithmica
divergent behavior for bothP(r ) and S(r ). Undoubtedly,
this is the reason why the authors of@15# succeeded in ob-
taining a self-consistent soliton profileF(r ) despite the di-
he
FIG. 4. Thekmax dependence of the self-consistent soliton profilesF(r ) in the single- and double-subtraction Pauli-Villars schemes. T
curves with differentkmax are almost indistinguishable.
6-6
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CHIRAL QUARK SOLITON MODEL WITH PAULI- . . . PHYSICAL REVIEW D 60 014016
vergences remaining in each ofP(r ) and S(r ). Because of
this fortunate accident, self-consistent soliton profilesF(r )
in the nonlinear model can be obtained with a good accur
by using a modest value ofkmax not only for the double-
subtraction scheme but also for the single-subtraction o
and besides the resultantF(r ) are not much different in thes
two schemes. This also applies to most nucleon observa
which depend only onF(r ) and have no direct dependen
on S(r ) and/orP(r ). The previous calculation of parton dis
tributions with use of the single-subtraction Pauli-Villa
scheme may be justified in this sense. To verify the valid
of this expectation, we investigate thekmax dependence of a
typical nucleon observable which contains only a logarithm
divergence, i.e., the isovector axial-vector coupling cons
gA

(3) . Figure 5 show thekmax dependence ofgA
(3) in the

single- and double-subtraction Pauli-Villars regularizati
schemes. One sees that this quantity certainly shows a
dency of convergence in both regularization schemes, tho
the rate of convergence in the double-subtraction schem
much faster than for the scalar and pseudoscalar densiti
the same regularization scheme. Nonetheless, one mu
very careful if one is interested in nucleon observabl
which have a direct dependence onS(r ) or P(r ). The most
important nucleon observable, which falls into this catego
is the nucleon scalar charge~or the quark condensate in th
nucleon! given by

^Nuc̄cuN&[E d3r @S~r !2S~r 5`!#. ~41!

The superiority of the double-subtraction scheme to
single-subtraction one must be self-explanatory in this ca
since this quantity is convergent only in the former schem

B. Pauli-Villars versus proper-time regularization

How to introduce an ultraviolet cutoff into our effectiv
chiral theory is a highly nontrivial problem. Diakonovet al.

FIG. 5. Thekmax dependence of the nucleon isovector axi
chargesgA

(3) in the single- and double-subtraction Pauli-Villa
schemes.
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advocated the Pauli-Villars subtraction scheme as a ‘‘goo
regularization scheme for evaluating leading-twist par
distribution functions of the nucleon within the chiral qua
soliton model@1,2#. The reason is that it preserves seve
general properties of the parton distributions~such as posi-
tivity, factorization properties, sum rules, etc.!, which can
easily be violated by a naive ultraviolet regularization. O
the other hand, Schwinger’s proper-time regularization
most frequently been used for investigating low ener
nucleon properties within the chiral quark soliton mod
@7–9#. One might then wonder how these predictions o
tained by using the proper-time regularization scheme
altered if one uses the Pauli-Villars one.

Before entering into this discussion, we think it useful
recall some basic properties of the proper-time regulariza
scheme. In this scheme, the regularized effective meson
tion takes the same form as Eq.~10! except thatSf

reg@U# is
now given in the form

Sf
reg@U#5

1

2
iNcE

0

`dt

t
w~t! Sp~e2tD†D2e2tD0

†D0!,

~42!

with

D5 i ]”2MUg5, D05 i ]”2M . ~43!

The regularization functionw(t) is introduced so as to cu
off ultraviolet divergences which now appear as a singula
at t50. For determining it, we can use a similar criterion
what was used in the Pauli-Villars scheme. That is, we
quire that the regularized theory reproduce the correct n
malization of the pion kinetic term as well as the empiric
value of the vacuum quark condensate. This gives two c
ditions @21#

NcM
2

4p2 E
0

`dt

t
w~t!e2tM2

5 f p
2 , ~44!

NcM

2p2 E0

`dt

t2
w~t!e2tM2

5^c̄c&vac .

~45!

Schwinger’s original choice corresponds to taking

w~t!5uS t2
1

L2D , ~46!

with L being a physical cutoff energy. However, this sim
plest choice cannot satisfy the two conditions~44! and ~45!
simultaneously. Then, we use here a slightly more com
cated form as

w~t!5cuS t2
1

L1
2D 1~12c!uS t2

1

L2
2D , ~47!

which contains three parametersc, L1, and L2 @22#. Al-
though the above two conditions are not enough to uniqu
6-7
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fix the above three parameters, we find that solution s
(c,L1 ,L2) lie only in a small range of parameter space a
that this slight difference of regularization parameters har
affects the soliton properties. We use the following set
parameters in the numerical investigation below:

c50.720, L15412.79 MeV, L251330.60 MeV.
~48!

Within the framework of the chiral quark soliton mode
which assumes slow collective rotation of a hedgehog sol
as

Ug5~x,t !5A~ t !U0
g5~x!A†~ t !, A~ t !,SU~2!, ~49!

the nucleon matrix element of any quark bilinear opera
c̄Oc is given as a perturbative series in the collective an
lar velocity operatorV defined by

V5 iA†~ t !
d

dt
A~ t !. ~50!

It is shown below that a noteworthy difference between
proper-time regularization and the Pauli-Villars one appe
at the zeroth order term inV. We recall that, in both
schemes, theO(V0) contribution to this matrix element i
given as

^O&V0
5E DACMJMT

(J)* @A#^O&A
V0

CMJMT

(J) @A#, ~51!

with

^O&A
V0

5^O&val
V0

1^O&vp
V0

, ~52!

whereCMJMT

(J) @A# is a wave function describing the collec

tive rotational motion. In Eq.~53!,

^O&val
V0

5Nc^0uÕu0&, with Õ5A†OA, ~53!

represents the contribution of the discrete bound-state l
called the valence-quark one. Within the Pauli-Villa
scheme, the contribution of the Dirac continuum can
given in either of the following two forms:
01401
ts
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^O&vp
V0

5Nc(
n,0

^nuÕun&2Pauli-Villars subtraction

52Nc(
n>0

^nuÕun&2Pauli-Villars subtraction.

~54!

Note that the first form is given as a sum over the occup
single-quark levels, while the second form given as a s
over the nonoccupied levels. The equivalence of the two
pressions follows from the identity

05SpÕ5 (
n,0

^nuÕun&1 (
n>0

^nuÕun&, ~55!

which holds for most operators including the isovector ma
netic moment operator investigated below, if it is combin
with the fact that a similar identity holds also for the corr
sponding Pauli-Villars subtraction terms. The situation is
little different for the proper-time regularization scheme. T
regularized Dirac sea contribution in this scheme is given
the following form @8#:

^O&vp
V0

52
Nc

2 (
n5all

sgn~En!g~En!^nuÕun&, ~56!

with

g~En!5
1

Ap
E

0

` dt

At
uEnue2tEn

2
. ~57!

To compare this with the corresponding expression in
Pauli-Villars scheme, it is convenient to rewrite it as

^O&vp
V0

5
1

2 H Nc(
n,0

g~En!^nuÕun&2Nc(
n>0

g~En!^nuÕun&J .

~58!

One sees that here the answer is given as an average o
two expressions, i.e., the one given as a sum over the o
pied levels and the others given as a sum over the nono
pied levels.~This feature is a consequence of the start
covariant expression for an operator expectation value in
proper-time scheme.! However, contrary to the previous cas
in which ultraviolet regularization is introduced in the for
of the Pauli-Villars subtraction, now there is no reason
one
parts
TABLE I. The static soliton energy in the proper-time regularization scheme and the~double-subtraction!
Pauli-Villars one.Eval andEv.p.

reg , respectively, stand for the valence quark contribution and the Dirac sea
to the fermionic energy, whileEm represents the mesonic part of the energy. The sum of these three
gives the total static energyEstatic

reg .

Eval @MeV# Ev.p.
reg @MeV# Em @MeV# Estatic

reg @MeV#

Proper-time (mp5138 MeV) 633.0 617.6 37.2 1287.9
Pauli-Villars (mp5138 MeV) 447.6 569.2 51.3 1068.1

Proper-time (mp50 MeV) 555.6 688.6 0 1244.2
Pauli-Villars (mp50 MeV) 351.5 655.4 0 1006.9
6-8
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CHIRAL QUARK SOLITON MODEL WITH PAULI- . . . PHYSICAL REVIEW D 60 014016
believe that the above two terms give the same answe
fact, the introduction of the energy dependent cutoff fac
g(En) generally breaks the equivalence of the two expr
sions because of the spectral asymmetry of the positive-
negative-energy levels induced by the background pion fi
of hedgehog form.

Now we start a comparative analysis of the two regul
ization schemes on the basis of the numerical results.
reference, we also solve the soliton equation of motion in
chiral limit. By assuming no~or at least weak! mp depen-
dence of^c̄c&vac appearing in Eqs.~16! and ~37!, this cal-
culation can be done by settingmp50 in Eq. ~18! and ~25!
without changing the sets of regularization parameters gi
in Eq. ~40! and ~48!. Since the method of cutting off th
ultraviolet component is totally different for the two regula
ization schemes, it naturally affects solutions of the soli
equation of motion. Although the detailed contents of t
soliton energy are highly model-dependent concepts and
not direct observables, they are anyhow very sensitive to
difference of the self-consistent solutions. Table I shows
comparison. Comparing the answers of the two regular
tion schemes, one finds that the Pauli-Villars scheme lead
a more strongly deformed soliton, which means a dee
binding of the discrete valence level and larger vacuum
larization energy. One sees that the total soliton energ
lower for the Pauli-Villars scheme than for the proper-tim
scheme. One also observes that the soliton energy is
sensitive to the pion mass. When one goes from the fi
pion mass case to the chiral limit, one obtains much low
soliton energy.

Probably, the most important observable which has str
sensitivity to the above difference of the self-consistent
lutions is the flavor-singlet axial charge or the quark s

TABLE II. The quark spin content of the nucleon^S3& in the
proper-time regularization scheme and the Pauli-Villars one.

^S3&val ^S3&v.p. ^S3&

Proper-time (mp5138 MeV) 0.484 0.005 0.489
Pauli-Villars (mp5138 MeV) 0.391 0.008 0.399

Proper-time (mp50 MeV) 0.374 0.007 0.380
Pauli-Villars (mp50 MeV) 0.286 0.011 0.298
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content of the nucleon̂S3&. The theoretical predictions fo
this quantities in the two regularization schemes are sho
in Table II. In evaluating this quantity, we did not introduc
any regularization, because it is related to the imaginary p
of the ~Euclidean! effective action and is convergent itsel
This means that the difference between the two sche
purely comes from that of the self-consistent solutions. O
sees that the Pauli-Villars scheme leads to smaller quark
content. The reason can easily be understood. Within
framework of the chiral-quark soliton model, the rest of t
nucleon spin is carried by the orbital angular momentum
quark fields and this latter portion increases as the defor
tion of the soliton becomes larger@8#. A similar tendency is
also observed when one goes from the finite pion mass
to the chiral limit.

There are different kinds of nucleon observables, wh
contain ~potential! logarithmic divergence and thus depen
directly on how they are regularized. Most typical are t
O(V0) contribution to the isovector axial-vector couplin
constantgA

(3) and the isovector magnetic momentmV of the
nucleon. Let us first show the results for the isovector m
netic moment, since it turns out to have stronger depende
on the choice of the regularization scheme. Table III sho
the O(V0) contribution to the isovector magnetic momen
For each regularization scheme, the second column re
sents the answer obtained with the occupied express
while the third column gives the answer obtained with t
nonoccupied one. In the case of the Pauli-Villars scheme,
equivalence of the two expressions is nicely confirmed
the explicit numerical calculation. In the case of the prop
time scheme, however, we encounter quite a different si
tion. First, the answer obtained with the occupied express
is about 30% larger than the corresponding answer of
Pauli-Villars scheme, while the answer obtained with t
nonoccupied expression is about 80% smaller than the
swer obtained with the occupied one. Since the final ans
of the proper-time scheme is given as an average of the
cupied and nonoccupied expressions, the consequence is
the prediction of the proper-time scheme for theO(V0) con-
tribution tomV is about 14% smaller than the correspondi
prediction of the Pauli-Villars scheme.~See the fourth col-
umn of Table III.! Note that the difference between the tw
regularization schemes becomes much more drastic w
one goes to the chiral limit. This is due to the fact that t
time
contri-

tions,
age of
TABLE III. The O(V0) contributions to the isovector magnetic moment of the nucleon in the proper-
regularization scheme and the Pauli-Villars one. The second column represents for the valence quark
bution. The third and fourth columns stand for the answers for the vacuum polarization contribu
respectively, obtained with occupied and nonoccupied formulas, while the fifth column gives the aver
the two answers. The totalO(V0) contributions are shown in the sixth column.

mval
(3) (V0) mv.p.

(3)reg(V0) m (3)(V0)
Occupied Nonoccupied Average

Proper-time (mp5138 MeV) 1.611 1.312 0.210 0.761 2.372
Pauli-Villars (mp5138 MeV) 1.762 0.996 0.996 0.996 2.759

Proper-time (mp50 MeV) 1.623 1.908 0.588 1.248 2.875
Pauli-Villars (mp50 MeV) 1.810 1.738 1.738 1.738 3.547
6-9



of the

T. KUBOTA, M. WAKAMATSU, AND T. WATABE PHYSICAL REVIEW D 60 014016
TABLE IV. The final predictions for the isovector magnetic moment of the nucleon, given as sums
O(V0) andO(V1) contributions.

m (3)(V0) m (3)(V1) m (3)(V01V1)

Proper-time (mp5138 MeV) 2.372 1.072 3.445
Pauli-Villars (mp5138 MeV) 2.759 1.211 3.970

Proper-time (mp50 MeV) 2.875 1.032 3.907
Pauli-Villars (mp50 MeV) 3.547 1.182 4.729
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O(V0) vacuum polarization contribution to the isovect
magnetic moment is extremely sensitive to the pion m
effect such that it is much larger in the chiral limit.

Before comparing our theoretical predictions with the o
served isovector magnetic moment of the nucleon, we m
take account of theO(V1) contribution, too, since it is
known to give a sizable correction to the leading-order re
@23,24#. Although we do not go into details here, it turns o
that thisO(V1) piece is not so sensitive to the difference
the regularization scheme as theO(V0) piece is. The reason
is that thisO(V1) term is given as a double sum over th
occupied levels and the nonoccupied ones and the form
has some symmetry under the exchange of these two typ
single-quark orbitals@25#. The final predictions for the
nucleon isovector magnetic moment obtained as a sum o
O(V0) and O(V1) contributions are shown in Table IV
After all, the prediction of the Pauli-Villars scheme is abo
15% larger than that of the proper-time scheme and a l
closer to the observed moment. The effect is much m
drastic in the chiral limit. The prediction of the Pauli-Villar
scheme is about 20% larger than that of the proper-t
scheme and nearly reproduces the observed isovector
netic moment of the nucleon, i.e.,mexpt

(3) .4.71.
Finally, we show in Table V the predictions for the i

ovector axial charge of the nucleon obtained as a sum of
O(V0) and O(V1) contributions. Also for this quantity
there are some detailed differences between the predic
of the two regularization schemes. Nonetheless, the final
swers forgA

(3) turn out to be not so sensitive to the differen
of the regularization schemes as compared with the cas
the isovector magnetic moment. Besides, one also not
that the finite pion mass effect hardly influences the fi
prediction for this particular quantity.

IV. CONCLUSION

In summary, the single-subtraction Pauli-Villars regula
ization scheme, which is often used in evaluating nucle

TABLE V. The final predictions for the isovector axial-couplin
constant of the nucleon, given as sums of theO(V0) and O(V1)
contributions.

gA
(3)(V0) gA

(3)(V1) gA
(3)(V01V1)

Proper-time (mp5138 MeV) 0.848 0.412 1.260
Pauli-Villars (mp5138 MeV) 0.976 0.408 1.384

Proper-time (mp50 MeV) 0.921 0.348 1.269
Pauli-Villars (mp50 MeV) 1.054 0.344 1.398
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structure functions within the framework of the CQSM, ca
not be regarded as a fully consistent regularization schem
that it still contains ultraviolet divergences in the scalar a
psuedoscalar quark densities appearing in the soliton e
tion of motion. However, these divergences can easily
removed by increasing the number of subtraction terms fr
1 to 2. After this straightforward generalization, the effecti
theory is totally divergence free. Especially, both the vacu
quark condensate and the isoscalar piece of the nucleon
lar charge become finite now. Nonetheless, we find that,
ing to the accidental cancellation explained in the text, o
can obtain a finite soliton profileF(r ) even in the single-
subtraction scheme, and besides the resultant soliton solu
is not extremely different from the corresponding one o
tained in the double-subtraction scheme. Furthermore
turns out that, for most nucleon observables, which con
only the logarithmic divergence, the predictions of the tw
regularization schemes are not much different. The previ
calculations of quark distribution functions with use of th
single-subtraction Pauli-Villars regularization scheme wo
be justified in this sense.

We have also carried out a comparative analysis of typ
nucleon observables based on the Pauli-Villars regulariza
scheme and the proper-time one. A nice property of
Pauli-Villars regularization scheme, which is not posses
by the proper-time one, is that it preserves a nontrivial sy
metry of the original theory, i.e., the equivalence of the o
cupied and nonoccupied expressions forO(V0) contribu-
tions to nucleon observables. The improvement obtained
the isovector magnetic moment of the nucleon was show
be related to this favorable property of the Pauli-Villars reg
larization scheme. How to introduce an ultraviolet cutoff in
an effective low energy model should in principle be predi
able from the underlying QCD dynamics. For lack of prec
information about it, however, phenomenology must prov
us with an important criterion for selecting regularizatio
schemes. The regularization scheme based on the P
Villars subtraction appears to be a good candidate also in
respect.
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APPENDIX: EFFECTIVE LAGRANGIAN WITH CURRENT
QUARK MASS

The effective Lagrangian of the chiral-quark model w
nonzero current quark mass is given by

L5c̄@ i ]”2MUg5~x!2m0#c. ~A1!

We want to explain below what complication arises wh
regularizing the above Lagrangian in the Pauli-Villars su
traction scheme. Let us begin with the unregularized eff
tive meson action corresponding to the above Lagrangia

Se f f52
1

2
iNc$Sp lnD†D2Sp lnD0

†D0%, ~A2!

where

D†D5]21M̄21m0M ~Ug51Ug5
1

22!1 iM ]”Ug5,
~A3!

D0
†D05]21M̄2. ~A4!

Here

M̄[M1m0 ~A5!

denotes the quark mass in the physical vacuum (Ug551). As
will become clear soon, the fact that bothM andM̄ appear in
Eq. ~A3! makes the regularization in the Pauli-Villa
scheme rather complicated. Before discussing why it is
let us first show that the regularization in the proper-tim
scheme can be done without any problem. The regulariza
function w(t) in this scheme is usually determined by t
combined use of the derivative expansion and the pertu
tive expansion inm0. The condition that reproduces the co
rect normalization of the pion kinetic term is given by

NcM
2

4p2 E
0

`dt

t
w~t!e2tM̄2

5 f p
2 . ~A6!

On the other hand, the correct normalization of the pion m
term is reproduced if the following condition is satisfie
@21#:

m0

NcM

2p2f p
2 E0

`dt

t2
w~t!e2tM̄2

5mp
2 . ~A7!

We also require that the vacuum quark condensate be fi
which gives

NcM̄

2p2 E0

`dt

t2
w~t!e2tM̄2

52^c̄c&vac . ~A8!

What is noticeable here is that a common integral appea
Eqs. ~A7! and ~A8!, thereby ensuring, irrespective of th
form of w(t), the identity
01401
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m0^c̄c&vac52S M̄

M
D f p

2 mp
2 ~A9!

or, equivalently,

m0^c̄c&vac52S 11
m0

M D f p
2 mp

2 . ~A10!

Except for the higher order correction inm0 /M , this is es-
sentially the celebrated Gell-Mann–Oakes–Renner rela
@18#. After all, the cutoff functionw(t) in the proper-time
scheme can be determined so as to satisfy the two condit
~A6! and~A7!, for a given value ofm0 or ^c̄c&vac , which is
consistent with Eq.~A10!.

Next, we turn to the Pauli-Villars scheme. The regulariz
action in this scheme is defined by

Se f f
reg5Sf@U#2(

i 51

N

ciSf
L i@U#, ~A11!

with

Sf@U#52 iNc Sp ln~ i ]”2MUgs2m0!, ~A12!

while Sf
L i@U# is obtained fromSf@U# with the replacement

of the dynamical quark massM by the regulator massL i .
Now we can proceed as before. In order to reproduce
pion kinetic term, we need the following two conditions:

M22(
i 51

N

ciL i
250, ~A13!

Nc

4p2 (
i 51

N

ciL i
2lnS L̄

M̄
D 2

5 f p
2 , ~A14!

with the definitionL̄ i[L i1m0. Here, the first condition is
necessary for removing logarithmic divergence. Next,
pion mass term is reproduced under the following con
tions:

M2(
i 51

N

ciL i50, ~A15!

MM̄22(
i 51

N

ciL iL̄ i
250, ~A16!

m0

NcM̄
3

2p2 (
i 51

N

ciS L i

M̄
D S L̄ i

M̄
D 2

lnS L̄ i

M̄
D 2

52 f p
2 mp

2 .

~A17!

Here, the first and second conditions are, respectively,
removing quadratic and logarithmic divergences. Finally,
finite value of the vacuum quark condensate is obtained w
the conditions

MM̄2(
i 51

N

ciL iL̄ i50, ~A18!
6-11
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MM̄32(
i 51

N

ciL iL̄ i
350,

~A19!

NcM̄
3

2p2 S M̄

M
D(

i 51

N

ciS L i

M̄
D S L̄ i

M̄
D 3

lnS L̄ i

M̄
D 2

5^c̄c&vac .

~A20!

Among the five conditions~A13!, ~A15!, ~A16!, ~A18!, and
~A19!, which are to remove ultraviolet divergences, not all
them are independent. In fact, one can easily verify that t
reduce to the following four conditions:

(
i 51

N

ciL i5M , ~A21!

(
i 51

N

ciL i
25M2, ~A22!

(
i 51

N

ciL i
35M3, ~A23!
,

,

o

B

C

pp

K

n-

01401
f
y

(
i 51

N

ciL i
45M4. ~A24!

Here we point out that different powers ofL̄ i /M̄ appear in
Eqs. ~A17! and ~A20!. @We recall that these two condition
~A17! and ~A20!, respectively, correspond to Eqs.~A7! and
~A8! in the proper-time regularization scheme.# This appears
to originate from the fact that relation~A17! is obtained from
the perturbative expention inm0, thereby containing the pa
rameterm0 with mass dimension, while Eq.~A20! does not.
As a consequence, the Gell-Mann–Oakes–Renner rela
does not follow automatically, i.e., for an arbitrary choice
the regularization parametersci andL i . This is in contrast to
the proper-time regularization scheme in which the sa
identity holds irrespective of the form of the cutoff functio
w(t).

To sum up, it seems that consistent regularization of
effective Lagrangian~A1! with the finite current quark mas
within the framework of the Pauli-Villars subtraction schem
demands that four finiteness conditions~A21!, ~A22!, ~A23!,
and ~A24! and three normalization conditions~A14!, ~A17!,
and~A20! be satisfied. This means that we need at least f
subtraction terms with eight parameters (ci and L i with i
51, . . .,4). We are not yetsure whether there is a reaso
able set of parameters which satisfies all the above co
tions.
.
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