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We show that the off-diagon#&br skewedl parton distributions are completely determined at smalhd ¢
by the (conventional diagonal partons. We present predictions which can be used to estimate the off-diagonal
distributions at smalk and £ at any scale[S0556-282(199)02113-X

PACS numbd(s): 13.60.Hb, 13.88te, 14.20.Dh

[. INTRODUCTION Here we demonstrate how, in the phenomenologically im-
portant small¢ region (for t—0), the off-diagonal distribu-

Precision data are becoming available for hard scatteringjons are determined unambiguously in terms of the small
processes whose description requires knowledge of offeehavior of the(conventional diagonal partons which is
diagonal(or so-called “skewed) parton distributions. Par- known from experiment. We therefore have the attractive
ticularly relevant processes are the diffractive production ofpossibility to include data described by off-diagonal distribu-
vector mesons and of high jets in high energy electron- tions in a global parton analysis to better constrain the small
proton collisions. x behavior of the diagonal distributions.

We shall use the “off-forward” distributions

HE) =H (X, £.t 2) II. OFF-DIAGONAL DISTRIBUTIONS IN TERMS
6= S L OF CONFORMAL MOMENTS

with support —1<x<1 introduced by Ji{1-3], with the In terms of the operator product expansi@PE the evo-
minor difference that the gluohlg:xHéi_ They depend on lution of the off-diagonal distributions may be viewed as the
the momentum fractions; ,=x= ¢ carried by the emitted renormalisation of the matrix elemer@N=<p’|()N|p) of
and absorbed partons at each sgadeand on the momentum the conformal(Ohrndorf[6]) operators, wherg andp’ are
transfer variablé= (p—p’)?; see Fig. 1. The values 6fand  the momenta of the incoming and outgoing protons. For the
§=(X1—X)/2 do not change as we evolve the parton distri-quark, the leading twist operat@y is of the form

butions up in the scal@?. That ist and ¢ lie outside the
evolution. In the limité—0 the distributions reduce to the

N
conventional diagonal distributions éq:E N|[N+2 KNk ?)
o\ k/\k+1) R
q(x) for x>0,
Hq(x,0)= —q(—x) for x<0, where the derivativeg, and dg act on the left and right

quarks in Fig. 1. As a consequence the quark matrix element
takes the form

Hg(x,0)=xg(X). (2)
Detailed reviews of off-diagonal distributions can be found, 0d= fl AR (% %) H (X 3
for example, in Refs[3-5]. NT RO X2 Hq(x.€) @

It is usual to anticipate that thé dependence oH is
controlled by the non-perturbative startitigput) distribu-
tion at some low scal@.®=Qj3. However here we wish to
explore the possibility that, in the smallé<1 region, the
“skewed” off-diagonal behavior comes mainly from the
evolution. Indeed we expect this to be the case. At each step
of the evolution the momentum fraction carried by parion
(i=1,2) decreases. So when the evolution length is suffi-
ciently large[i.e. IN@QYQ3)>1], the important values ok
~Xg of the input (u2=Q§), which control the behavior in
the x~ ¢ domain at the high scaleuf=Q?), will satisfy
Xo>¢&. Clearly we can neglect thé dependence in thg,
region and start evolving from purely diagonal partons with  FIG. 1. A schematic diagram showing the variables for the off-
X1=Xo. diagonal parton distributiokl (x, &) wherex; ,=x=*¢.

with x; ,=x=* &, where the polynomialp7]
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N+2

1
i1 Xixy K, (4) H(X,§)=f_ldX’/C(X.é;X’)f(X’). (11)

N
N

Ry=
N kZO(k

In other words the polynomial®y(x;,x,) are the basis where, for quarks, the kernel is given by
which specifies the conformal momerid, . In the diagonal

limit, with x;=X,, EqQ. (3) reduces to the well-known mo- 1 B
rIneImSWI X1=Xz, Eq. (3) redu W W ICq(x,g;x’)=——Imf ds(1—y(s)x")"%? (12
m|x'|  Jo
1 .
Mﬂ,zf xNg(x)dx. (5  with
0
4s(1-5)
Unlike the commonxN basis in the diagonal case, the gluon y(s)= XTE1=29)" (13
and quark polynomial bases differ from each other. For the
gluon we have To gain insight into the Shuvaev prescription we repeat that,
NN N+4 from a theoretical OPE point of view, it is best to analyze
Rgzz ( sy N =K 6 experimental data for processes described by off-diagonal
N k) k+2) 72 distributions in terms of the conformal momeridg, of Eq.
) ] (3) which diagonalize thgLO) evolution. However, phe-
to be compared with the quark polynomials of B4). ~ nomenologically it is more convenient to work in terms of
Recall that the off-diagonal distributions are symmetric intpe off-diagonal parton distributions themselves. The Shu-
§[2,3]: vaev transforn(10) and(11) performs the necessary inverse
of Eq. (3) at any fixedé,t and u?; that is it enable$d (x,
Hi(x, )= Hi(x,— &) @ 9-(3) at any fxede.t and (6)

to be constructed fronDy(&). So far this is just a math-

with i =q or g. This is just the left-right ok« x, symmetry ~ €matical procedure. The crucial physical step is to relate the
of Fig. 1. In terms of thex variable the symmetry relations auxiliary functionf(x’) directly to the diagonal partons. It is

are easy to show, fog<1, thatf(x’) in fact reduces to a diag-
onal parton distribution. Indeed the conformal moments may
Ha(x, &)= —Hg(—x,é), be expressed in the form
[(N+1)/2]
Ha(x,6)=Hg(—x,é),
‘ ‘ On(&)= 2 O™ (14)

Hg(xag):Hg(_xag) (8)
) ) ) which embodies the “polynomial condition” that the power
for the quark singlet, non-singlet and gluon respectively. of & should be at most of the order df+ 1. For £<1 we
The conformal moment®y have the advantage that they ..o

are not mixed, at least at LO, during the off-diagonal evolu-

tion, but simply get multiplicatively renormalizéd On(£)=0po=On(0). (15)
0,(Q?)=0p(Q2) _2 ™ ©) Now, up to the trivial normalization factdRy(1,1), the di-
n(Q7)=On(Qp Q2 agonal momenOy(0) is equal to thexN moment of the

diagonal parton distribution. So f@gr<1 we can putf4(x’)
with the same anomalous dimensigq as in the diagonal =d(x’) in Eq. (11), and then use Eq12) to determine the
case. The problem of how to restore the analytic off-diagonabff-diagonal distributionH(x,§) in terms of the conven-
distribution H(x, &) from knowledge of its conformal mo- tional quark distribution. In this limit the kerndl just be-
mentsOy(€) of Eq. (3) has been solved recently by Shuvaevcomes a non-trivial representation of the delta functi#gr
[8]. The prescription is as follows. We first calculate an aux-—X").
iliary function Since Eq.(12) is a principal value integration, the appar-
ent singularity aty(s)x’ =1 is not a problem. However, for
L e e, s computation purposes, it is convenient to first weaken this
fxLED=1(x")= f ﬁ(x ) MON(&)/RN(L) (10) singularity in thes integration by integrating by parts. Then
Egs.(11) and(12) become
using a simple Mellin transform, where for simplicity of pre-

sentation we shall omit the argumerits and u? of f. Next 1 2 1 ds d {q(x)
we perform the convolution Hq(x,8)= J,ldxl ;lmJ’O NENETOTS &( x| )
(16)
For simplicity we take the couplings to be fixed. The generali- Here we have used the properties théx') -0 asx’'—1
zation to runningasg is straightforward. and that
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P°(x)==a%(=x"), g"™(x)=q"(=x"), (17

5
T(\+2

see Eq.(8). Note that, for smalk, we can identify the aux- Hi(x,g;t)=Ni—21f1ds[x+ &(1-2s)]P
iliary function f(x") of Eg. (10) with the diagonal partons at F(A+2) 7)o
any scale, as the same anomalous dimensigpontrol
both the diagonal and off-diagonal evolution. 4s(1—s) [N+t

So far we have neglected thelependence and set0. XTE1-2s) G(1) (22
However from the sum rulg3] we know that thet depen-
dence of the first conformal moment is given by the proton
form factor G(t), with i=q or g, and wherep=0 and 1 for quarks and the

gluon respectively.
Ono(t)=(p'|Op|p)=G(1). (18 At first sight it appears that for singlet quarksherel

>0 andp=0) we face a strong singularity in integréd2)
In fact it is natural to assume that all the moments are prowhen the termD=x+£(1—2s)—0 in the denominator.
portional toG(t) Fortunately the singlet quark distribution is antisymmetric in

X. To obtain the imaginary part of the integrfdle) we must

On(t)=On(t=0)G(t) (19 choosex’>0 for D>0 andx’ <0 for D<0. Therefore we

must treat Eq(22) as a principal value integral and take the
difference between the —0+ andD—0— limits. Thus the
r}nain singularity is cancelled and E?2) becomes inte-
grable for any\ <<1.

Note that the dominant contribution to tiké integrations
of Egs. (16) and (20) comes from the region of smak’
~X, €. Indeed with the input given by E@21), the integral
for the quark distribution has a strong singularity at small

a factorization is the form of the Mellin integratiofi10)
where, for smallx, the saddle point is located near the sin-
gularity atN=0 which comes from the behavior of the sin-
glet anomalous dimensioryo« 1/N. Thus the dominant con-
tribution comes fromOy - which is indeed proportional to
G(t), and due to the polynomial conditiofi4) does not
depend or¢ at all [3].

The formula for the gluon is a little different to that for
the quarks. The reason is that in the off-diagonal case the |q~f dx’ (x") e 3Im
functionsH, anng=xHJ' form the singlet multiplet which
is multiplicatively renormalized. The additionad in the
gluon reveals itself as an extra factoryof £(1—2s) in the  However when we take the imaginary part, #idntegration

(23

1
y(swl—y(s)x')'

kernel. Thus for the gluon, in place of E{.6), we have is cut-off by the theta functiom(x’ — 1/y(s)) at
. 1 1 — ,
Hg(x,g;t)szm:J dx’ E|mJ ds(x+£(1—2s)) X' = 1K(S)~ X+ £(1— 25). 24)
Sl [T o y(s)Vi-y(s))
d (g(x) So we obtain the smal behaviorlq~§**q*1, and the dis-
d_ x| ) ) (20 tribution (16) has the form
x"\ X!

H, (x,&)=& M F (x/€). 25
Ill. PREDICTIONS OF THE OFF-DIAGONAL a(*&)=¢ a(X/€) @9

DISTRIBUTIONS FOR SMALL x AND ¢
. Similarly it follows thatH = £~ oF 4(x/&).

We see that Eqg16) and(20) completely determine the  The “predictions for the off-diagonal distributions are
behavior of the off-diagonal distributions in the sm&lE  shown in Fig. 2. In diagramé)—(c) we show the raticR to
domain in terms of the diagonal distributions. In fact by tne diagonal distribution in the form
making the physically reasonable snmalssumption that the
diagonal partons are given by

H(x,£)

o @ R Hx+60)" (29

N

Xq(X)=Ngx ™, xg(x)=Ngx*

we can perform the’ integration analytically?. We obtain ] o
and so the only free parametenisthe exponent which fixes

E— the x~* behavior of the input diagonal partons, as in Eq.
(21). Notice that on account of E425) the ratiosR at small

2 : F ’
We use the substitution=1/x"y(s) and note that x and ¢ are a function of only the ratio of the variablekt.

a2 F(}) The ratiosR of Eq. (26) are the relevant ratios. For ex-
f1d22+312(172)71/2: 2) 12 _ ample, high energy diffractivgiq electroproduction is de-
0 IF'(A+3) scribed by two gluon exchange with
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FIG. 2. Predictions at smaX and¢ for the ratio of off-diagonal FIG. 3. The off-diagonal to diagonal rati®, at smallx and ¢

[H(x,£)] to diagonaI[Hq(;,O):fq(;),Hg(ZO):%‘g(;)] parton ~ Versus the powek \{vhich specifies thex ™ behavio_r of the input

distributions. The diagonal partons are taken to have the fornfliagonal parton as in E¢21). Note that the quark singlet ratio has

Xf(X):NX_)\. Plots(a), (b) and (c) show the guark singlet, gluon been divided by 2. The vertical arrows indicate the values\ of
- H 2_

and quark non-singlet ratios taking=x+ ¢ as the argument of the found in a global parton analysiS] at Q“=4 and 100 GeV.

diagonal partons. Pldd) shows the gluon ratio again but versus a

linear scale and with argumert=2¢ so as to display the behav- |0 Fig. 2(d) we show the off-diagonal gluon distribution
ior of Hg(x,£). again, but now using émore detailegllinear scale and com-
Xy~ (Q2+ Mz—)/W2>x2, 27) Baring with the diagonal distributiohl(x,0) taken at fixed
ad x=2¢, so as to avoid the extradependence coming from
whereW is the center-of-mass energy of the proton and thehe diagonal gluon in the denominator of tRg ratio. This
photon of virtualityQ2. A common approximation is to de- demonstrates that the extxadependence is responsible for
scribe the process in terms of the diagonal glxgg(x;),  the slight decrease observedRy of Fig. 2(b) asx—0, and

sampled atx,;=x+¢. In this case the inclusion of off- that the decrease is not due to the behaviokgfx, ).
diagonal effects will enhance the cross section by a factor of The pehavior of the ratios at= ¢ are explicitly

RS, whereRy is evaluated ax/§=1, see Fig. &) or 2(d).

For x> ¢ we see that the off-diagonal to diagonal ratios,
R, tend to unity, as expected. Moreover, due to xhe —x H(& € 2273 T(N+502)
antisymmetry property8), we see that the quark singlet van- “H2e0 T'(A+3+p)’
ishes asx— 0. Also for a flat input gluonxg(x) — constant (260 Jm I P)
asx—0 (that isAy=0), we see thaR, does not depend on

¢ at all. The same is. true for the quarks, bu'F now Whe”vvherep=0 for quarks andp=1 for gluons. The ratios are
q(x)— constant, that is wher,=—1, as seen in th&®;>  plotted in Fig. 3 as a function ok. The vertical arrows
=1 result of Fig. Zc). shown on the plot indicate the values)qf and ), obtained

All the scale dependence of the distributions is hidden infrom the gluon and sea quark distributionsQft=4 and 100
the Q% behavior of the powera (Q?). The position of the  Ge\2 of a recent globaldiagonal parton analysi§9]. The
saddle pointN=X\ in the Mellin integral(10) moves to the  pjot can be used to find the enhancement of the cross section
right in the complexN plane asQ? increases and so the for the high energy diffractive electroproduction of vector
off-diagonal “enhancement” increases; in other woRI&»-  mesons arising from off-diagonal parton effects. The en-
creases withQ®. A particular example is the double loga- hancement is given bRZ whereR, is the value of the gluon
rithm approximation when, in the singlet sector, the saddlgatjg atx= ¢, which is shown in Fig. 3, at the appropriate
point scale, that is at the appropriate value }f(Q?). For in-
stance, for the photoproduction dfy andY at the DESY
N=X¢(Q)=(as/m)IN(1X)IN(Q¥QF).  (28)  ep collider HERA the enhancement is about (13%)nd
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+2k would generate a functiof(x") of Eq. (10) which de-
pends on the ratig?*/x'#* 2% After the convolution(11) we
would obtain a distribution which violates the polynomial
condition[3]

[(N+1)/2]

FIG. 4. Meson(M) Regge exchange indicating the structure of f dxxNH(x, &) = 2 A%, (30)
the off-diagonal contribution of Eq32). k=0

which comes from Lorentz invariandand the tensor struc-
ture of the operatojs Thus the higheré? terms (with k
=1) in Eq. (14) should die out with decreasirg

A second consideration is that, from a formal point of
view, we may add to the off-diagonal distribution any func-
tion

(1.32Y respectively’ if we use a scaléV \2,/4, whereMy, is
the mass of the vector meson.

From Figs. 2 and 3 we see that the off-diagonal or
“skewed” effect (the ratioR) is much stronger for singlet
quarks than for gluons. The explanation is straightforward
At low x the distributions are driven by the double leading
logarithmic evolution of the gluon distribution. At each step AH(X,€)=g(x,&) 0(&—1|x]) (31
of the evolution the momentum fractions are strongly or-

dered &;>X;,X33>X, on Fig. 1. For gluons it is just the Brodsky-Lepage(ERBL) region [12] with [x|<¢. Such a

'a?t splitting function” Pgg(xz,X;;€) which gen_era';es the contributionAH remains in the ERBL region during evolu-
main ¢ dependence, or skewedness, of the distribution. How:

ever for the sea or singlet quarks it is necessary to produce?@?n' HoweverAH disappears ag—0 and so it cannot be
quark with the help oP4 at the last splitting. The splitting stored purely from diagonal partons. A physical way to

f ion P h | thmic Y x'/ - aular d model such an ERBL contribution is to considechannel
unction Pqq has no logarithmic &= X5/x; singularity an meson(M) exchanges of Fig. 4. The contributidrH is then

S0 X, is the order ofx;. Consequently both the splitting given by the leading twist wave functiafy, of the meson

functions Pqg(X2.X3:€) and Pgq(x;,X;;€) generate the myltiplied by the corresponding Regge exchange amplitude
asymmetry of the off-diagonal distribution. Hence, at low

the singlet quark has a much stronger off-diagonal effect AHReg9e0L o (x/£,Q2) ¢ MOV (u2=Q3;£1). (32
than the gluon.

which exists only in the time-like Efremov-Radyushkin-

The appropriate exchange is themeson which, in the con-

stituent quark model, is formed fromRawaveqq state with
JPC=2%"% The Regge facto£ ™ is the analogue of the

In order to conclude that the conformal moments allow usx™ 7 (or ¢~ 7) factor in the non-singlet quark distribution
to use the diagonal partons to uniquely determine the offH"S~x"7; in our notation of Eq(21) and Fig. 2 withxq"®
diagonal partons at smatland &, including also their nor- ~x~*ns we have\ .= »— 1. Phenomenologically we expect
malization andQ? behavior, it is necessary to consider somethat 7~ a(0)~0.5. The key factor in E¢(32) is V which
further points. specifies the coupling of the Reggeon to the proton. From

First we could worry that in the analytical continuation in Regge phenomenology the vertex factowas extracted for
N of the conformal moments, the diagonal case where the ERBL domain does not exist.
Let us try to estimate a possible ERBL contribution to the
off-diagonal distributions. The value of the pion-nucleon
3-term at low scales determines the number of current
quarks and antiquarks in the nucleon to[t&]

IV. DISCUSSION

On=2, %Oy, with 2k<N+1, (29)
k

the higher k=1) terms will generate a singularity B>\ —

+2k. In such a case the smatlé contribution would be (N|aq|N)=8. (33
driven by this singularity. However we show that such QA llowing f | ks. this imolies that th
singularity to the right oN=\ + 2k cannot occur. From the owing for va e.nce_ quarks, this Implies that the average
structure of the polynomiaRy(x;,%,) of Egs.(4) and(6), it ~ number ofqq pairs is about 2.5. At such low scales the
is clear that there are no such singularities for inteljer partons are distributed more or less uniformly in the whole

>2k. On the other hand a singularity at non-integér 8 (—1,1) interval gnd SO thfa probability to fingl two partons in
the ERBL domain ¢ ¢,¢) is of the order ofé~. Such aAH

is a negligibleO(&?) contribution at smalk in agreement
with our decomposition of the conformal moments.

d S0 far our distributions enable us to calculate the imagi-
nary part of the amplitude, say for Compton scattetinih
incoming and outgoing photon virtualitieg?= —Q? and

%In practice the diagonal distributions have more complicate
forms than that assumed in E@1). For instance if we were to
input xg~x"*9(1—x)® in Eq. (20) and to perform the’ integra-
tion numerically then we findRy increases from 1.32 to 1.41 faf
photoproduction at HERA whene=0.01; the change iR, occurs
because the& sampled by the HERA data is not sufficiently small.
Ré'—vz is in agreement with the previous estimates of the enhance-“To be specific we consider the case wits0, g°<0 andq'?
ment due to off-diagonal effec{40,11. <0.
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q'?=—Q’2. At smallx and¢ it turns out that the real part of Strictly speaking the conformal momerts, only renormal-
the amplitude may be calculated easily using a dispersioff€ multiplicatively, as in Eq(9), at leading orde(LO). Due

relation in the center-of-mass energy squaNﬁd:(erq)z.
Let us consider the cut in the right-ha#f plane, that is the
discontinuity forw?>0. For fixedt,Q? and Q'?, the ratio
r=x/¢ is fixed as well, sincex+ &)/(x— &) =Q?/Q'?. Thus
the energy squared may be written

2

X+ &

21
W2=(1—x) :(1—rg)%g. (34)

However we must take into account the cuts in both the right

and left half-planes, that is the and u channel cuts. The
left-hand cut corresponds to tliechannel procesbtained
by the interchang@«— —p’) with energy squared

QZ

X+ &

W2=—(1+x) (35)

to a conformal anomaly at next-to-leadifiyLO) the mo-
ment Oy mixes, on evolution, with momen®®,, with N’
<N [14]. The mixing is taken into account by a matrix
Bnne . Which obeys its own evolution equatidd5|. Of
course the mixing is absent in the diagonal case wéen
—0, whereas for non-zeré we have

N

NLO _ NLO (diag) -N—N’
ONO= Z Bun'On ¢
N'=0

(39

whereOy,0y: andByy all depend onrg(Q?). Thus in the
small£<1 limit we can safely use expressiofi€) and(20)
for H(x, &) even at NLO.

In summary, in the lowé region we can use expressions
(16) and(20) to reliably predict the off-diagonal distributions
H(x, &) in terms of the diagonal partons at any scale. All that

The unpolarized deeply virtual Compton amplitude is thelS required is a two-fold integration. The expected accuracy
sum of thes- andu-channel termsA=A+ A, , and appears is of the order of¢?. As a specific example we assumed in

to have even signature, that & is crossing symmetric.
Strictly speaking at large and ¢ there is some asymmetry
(sinceW2# —W?), which may be considered as the odd sig-
nature contribution and should be treated appropriately in th
dispersion integral. However the situation is particularly
simple at smalk<1, where (= x)=1. Then we may write
the whole amplitudeA>(W?)*, with the help of the even
signature factor

1
St=5@+ (=D, (36)
in the form
A=ilmA —1+e_im 3
= HMA T cosan ) (37
Moreover for small\ we have
T\

Eq. (21) that the diagonal partons had a power-like* be-
havior for smallx. In this case one integration can be done
analytically and we have even simpler expressionsHgr
@nng, see Eq(22). The results are shown in Figs. 2 and 3
and allow the off-diagonal distributions to be determined for
any smallx,¢ values at any scale. One important conse-
quence is that data for processes, which are described by
off-diagonal distributions, can be included in a global analy-
sis to better constrain the low behavior of the(conven-
tional) diagonal partons.
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