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Off-diagonal distributions fixed by diagonal partons at small x and j
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We show that the off-diagonal~or skewed! parton distributions are completely determined at smallx andj
by the~conventional! diagonal partons. We present predictions which can be used to estimate the off-diagonal
distributions at smallx andj at any scale.@S0556-2821~99!02113-X#

PACS number~s!: 13.60.Hb, 13.88.1e, 14.20.Dh
rin
of
-

o
-

tri

e

d

e
st
n
ffi

ith

im-

ll

ive
u-
all

he

the

ent

ff-
I. INTRODUCTION

Precision data are becoming available for hard scatte
processes whose description requires knowledge of
diagonal~or so-called ‘‘skewed’’! parton distributions. Par
ticularly relevant processes are the diffractive production
vector mesons and of highET jets in high energy electron
proton collisions.

We shall use the ‘‘off-forward’’ distributions

H~x,j![H~x,j,t,m2!

with support 21<x<1 introduced by Ji@1–3#, with the
minor difference that the gluonHg5xHg

Ji . They depend on
the momentum fractionsx1,25x6j carried by the emitted
and absorbed partons at each scalem2 and on the momentum
transfer variablet5(p2p8)2; see Fig. 1. The values oft and
j5(x12x2)/2 do not change as we evolve the parton dis
butions up in the scalem2. That is t and j lie outside the
evolution. In the limitj→0 the distributions reduce to th
conventional diagonal distributions

Hq~x,0!5H q~x! for x.0,

2q̄~2x! for x,0,

Hg~x,0!5xg~x!. ~1!

Detailed reviews of off-diagonal distributions can be foun
for example, in Refs.@3–5#.

It is usual to anticipate that thej dependence ofH is
controlled by the non-perturbative starting~input! distribu-
tion at some low scalem25Q0

2. However here we wish to
explore the possibility that, in the smallx,j!1 region, the
‘‘skewed’’ off-diagonal behavior comes mainly from th
evolution. Indeed we expect this to be the case. At each
of the evolution the momentum fraction carried by partoi
( i 51,2) decreases. So when the evolution length is su
ciently large @i.e. ln(Q2/Q0

2)@1#, the important values ofx
;x0 of the input (m25Q0

2), which control the behavior in
the x;j domain at the high scale (m25Q2), will satisfy
x0@j. Clearly we can neglect thej dependence in thex0
region and start evolving from purely diagonal partons w
x15x2.
0556-2821/99/60~1!/014015~6!/$15.00 60 0140
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Here we demonstrate how, in the phenomenologically
portant smallj region ~for t→0), the off-diagonal distribu-
tions are determined unambiguously in terms of the smax
behavior of the~conventional! diagonal partons which is
known from experiment. We therefore have the attract
possibility to include data described by off-diagonal distrib
tions in a global parton analysis to better constrain the sm
x behavior of the diagonal distributions.

II. OFF-DIAGONAL DISTRIBUTIONS IN TERMS
OF CONFORMAL MOMENTS

In terms of the operator product expansion~OPE! the evo-
lution of the off-diagonal distributions may be viewed as t
renormalisation of the matrix elementsON5^p8uÔNup& of
the conformal~Ohrndorf @6#! operators, wherep and p8 are
the momenta of the incoming and outgoing protons. For
quark, the leading twist operatorÔN is of the form

ÔN
q 5 (

k50

N S N

k D S N12

k11 D ]L
k]R

N2k ~2!

where the derivatives]L and ]R act on the left and right
quarks in Fig. 1. As a consequence the quark matrix elem
takes the form

ON
q 5E

21

1

dxRN
q ~x1 ,x2!Hq~x,j! ~3!

with x1,25x6j, where the polynomials@7#

FIG. 1. A schematic diagram showing the variables for the o
diagonal parton distributionH(x,j) wherex1,25x6j.
©1999 The American Physical Society15-1
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RN
q 5 (

k50

N S N

k D S N12

k11 D x1
kx2

N2k . ~4!

In other words the polynomialsRN(x1 ,x2) are the basis
which specifies the conformal momentsON . In the diagonal
limit, with x15x2, Eq. ~3! reduces to the well-known mo
ments

MN
q 5E

0

1

xNq~x!dx. ~5!

Unlike the commonxN basis in the diagonal case, the gluo
and quark polynomial bases differ from each other. For
gluon we have

RN
g 5 (

k50

N S N

k D S N14

k12 D x1
kx2

N2k , ~6!

to be compared with the quark polynomials of Eq.~4!.
Recall that the off-diagonal distributions are symmetric

j @2,3#:

Hi~x,j!5Hi~x,2j! ~7!

with i 5q or g. This is just the left-right orx1↔x2 symmetry
of Fig. 1. In terms of thex variable the symmetry relation
are

Hq
s~x,j!52Hq

s~2x,j!,

Hq
ns~x,j!5Hq

ns~2x,j!,

Hg~x,j!5Hg~2x,j! ~8!

for the quark singlet, non-singlet and gluon respectively.
The conformal momentsON have the advantage that the

are not mixed, at least at LO, during the off-diagonal evo
tion, but simply get multiplicatively renormalized1

ON~Q2!5ON~Q0
2!S Q2

Q0
2D gN

~9!

with the same anomalous dimensiongN as in the diagona
case. The problem of how to restore the analytic off-diago
distribution H(x,j) from knowledge of its conformal mo
mentsON(j) of Eq. ~3! has been solved recently by Shuva
@8#. The prescription is as follows. We first calculate an au
iliary function

f ~x8,j;t ![ f ~x8!5E dN

2p i
~x8!2NON~j!/RN~1,1! ~10!

using a simple Mellin transform, where for simplicity of pre
sentation we shall omit the argumentsj,t andm2 of f. Next
we perform the convolution

1For simplicity we take the couplingaS to be fixed. The generali-
zation to runningaS is straightforward.
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H~x,j!5E
21

1

dx8K~x,j;x8! f ~x8!, ~11!

where, for quarks, the kernel is given by

Kq~x,j;x8!52
1

pux8u
ImE

0

1

ds„12y~s!x8…23/2 ~12!

with

y~s!5
4s~12s!

x1j~122s!
. ~13!

To gain insight into the Shuvaev prescription we repeat th
from a theoretical OPE point of view, it is best to analy
experimental data for processes described by off-diago
distributions in terms of the conformal momentsON of Eq.
~3! which diagonalize the~LO! evolution. However, phe-
nomenologically it is more convenient to work in terms
the off-diagonal parton distributions themselves. The S
vaev transform~10! and~11! performs the necessary invers
of Eq. ~3! at any fixedj,t andm2; that is it enablesH(x,j)
to be constructed fromON(j). So far this is just a math-
ematical procedure. The crucial physical step is to relate
auxiliary functionf (x8) directly to the diagonal partons. It i
easy to show, forj!1, that f (x8) in fact reduces to a diag
onal parton distribution. Indeed the conformal moments m
be expressed in the form

ON~j!5 (
k50

[(N11)/2]

ONkj
2k, ~14!

which embodies the ‘‘polynomial condition’’ that the powe
of j should be at most of the order ofN11. For j!1 we
have

ON~j!.ON05ON~0!. ~15!

Now, up to the trivial normalization factorRN(1,1), the di-
agonal momentON(0) is equal to thexN moment of the
diagonal parton distribution. So forj!1 we can putf q(x8)
5q(x8) in Eq. ~11!, and then use Eq.~12! to determine the
off-diagonal distributionHq(x,j) in terms of the conven-
tional quark distribution. In this limit the kernelK just be-
comes a non-trivial representation of the delta functiond(x
2x8).

Since Eq.~12! is a principal value integration, the appa
ent singularity aty(s)x851 is not a problem. However, fo
computation purposes, it is convenient to first weaken t
singularity in thes integration by integrating by parts. The
Eqs.~11! and ~12! become

Hq~x,j!5E
21

1

dx8F 2

p
ImE

0

1 ds

y~s!A12y~s!x8
G d

dx8
S q~x8!

ux8u
D .

~16!

Here we have used the properties thatq(x8)→0 asx8→1
and that
5-2
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qs~x8!52qs~2x8!, qns~x8!5qns~2x8!, ~17!

see Eq.~8!. Note that, for smallj, we can identify the aux-
iliary function f (x8) of Eq. ~10! with the diagonal partons a
any scale, as the same anomalous dimensionsgN control
both the diagonal and off-diagonal evolution.

So far we have neglected thet dependence and sett50.
However from the sum rule@3# we know that thet depen-
dence of the first conformal moment is given by the pro
form factorG(t),

ON50~ t !5^p8uÔ0up&}G~ t !. ~18!

In fact it is natural to assume that all the moments are p
portional toG(t)

ON~ t !5ON~ t50!G~ t ! ~19!

and simply multiply Eq.~11! by G(t) to restore thet depen-
dence of the distributions. Another argument in favor of su
a factorization is the form of the Mellin integration~10!
where, for smallx, the saddle point is located near the s
gularity atN50 which comes from the behavior of the si
glet anomalous dimension,gN}1/N. Thus the dominant con
tribution comes fromON50 which is indeed proportional to
G(t), and due to the polynomial condition~14! does not
depend onj at all @3#.

The formula for the gluon is a little different to that fo
the quarks. The reason is that in the off-diagonal case
functionsHq andHg5xHg

Ji form the singlet multiplet which
is multiplicatively renormalized. The additionalx in the
gluon reveals itself as an extra factor ofx1j(122s) in the
kernel. Thus for the gluon, in place of Eq.~16!, we have

Hg~x,j;t !5xHg
Ji5E

21

1

dx8F 2

p
ImE

0

1ds„x1j~122s!…

y~s!A12y~s!x8
G

3
d

dx8
S g~x8!

ux8u
D G~ t !. ~20!

III. PREDICTIONS OF THE OFF-DIAGONAL
DISTRIBUTIONS FOR SMALL x AND j

We see that Eqs.~16! and ~20! completely determine the
behavior of the off-diagonal distributions in the smallx,j
domain in terms of the diagonal distributions. In fact
making the physically reasonable smallx assumption that the
diagonal partons are given by

xq~x!5Nqx2lq, xg~x!5Ngx2lg ~21!

we can perform thex8 integration analytically.2 We obtain

2We use the substitutionz51/x8y(s) and note that

E
0

1

dzzl13/2~12z!21/25

GS l1
5

2DGS 1

2D
G~l13!

.
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Hi~x,j;t !5Ni

GS l1
5

2D
G~l12!

2

Ap
E

0

1

ds@x1j~122s!#p

3F 4s~12s!

x1j~122s!G
l i11

G~ t ! ~22!

with i 5q or g, and wherep50 and 1 for quarks and the
gluon respectively.

At first sight it appears that for singlet quarks~wherelq
.0 andp50) we face a strong singularity in integral~22!
when the termD[x1j(122s)→0 in the denominator.
Fortunately the singlet quark distribution is antisymmetric
x. To obtain the imaginary part of the integral~16! we must
choosex8.0 for D.0 andx8,0 for D,0. Therefore we
must treat Eq.~22! as a principal value integral and take th
difference between theD→01 andD→02 limits. Thus the
main singularity is cancelled and Eq.~22! becomes inte-
grable for anylq,1.

Note that the dominant contribution to thex8 integrations
of Eqs. ~16! and ~20! comes from the region of smallx8
;x,j. Indeed with the input given by Eq.~21!, the integral
for the quark distribution has a strong singularity at smallx8

I q;E dx8~x8!2lq23ImS 1

y~s!A12y~s!x8
D . ~23!

However when we take the imaginary part, thex8 integration
is cut-off by the theta functionu„x821/y(s)… at

x851/y~s!;x1j~122s!. ~24!

So we obtain the smallj behaviorI q;j2lq21, and the dis-
tribution ~16! has the form

Hq~x,j!5j2lq21Fq~x/j!. ~25!

Similarly it follows thatHg5j2lgFg(x/j).
The predictions for the off-diagonal distributions a

shown in Fig. 2. In diagrams~a!–~c! we show the ratioR to
the diagonal distribution in the form

R5
H~x,j!

H~x1j,0!
, ~26!

and so the only free parameter isl, the exponent which fixes
the x2l behavior of the input diagonal partons, as in E
~21!. Notice that on account of Eq.~25! the ratiosR at small
x andj are a function of only the ratio of the variablesx/j.

The ratiosR of Eq. ~26! are the relevant ratios. For ex
ample, high energy diffractiveqq̄ electroproduction is de-
scribed by two gluon exchange with
5-3
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x1.~Q21Mqq̄
2

!/W2@x2 , ~27!

whereW is the center-of-mass energy of the proton and
photon of virtualityQ2. A common approximation is to de
scribe the process in terms of the diagonal gluonx1g(x1),
sampled atx15x1j. In this case the inclusion of off
diagonal effects will enhance the cross section by a facto
Rg

2 , whereRg is evaluated atx/j51, see Fig. 2~b! or 2~d!.
For x@j we see that the off-diagonal to diagonal ratio

R, tend to unity, as expected. Moreover, due to thex→2x
antisymmetry property~8!, we see that the quark singlet va
ishes asx→0. Also for a flat input gluon,xg(x)→ constant
asx→0 ~that islg50), we see thatRg does not depend on
j at all. The same is true for the quarks, but now wh
q(x)→ constant, that is whenlq521, as seen in theRq

ns

51 result of Fig. 2~c!.
All the scale dependence of the distributions is hidden

the Q2 behavior of the powersl(Q2). The position of the
saddle pointN5l in the Mellin integral~10! moves to the
right in the complexN plane asQ2 increases and so th
off-diagonal ‘‘enhancement’’ increases; in other wordsR in-
creases withQ2. A particular example is the double loga
rithm approximation when, in the singlet sector, the sad
point

N5lg~Q2!.A~aS /p!ln~1/x!ln~Q2/Q0
2!. ~28!

FIG. 2. Predictions at smallx andj for the ratio of off-diagonal

@H(x,j)# to diagonal@Hq( x̄,0)5 f q( x̄),Hg( x̄,0)5 x̄ f g( x̄)# parton
distributions. The diagonal partons are taken to have the f
x f(x)5Nx2l. Plots ~a!, ~b! and ~c! show the quark singlet, gluon

and quark non-singlet ratios takingx̄5x1j as the argument of the
diagonal partons. Plot~d! shows the gluon ratio again but versus

linear scale and with argumentx̄52j so as to display thex behav-
ior of Hg(x,j).
01401
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In Fig. 2~d! we show the off-diagonal gluon distributio
again, but now using a~more detailed! linear scale and com
paring with the diagonal distributionH( x̄,0) taken at fixed
x̄52j, so as to avoid the extrax dependence coming from
the diagonal gluon in the denominator of theRg ratio. This
demonstrates that the extrax dependence is responsible fo
the slight decrease observed inRg of Fig. 2~b! asx→0, and
that the decrease is not due to the behavior ofHg(x,j).

The behavior of the ratios atx5j are explicitly

R5
H~j,j!

H~2j,0!
5

22l13

Ap

G~l15/2!

G~l131p!
,

wherep50 for quarks andp51 for gluons. The ratios are
plotted in Fig. 3 as a function ofl. The vertical arrows
shown on the plot indicate the values oflg andlq obtained
from the gluon and sea quark distributions atQ254 and 100
GeV2 of a recent global~diagonal! parton analysis@9#. The
plot can be used to find the enhancement of the cross se
for the high energy diffractive electroproduction of vect
mesons arising from off-diagonal parton effects. The e
hancement is given byRg

2 whereRg is the value of the gluon
ratio at x5j, which is shown in Fig. 3, at the appropria
scale, that is at the appropriate value oflg(Q2). For in-
stance, for the photoproduction ofJ/c and Y at the DESY
ep collider HERA the enhancement is about (1.15)2 and

m

FIG. 3. The off-diagonal to diagonal ratio,R, at smallx and j
versus the powerl which specifies thex2l behavior of the input
diagonal parton as in Eq.~21!. Note that the quark singlet ratio ha
been divided by 2. The vertical arrows indicate the values ol
found in a global parton analysis@9# at Q254 and 100 GeV2.
5-4
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(1.32)2 respectively,3 if we use a scaleMV
2/4, whereMV is

the mass of the vector meson.
From Figs. 2 and 3 we see that the off-diagonal

‘‘skewed’’ effect ~the ratioR) is much stronger for single
quarks than for gluons. The explanation is straightforwa
At low x the distributions are driven by the double leadi
logarithmic evolution of the gluon distribution. At each ste
of the evolution the momentum fractionsxi are strongly or-
dered (x18@x1 ,x28@x2 on Fig. 1!. For gluons it is just the
‘‘last splitting function’’ Pgg(x2 ,x28 ;j) which generates the
mainj dependence, or skewedness, of the distribution. H
ever for the sea or singlet quarks it is necessary to produ
quark with the help ofPqg at the last splitting. The splitting
function Pqg has no logarithmic 1/z5x28/x2 singularity and
so x2 is the order ofx28 . Consequently both the splittin
functions Pqg(x2 ,x28 ;j) and Pgg(x28 ,x29 ;j) generate the
asymmetry of the off-diagonal distribution. Hence, at lowx,
the singlet quark has a much stronger off-diagonal eff
than the gluon.

IV. DISCUSSION

In order to conclude that the conformal moments allow
to use the diagonal partons to uniquely determine the
diagonal partons at smallx and j, including also their nor-
malization andQ2 behavior, it is necessary to consider som
further points.

First we could worry that in the analytical continuation
N of the conformal moments,

ON5(
k

j2kONk with 2k,N11, ~29!

the higher (k>1) terms will generate a singularity atN.l
12k. In such a case the smallx,j contribution would be
driven by this singularity. However we show that such
singularity to the right ofN5l12k cannot occur. From the
structure of the polynomialsRN(x1 ,x2) of Eqs.~4! and~6!, it
is clear that there are no such singularities for integerN
.2k. On the other hand a singularity at non-integerN5b

3In practice the diagonal distributions have more complica
forms than that assumed in Eq.~21!. For instance if we were to
input xg;x2lg(12x)6 in Eq. ~20! and to perform thex8 integra-
tion numerically then we findRg increases from 1.32 to 1.41 forY
photoproduction at HERA wherex.0.01; the change inRg occurs
because thex sampled by the HERA data is not sufficiently sma
Rg

2.2 is in agreement with the previous estimates of the enha
ment due to off-diagonal effects@10,11#.

FIG. 4. Meson~M! Regge exchange indicating the structure
the off-diagonal contribution of Eq.~32!.
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12k would generate a functionf (x8) of Eq. ~10! which de-
pends on the ratioj2k/x8b12k. After the convolution~11! we
would obtain a distribution which violates the polynomi
condition @3#

E dxxNH~x,j!5 (
k50

[(N11)/2]

Akj
2k, ~30!

which comes from Lorentz invariance~and the tensor struc
ture of the operators!. Thus the higherj2 terms ~with k
>1) in Eq. ~14! should die out with decreasingj.

A second consideration is that, from a formal point
view, we may add to the off-diagonal distribution any fun
tion

DH~x,j!5g~x,j!u~j2uxu! ~31!

which exists only in the time-like Efremov-Radyushkin
Brodsky-Lepage~ERBL! region @12# with uxu,j. Such a
contributionDH remains in the ERBL region during evolu
tion. HoweverDH disappears asj→0 and so it cannot be
restored purely from diagonal partons. A physical way
model such an ERBL contribution is to considert channel
meson~M! exchanges of Fig. 4. The contributionDH is then
given by the leading twist wave functioncM of the meson
multiplied by the corresponding Regge exchange amplitu

DHReggeon5cM~x/j,Q2!j2aM(t)V~m25Q0
2 ;j;t !. ~32!

The appropriate exchange is thef 2 meson which, in the con-
stituent quark model, is formed from aP-waveqq̄ state with
JPC5211. The Regge factorj2aM is the analogue of the
x2h ~or j2h) factor in the non-singlet quark distributio
Hns;x2h; in our notation of Eq.~21! and Fig. 2 withxqns

;x2lns we havelns5h21. Phenomenologically we expec
that h;aM(0);0.5. The key factor in Eq.~32! is V which
specifies the coupling of the Reggeon to the proton. Fr
Regge phenomenology the vertex factorV was extracted for
the diagonal case where the ERBL domain does not ex
Let us try to estimate a possible ERBL contribution to t
off-diagonal distributions. The value of the pion-nucleo
S-term at low scales determines the number of curr
quarks and antiquarks in the nucleon to be@13#

^Nuq̄quN&.8. ~33!

Allowing for valence quarks, this implies that the avera
number of qq̄ pairs is about 2.5. At such low scales th
partons are distributed more or less uniformly in the wh
(21,1) interval and so the probability to find two partons
the ERBL domain (2j,j) is of the order ofj2. Such aDH
is a negligibleO(j2) contribution at smallj in agreement
with our decomposition of the conformal moments.

So far our distributions enable us to calculate the ima
nary part of the amplitude, say for Compton scattering4 with
incoming and outgoing photon virtualitiesq252Q2 and

d

e- 4To be specific we consider the case witht<0, q2<0 andq82

<0.

f
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q8252Q82. At smallx andj it turns out that the real part o
the amplitude may be calculated easily using a dispers
relation in the center-of-mass energy squaredWs

25(p1q)2.
Let us consider the cut in the right-halfWs plane, that is the
discontinuity forWs

2.0. For fixedt,Q2 and Q82, the ratio
r 5x/j is fixed as well, since (x1j)/(x2j)5Q2/Q82. Thus
the energy squared may be written

Ws
25~12x!

Q2

x1j
5~12r j!

Q2

11r

1

j
. ~34!

However we must take into account the cuts in both the ri
and left half-planes, that is thes and u channel cuts. The
left-hand cut corresponds to theu channel process~obtained
by the interchangep↔2p8) with energy squared

Wu
252~11x!

Q2

x1j
. ~35!

The unpolarized deeply virtual Compton amplitude is t
sum of thes- andu-channel terms,A5As1Au , and appears
to have even signature, that isA is crossing symmetric
Strictly speaking at largex and j there is some asymmetr
~sinceWu

2Þ2Ws
2), which may be considered as the odd s

nature contribution and should be treated appropriately in
dispersion integral. However the situation is particula
simple at smallx!1, where (16x).1. Then we may write
the whole amplitudeA}(W2)l, with the help of the even
signature factor

S15
1

2
„11~21!l

…, ~36!

in the form

A5 i ImAS 11e2 ipl

11cospl D . ~37!

Moreover for smalll we have

ReA.
pl

2
ImA. ~38!
.

e,

01401
n

t

-
e

Strictly speaking the conformal momentsON only renormal-
ize multiplicatively, as in Eq.~9!, at leading order~LO!. Due
to a conformal anomaly at next-to-leading~NLO! the mo-
ment ON mixes, on evolution, with momentsON8 with N8
,N @14#. The mixing is taken into account by a matr
BNN8 , which obeys its own evolution equation@15#. Of
course the mixing is absent in the diagonal case whej
→0, whereas for non-zeroj we have

ON
NLO5 (

N850

N

BNN8ON8
NLO (diag)jN2N8 ~39!

whereON ,ON8 andBNN8 all depend onaS(Q2). Thus in the
smallj!1 limit we can safely use expressions~16! and~20!
for H(x,j) even at NLO.

In summary, in the lowj region we can use expression
~16! and~20! to reliably predict the off-diagonal distribution
H(x,j) in terms of the diagonal partons at any scale. All th
is required is a two-fold integration. The expected accura
is of the order ofj2. As a specific example we assumed
Eq. ~21! that the diagonal partons had a power-likex2l be-
havior for smallx. In this case one integration can be do
analytically and we have even simpler expressions forHq
andHg , see Eq.~22!. The results are shown in Figs. 2 and
and allow the off-diagonal distributions to be determined
any small x,j values at any scale. One important cons
quence is that data for processes, which are described
off-diagonal distributions, can be included in a global ana
sis to better constrain the lowx behavior of the~conven-
tional! diagonal partons.
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