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Heavy-to-light form factors in the final hadron large energy limit of QCD
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We argue that the large energy effective the@rffET), originally proposed by Dugan and Grinstein, is
applicable to exclusive semileptonic, radiative, and rare heavy-to-light transitions in the region where the
energy releasg& is large compared to the strong interaction scale and to the mass of the final hadron, i.e., for
g not close to the zero-recoil point. We derive the effective Lagrangian from the QCD one, and show that in
the limit of heavy mas# for the initial hadron and large ener@yfor the final one, the heavy and light quark
fields behave as two-component spinors. Neglecting QCD short-distance corrections, this implies that there are
only three form factors describing all the pseudoscalar to pseudoscalar or vector weak current matrix elements.
We argue that the dependence of these form factors with resp&ttaiod E should be factorizable, thiel
dependence\(M) being derived from the usual heavy quark expansion whileEtldependence is controlled
by the behavior of the light-cone distribution amplitude near the end poiit. The usual expectation of the
~(1—u) behavior leads to a EF scaling law, that is a dipole form ig?. We also show explicitly that in the
appropriate limit the light-cone sum rule method satisfies our general relations as well as the scalingMaws in
andE of the form factors, and obtain very compact and simple expressions for the latter. Finally we note that
this formalism gives theoretical support to the quark model-inspired methods existing in the literature.
[S0556-282(199)02309-1
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I. INTRODUCTION teristic of the lattef3,4]; this has to be contrasted to the case
of the pion electromagnetic form factor at very largé=

Nowadays,|V.p| is the third most accurately measured —q2. Then in the heavy-to-light case, the final active quark
Cabibbo-Kobayashi-Maskaw&@&KM) matrix element, and is  should carry most of the momentum of the light hadron, and
quoted by the Particle Data Grodp] with less than 5% the fast degrees of freedom become essentially classical. The
relative uncertainty. The Isgur-Wise symmef}, and the |arge energy effective theor. EET), originally introduced
heavy quark effective theoHQET) description of heavy- by pugan and Grinsteifi5], should be the correct tool to
to-heavy semileptonic decays have permitted such a greatydy such transitions: it could provide an operator product
success in heavy quark physics. Unfortunately, the HQEbypansion the small parameter of which i€1As for the
constraints on heavy-to-light decays are quite weak in thei[iia| heavy quark, the assumption of the soft contribution

original form, and still do not allow a clgan extraction of dominance leads to an expansion in powers of the inverse
[Vupl from the present and future exper_|mental da’ga. Theheavy masM, based on HQET. Our first result is that to
latter CKM coupling has currently a relative uncertainty of leading order’ in M, 1/E and neglecting short-distance

order 25%, depending on which model is used to evaluat%CD corrections, all the weak curreRt— P(V) matrix ele-

the hadronic matrix elemenf4]. It is thus very important to : .
ments can be expressed in terms of only three universal form

make theoretical progress in this field. oo . .
The peculiar feature of exclusive heavy-to-light transi- factors. This implies relations between the usual semilep-

tions, the prototype of which B— 1 v, , is the large energy tonic and penguin form factors which resemble the well-
E given to the daughter by the parent hadron in almost th&nown Isgur-Wise relations in heavy-to-heavy transitions.

whole physical phase space except the vicinity of the zero- 1N€n an interesting question is what the dependence of
recoil point; these form factors with respect to the large mistlsand the

large energ\E is. From the usual heavy mass expansion of
the initial hadron state, we obtain a factorization formula

mg 9? mf, ~+yMz(E). The asymptotic expansion afE) is controlled
E= 2 1- _mz + _mz : D by the behavior of the light-cone distribution amplitude of
B B

the final hadron near the end point-1. The usual assump-

- tion of the~ (1—u) behavior leads to a(E)~ 1/E? scaling
As we shall see, one may assume that such transitions a8y which implies a~M ~¥2/(1—g2/M?)2 dipole form for

dominated by soft gluon exchange, i.e., the Feynman mech e three universal form factofs.

n'ST’.t\)NT.'Chlls nc(j)tdpower ?upr]()frest:srgj with respgct tohthe har A strong support in favor of the HQET-LEET formalism
contribution, and does not sulfer the Suppression charac- ¢, heavy-to-light form factors is given by the light-cone sum

rules: indeed using the work of several grojfs-14 we

*Email address: Jerome.Charles@th.u-psud.fr

We neglect in the whole paper Sudakov effects, which are ex- 2Theg? dependence of the form factors in the standard parametri-
pected not to induce a large suppression at the physigadcale. zation is discussed in Sec. V.
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show explicitly that the latter method automatically satisfiesonly one quark is fast and the other partons are %siiyi-
the above relations and scaling laws. In addition we show inarly to the HQET description of heavy-to-heavy transitions.
another papef15] that the quark models based on theln this work, we will study amplitudes where an energetic
Bakamijian-Thomas formalism, which were shown to be co-hadron is connected to the decaying heavy hadron by a cur-
variant and to satisfy the Isgur-Wise relations in the heavyrent operator, i.e., exclusive semileptonic, radiative, and rare
to-heavy cas¢l6], also become covariant in thd — and ~ heavy-to-light decays, such &—wlv, B—K*y, andB
E—o limit. In agreement with our general results, these—KI*17. In the large recoiling region, i.e., fog* suffi-
models do predict that there are only three independent forraiently far away from the zero-recoil poirfof course the
factors in heavy-to-light transitions, and that they scale aghysical g in radiative decays is exactly zgrathe final
JMZ(E). active quark carries a large ener@g the rest frame of the
The paper is organized as follows. In Sec. II, we argue orParent hadronand interacts mostly with soft degrees of
the validity of LEET for the description of the Feynman freedom—the spectator quark and the gluons. Thus one may
mechanism and derive the correct form of the Lagrangian, agxpect that the trajectory of the fast quark suffers only small
there is a subtlety concerning Dirac matrices which wadluctuations around the classical, almost lightlike, world line
missed in the literature. In Sec. Il we show that the use oPf the daughter hadron. Actually there are also hard gluon
the HQET and LEET effective quark fields leads to expresgXxchange contributions, through which the large momentum
all the heavy-to-light ground state form factors in terms ofis shared by both the active and spectator quarks. However,
only three universal functions. The asymptdticandE de-  the perturbative calculation of these diagrams typically leads
pendence of these functions are discussed, and/a/E2  to very small values compared to the dominant overlap dia-
form is shown to be the most plausible. Then in Sec. IV wedram, due to the hards suppressior3,4]. We will assume
derive explicitly theM — o0 andE— « limit of the light-cone that thesg c_ontrlbutlor_ns are negllglplg, and we also neglect
sum rule formulas for the weak current matrix elements an@ther radiative corrections for simplicity. _ _
give the universal form factors in terms afM/E? times Let us now define the large energy effective theory in a
integrals depending on the light-cone distribution amplituded"0re Systematical way. From now on, we will refer to high-
and the sum rule parameters, in a very simple and compa&€rgy exclusive heavy-to-light decays, and consider only
way. Finally in Sec. V we discuss the relation between théh® ground state mesons. The appropriate kinematical vari-
matrix elements parametrized in the standard way and th@Ples for such decays are the following. .
HQET-LEET universal form factors, and compare our re- 1he four-momentunp, massM, and four-velocityv of
sults with previous approaches that were based on the cof?€ heavy hadron
stituent quark model.

p=Mv 2
Il. THE LEET EFFECTIVE THEORY The four-vectom and the scalak defined by
LEET was introduced by Dugan and Grinstdif] to p’=En, v-n=1 &)
study factorization of non-leptonic matrix elements in decays ’ ’
such asB—D®) 7, D&*)p, ... where the light meson is

1o _ i 12
emitted by theW boson. In this case, both quarks constitut-v_vr:ﬁ,rg F')I'hLIJSs the four-momentum of the light hadrop,

ing the light energetic meson are fast. However, Aglietti
et al. [17] have recently argued that such a situation could ,
not be described by LEET, as the relative transverse momen- E=v-p (4)

tum of the fast quarks may be hard. They proposed to use

instead the_EET effective theory, a variant of LEET which IS just the energy of the light hadron in the rest frame of the
takes into account hard transverse degrees of freedom. Thit¢avy hadron. . . o

seems to be similar to the description of the heavy quark In the following we will consider the limit of heavy mass
systems: HQET is the appropriate theory for the heavy-lighfor the initial hadron and large energy for the final one:
hadrons, while nonrelativistic QCEINRQCD should be

used for the quarkonia. Conversely, Agliatial. found that (Agcp,m")<(M,E) with v and n fixed. (5
LEET could be used in semi-inclusive nonleptonic decays

such asB—DX,, where factorization should hold at the

leading orde{17]. . . 3A potential problem of the LEET effective theory is the so-called
Note also that the quark propagator in the LEET limit has‘“instability” phenomenon[17,19: indeed Aglietti argues in Ref.

gained further interest with the proposal of the Rome grougyg that the interaction of a LEET quark with masslesssoft

[18] to use it to extract from the lattice the shape function forg,ark—that constitutes precisely the case that we are interested

semileptonic inclusiveB-decays, the structure functions in in_generates divergences in the forward direction. However, the

deep inelastic scattering, and the light-cone distribution ammass of a quark in a bound state should rather be viewed aff an

plitudes for exclusive hard processes. shellnessof order Agcp, and it can easily be checked that this
However, no effort seems to have been devoted up to nowstability problem in Aglietti’'s argument does not occur for a non-

to investigating how LEET could be used in processes whereanishing mass of the soft quafR0].
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Note that we do not assume anything for the raikd®1 and
Agep/m’. As n=m’2/E?—0, n becomes lightlike in the
above limit. In the rest frame of, with thez direction along
p’, one has simply
U :(11010505 nz(liololj)‘ (6)
In a general frame one has the normalization conditions
v?=1,

v-n=1, n?=0. (7)

In a decay such aB— , not too close fromg®=q?,

=(mg—m_)?, the final active quark gets a very large energy
and should form with the spectator a hadron of finite mass.

PHYSICAL REVIEW D 60 014001

The equation of motioni® —m,)q(x) =0, projected by P,
reads

¥in-Dq, +[iD —my—¥(2iv-D—in-D)]q_=0, (16

(iD —my—¥in-D)q, +¥(2E+2iv-D—in-D)q_=0.
17

The latter equation can formally be solved to exprgssin
terms ofq, :

q_(X)=(2E+2iv-D—in-D+ie) !

X (iD —mg—din-D)q, (x). (18

Thus, neglecting as said above hard spectator effects, thlenuS the fieldq_(x), corresponding to the negative energy

momentunr of the active quark is close to the momentum of

the hadron:
r=En+Kk,

with k~Aqcp<E as the residual momentum(8)

solutiond is of order 1E with respect tog. (x). Physically
this means that the pair creation is suppressed in the effective
theory.

To summarize we have obtained the result:

Locp= Lieer+ O(1E) 19
Our goal is now to derive the LEET Lagrangian from the
QCD one in the limit8). We would like to separate the large With
components of the quark field from the small ones which, -
corresponding to the negative energy solutions, should be Liger=0dndin-Dap, (20

suppressed by E/ To this aim we follow closely the simple

demonstration given in Ref21] for the derivation of the
HQET Lagrangian. We define the projectors

ho vh
Pi=o%, P.=% 9

which indeed verify from Eq(7)

h,o
P++P_=u=1.

P?_*':Pil 2

P.P-=0, (10

From the full, four-component, quark fietf{ x) one may
define two two-component projected fields(x) by

9= (x)=eE"*P.q(x). 11
Thus from the projector properties one has
q)=e """ g, () +q-(x)] (12
with
P.g+=q., P:q.=0 (13
and
q.P:=q., g.P.=0. (14)

where we have definegl,(x)=q, (x) to recall the usual no-
tationh,(x) for the effective field of HQET. In addition the
two-component fieldy,(x) verifies the projection condition

ho
An(X)= - n(X) 1)

which implies in particulamq,,=0. The LEET equation of
motion is just

n-Dg,(x)=0. (22

Note that in the literaturfs,17,19, the LEET Lagrangian
was quoted without thé factor: indeed these authors have
inferred the Lagrangian from the large energy limit of the
QCD quark propagator. However, the limit of the propagator
is not sufficient to define the effective field from the QCD
field. We will see that th& factor and the projection condi-
tion (21) have important consequences on the symmetries of
the effective theory and on the constraints on the form fac-
tors.

Note also that the assumption of a massless quark, or even
a light quark(compared to\ ocp), is not needed to write Eq.

(19). The mass terny,myq, just vanishes because of the

4Since F;=%(li a,) in the rest frame ob. In this frame, the

It follows immediately that the QCD Lagrangian for the projectors R coincide with the+ y;y,/2 projectors that are useful
quarkg, Locp=0(i —mg)q can be expressed in terms of for the light-cone formalisni22]. Another possibility is to define

the q.- fields:

Locp=0+8in-Da. +0, (iB—mg)q_+9_(iD —mg)q,

+0_d(2E+2iv-D—in-D)q._. (15)

P,=v,v¢/2 and P.=vy4v,/2 with y, =h/n-x and y 4 =X: this
makes apparent the resemblance with the light-cone formalism of
Ref.[23] and leads to the Lagrangiaf) ger=q,[*%/n-x]in-Dq,,.

The latter exhibits the invariance under the collinear conformal
group as defined in Ref23].
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projector(21). As far as masses are concerned, we only neetb find. Indeed, the HQET symmetry group holds whatever
my<<E for the quark, anan’ <E for the hadron, in order for the internal kinematical configuration of the heavy hadron,
n to become a lightlike vector. Of course in phenomenologi-and this is obviously not the case for LEET. In short, the
cal applications we will use LEET mainly for the light d,  physical states are not dominated by the “objects” that are
ands quarks. However, it is worth noting that if thequark  expected to be described by LEEDr example, the LEET
were much heavier, say 20 GeV, the heavg quark in the  symmetry does not implyn,=m_). However, this problem,
B—D transition aroundj?=0 would have to be described which we leave for further investigation, will not prevent us
by LEET rather than by HQET, as the latter theory fails forfrom finding very significant results by sticking to the quark
w=E/m’ too large[21]. current operators and simply replacing the QCD light quark
Let us now discuss the global symmetries of LEET: thefield by the LEET one wherever it is justified, as we will see
simplest one is the flavor symmetry, as there is no mass terin Sec. Ill.
in the Lagrangian, meaning that mass effects should be small As for the space-time symmetry, it can be checked that
for energetic particles. It is also immediately apparent thatvhile the HQET Lagrangian is invariant under the rotation
the LEET Lagrangiai20) as well as the projection condition group (more precisely the little group af), the LEET La-

(21) are invariant under the chiral transformation grangian(20) is invariant under the group of the collinear
. conformal transformatiorfs Furthermore, it should be pos-
an(X)— € *7"2q,(x). (23)  sible to “make covariant” the theory by summing on the

o ) four-vectorn, similarly to Georgi's procedurf25] concern-
As for massless quarks, it is straightforward to show that thgng HQET. Finally the Feynman rules of the LEET effective

and the fact that there is no dynamical Dirac matrix in the

LEET Lagrangian(coupled to the covariant derivatii2*), it  ho
should indicate that the @) chiral symmetry can be embed- LEET quark propagator: kTic 2" (28)
ded in a larger symmetry groyR4]. This is actually what

happens. One definem the rest frame of LEET quark-gluon vertex: —ig#T,n*. (29)

1 1 1 1

1~ 0y1_",1.5 2 0y2_"_ 2.5
S=37 > =577, S=3v z B Ill. THE UNIVERSAL FORM FACTORS  ¢{(M,E), {(M,E),
¢, (M,E) AND THEIR SCALING LAWS
1 1 o S ' .
SE 52325 v ¥°5. (24) Our purpose in this section is to find the constraints on the

heavy-to-light form factors which may follow from LEET.
For definiteness, we consider the decay dB aneson, al-

: 2
In a general frame, one defines two four-vectetsand e though some of our results may apply Brdecays. As for

transverse to both andn and the final particle P(V) stands for a light pseudoscalaec-
541 542 5 tor) meson. We are interested in the following matrix ele-
ye ye 4
1 2 3 .
Sl=t-, =T, S=T(1-#h). (25 ments:

P|V#B), P|T#"|B), 30
ThusS3q,= v°q, because of the projector, as said above. As (PIv¥IB),  (PIT*IB) 30

the 3' generate the S@) group, and fron{y°,2']=0 and VIVAB VIA4(B VITEYB 1
(y®)?=1, theS' operators also verify the SP) algebra (VIV¥[B),  (VIA*[B), (VITE'[B), (31)
[S,9]=ie; Sk (26) Wwhere VA=qy*b, A*=qy"ysb, T*’=qo*’b and T4

=qgo*”ysb are, respectively, the vector, axial, tensor, and

Finally, it is simple to check that both the Lagrangid®®  pseudotensor weak currents, withthe appropriate active
and the projection conditiof21) remain invariant under the |ight flavor. The matrix elements

transformation generated tﬁ/
. (P|T§"B), (P|T**q,|B), (32
Gn(X)— €' Sq(X). (27)

Our conclusion is that to leading order, LEET has as much

symmetry’ , , can obviously be obtained from Eq$30),(31) by using
Unfortunately, unlike the HQET case, the action of the

generatorg25) on the physical stateis not straightforward

(V[T#B),  (VIT{5)a.|B) (33

"Except for exchange of hard momentax(M), which generates
; logarithmic corrections that are calculable in perturbation theory.
Swe useiz(g g), wherec are the Pauli matrices. 8These are defined in RdR23], within the context of the quanti-
Note the important role played by tlgefactor in the Lagrangian.  zation on the light cone.
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yso#'=(i12)e""*?a,, andlor contracting withg,. Let us  study theM —o andE—o limit, i.e., we use the variables

recall the relation betweeg? andE=v - p’ (v*,n*,E) rather than p*,p’#,q?). Some caution is needed
to treat the polarization vectar* of the vector meson: in-
deed wherE—, one has/'=O(1) for a transverse meson
while ef*= O(E/my) for a longitudinal one. Thus we decom-

(39 pose the matrix elements on the Lorentz structurésn*,

€ H— n*,  (my/E)(e*-v)n*, (my/E)(€* -v)v*,
As a starting point, we decompose in all generality the’ and e ,Sfpg v)n V\(/hi\éh ;E; firl:iie in tr(1e Vas )rEf tofic);vlimit
above matrix elements in terms of Lorentz invariant form® (‘; € ' ymp
factors. We adopt a parametrization that is convenient t(M_’oo andE—oe:

2 m/2

2__ 2__ 12 —
?=M2—2ME+m'2=E= it

2

(P|V¥#[B)=2E[{")(M,E)n*+ (" (M,E)v*], (35)
(P|T#*|BY=i2E{W(M,E)(n*v"—n"v#), (36)
(VIVHB)=i2E{"(M,E)e""*7v n €k, (37)
(V|A¥|B)=2E{P(M,E)[ *#— (&* - v)nﬂ]+2EF V)P (M E)n#+ (M, E)v~], (38)

(VITE'|B)=—i2EL ¥ (M, E){[ €*#~ (e* -v)n*Jv" —[€* '~ (" -v)n"]u#}

—i2E£"9(M,E)(e*#n"— ¥ ”n“)—i2E§ﬁt5)(M,E)%(e* ) (N*p?—n"v#). (39
|

Some additional comments on Eq85)—(39) are in order® oh _ .
the 2E overall normalization factor has been chosen to re- 5 0*"= o [i(n“v"=n"v#)—i(n*y"—n"y*)¥
store the dimensionality and for further conveniepefe Eq.
(99)]. The superscriptsv), (a), ..., refer to the Dirac + €V N, ys]. (41)
structure of the current operators. Furthermore it is clear that
for a matrix element to a longitudindtransversg vector On the other hand, one may wonder about the initial

meson, only the form factors with[§L) subscript contrib-  heayy quark: should it be described by QCD or HQET? We
ute in theM—c and E— limit. Finally we have made have already noticed that to leading order LEET neglects
explicit the dependence of the form factors with respedfito hard spectator effects, and that the hard momenta are “inte-
andE, although they also depend om' =mp or my,. grated out,” leaving only soft, nonperturbative degrees of
Let us now expose our argument, in tM—o andE  freedom. Thus for consistency one should use HQET to de-
—oo limit. On the one hand we use LEET to describe thescribe the initial heavy quark, and replace the quark field

final active quark. Thus the quark fietg{0) in the current P(0) by b,(0) with ¥b,=b, . This supports the proposed

conjecture that HQET may be applied to the whole physical
operators will be replaced by the effective LEET figl¢(0), kineimatical rangeQin heav{/-to-ligphﬁ semileptonic dec%&l);

with ,6#/2=q,,. To exploit the latter equation, two useful and is not restricted to the small recoil region, that is the
Dirac identities are Isgur-Wise limit[2]. Note that this HQET-LEET formalism
is not more than &oft contribution dominance assumptjon
i y that will have short-distanceg corrections, and nonpertur-
. bative 1M and 1E corrections.
o V= [T 0,0, v, ys], (40) Now we are in position to reduce the number of indepen-
dent form factors, by simply replacing the quark current op-

eratorqI‘b by the effective one]an which is finite in the
M—c and E— limit. From the constralntﬁb =b, and
ng,=0 and from Eqgs(40),(41) we find the foIIowing rela-

®We use the usual relativistic normalization of states afid*= tions between the currents, to leading order ikl lnd 1E:
+1. Note that our phase convention for the vector mesons differs

by a i factor from the one used in Refd.7-9,13,26,2F o o
|V>lhiswork: +i|V>Ref.[7]- qnbv:U/an'yMbv ’ (42)
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T ohh —nfa h L MO, o where thezW(E)/MX, k=1, stand for higher order terms
Gn "D, =N nb, 170,080 Yo Y50, (“43) stemming from the HQET Lagrangian and from the heavy-
_ _ ) _ to-light current operator. Similar ¥ expansion apply fof
qr‘l'y'u')ISbv: - nﬂqn75bu +ie!"P7 Vnpqnygbv ’ (44) and 4,1 .
In the original Isgur-Wise derivatiofi2], M is sent to

Quovb, = i[NP qb, — 4Gy, — (e )] infinity while E is kept fixed, and the well-known- VM
" v Y ntoew scaling is obtained foE<M. Actually whatever the ratio
+ €77y N, ysb, , (45  E/M, we may also tak&—c provided that the™(E), k

2(1) are not enhanced by powers(k)Ef with respect to
— . = — ZO(E), which is unlikely. Indeed the(¥(E) are suppressed
Ano™"ysb, =1[N*v"An ysb, +n"dny"ysb, = (ne>v)] by some power of the large scae which is related to the
(46) suppression of the wave function of the light energetic me-
son when one quark carries most of the momentum of the
hadron, i.e. for the Feynman variahle- 1. This suppression
is universal belongs to the properties of the final state, and
(te) thus should hold for all the operators contributing to the
(1U):§(f\l\): 1 =0 (47) expansion(53). In the end one obtains a factorized scaling
law for any ratio E'M:

+€*""v ,n,q,b, .

Reporting Eqs(42)—(46) in Egs. (35 —(39) we find

Z(U)Z g(t)zg’ (48
{((M,E)=Mz(E), {(M,E)=Mz(E),
(v) — #a) _ #(ts) _
===t 49 £, (M,E)= Mz, (E). (54)
(= gﬁtf’)zgu. (50)  We expect that the potentiat E/M nonfactorizable correc-

tions to Eq.(54) will be suppressed by an additional power

Thus to leading order in M, 1/E, and e there are only ~ Of the large scaled or E, or by as. _
three independent form factors in heavy-to-lig- P(V) The question of the definite asymptoticdependence is
transitions, which from now on we will denote ly(for B more involved, because we have no relation for LEET com-
—P), ¢ and ¢, (for B—V). This implies nontrivial rela- pgrable to Eq(51). However, it is now well accepted that at
tions between the usual form factoirs , A;, etc. (see Sec. 9 =0, the Feynman mechanism contribution to the form
V). Note that among these relations there are the well-knowfactors should behave as the hard one, that-ist~*?
Isgur-Wise relationg2] between the penguin and semilep- [3.7.8,14, although there is no really rigorous proof of that.
tonic form factors which follow froméh,=h, only, while ~ AS E~M atq®=0, it implies that thez(E) functions in Eq.

the relations among the semileptonic form factors stemming4 behave as-1/E. As already said, this follows from the
from gh,=h, and G,=q.#A/2 are new(they resemble ehavior of the final state light-cone wave function near the
v v n

Stech’s[29] and Soares’$30] quark model relations, as we end p°”.““~1 [3]: It |s_argued n Ref|28] that.the light-
discuss in Sec. )/ cone twist-two distribution amplitude, renormalized at a low

The ¢(M,E) functions have a simple dependence Withscale'uz.1 GeV, v_anis_hes linearly ai~1 similar to each
respect to the large mas Indeed it is well known that the term of its expansion in the Gegenbauer polynomials. Inte-

following relation between the QCD and HQET eigenstatesgr"’lting over a region shrunk tmu_~1/E, which is_ the sig-
holds in the heavy mass limi21]; nature of the Feynman mechanism, one obtains i 1/

scaling law

|B.P.)oco= \/M|Bav,u>HQETa (51 1 1
z(E ~f du(l-u)~—. (55
where|B,v ,)noet is independent oM. Thus the matrix el- 1-A/E E
ements(30),(31) become
Should the behavior of the distribution amplitudes naar
= _ - ~1 be different from the usuat(1—u) expectation, the
P(V)|aI'b|B, =JM(P(V)|g,I'b,|B, , ; .
(P(V)[QrbIB.p,)qco= M(P(V)gnlb,| v“>HQET5 power law in 1E should be changed. We stress again that
the ~1/E? suppressior{or whatever~1/E") should affect
k . . . .
where the only Lorentz scalar arising in the covariant decom@!! the 29 functions in Eq.(53). We will see in the next
position of the right-hand side matrix elementEs=v - p’ section that this is exactly what the light-cone sum rule

(ande* -v in theB—V case. From Eqs(52) and(35)—(39) ~ Method predicts. ) .
one has Here we would like to make an important comment: it is

sometimes said that because the asympitaependence is
different at the two particular pointg?=0 and g?=q3,,,

’ (53) =(M—m’)?, HQET could not be valid in the whole range of
g°. However, the extended HQET scaling predicti&d) is

®(E
{(M,E)= M 2B

O(E)+
zV(E
(E) I(Zl M

014001-6
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fully compatible with both the Isgur-Wise M scaling for
E<M and the Chernyak-Zhitnitsky- M~ scaling atq?
=0 providedz(E)~1/E? at largeE. Note also that the di-

pole scaling ofz(E) at largeE does not prevent it to be

polelike at finiteE, according to the idea &* meson domi-
nance.
For clarity, we summarize here our results: in the

PHYSICAL REVIEW D 60 014001

lar g? would have been more interesting than tifedepen-
dence, from the point of view of the extraction |of,;|.

Before closing this section, we would like to make clear
the expected region of validity of the final hadron large en-
ergy limit: from Eqg. (34), it is not restricted, at least for-
mally, to the small values ofi>. Indeed,q? can even be
O(M?) (e.g., q’=aM?), provided that +g>/M?=0(1)

— o andE— limit, the heavy-to-light weak current matrix (that is «#1) and thatM is large enough to get from Eq.
elements depend on only three independent dimensionle$84) the conditionsA ocp<E, m’<E. However, the region

form factors{, ¢, and{,

(P|V¥#|B)=2E{(M,E)n*, (56)
(P|T#|BYy=i2E{(M,E)(n*v*—n"v*), (57)
(VIV#|B)=i2E{,(M,E)e*""?v n e, (58
(VIA¥|B)=2E{ {,(M,E)[*#—(€* -v)n*]
My
+§”(M,E)E(e*-v)n“ , (59
(V|TEY|BY=—i2E{, (M,E)(€*#n"—€*'n*)
. my
—|2E§||(M,E)E(e*'v)(n“v”—an”“). (60)

These three universal form factors have/ld dependence
{((M,E)=\MZ(E), {(M,E)=Mz(E),

{1 (M,E)=Mz, (E), (62)

and we have argued that &€/dependence is very plausible,

thus
g(M,E)=C\I/E—g=4C(1_N;2;7;2)2, (62
§||(M,E)=C||E—\F'\2A=4C(1_N;2;/3;2)2, (63)
§L(M,E)=CL\I/E—?=4CL(1_N;2;/3;2)2. (64)

whereC, C;, andC, are unknown dimensionful constants,

32
of order Agcp.

Let us repeat, however, that Eq62)—(64) are not on as

near the zero-recoil poing?=M?—My with y finite, is
outside the LEET domain. Of course, the realistic world is
much more complicated, and one may expect sizeable non-
LEET effects for physical quark and hadron masses, as one
is going fromg?=0 to g?=q?,,. For B decays, one may
hope that LEET will be valid for q?<10-15 GeV al-
though a more precise answer cannot be given without a
careful study of the subleading terms.

In addition, we are aware of the fact that E¢s6)—(64)
should receive logarithmic radiative correctiops-In(M)
and ~In(E)] [5,31], which might be computed by matching
QCD onto HQET-LEET. These calculations are beyond the
scope of this paper.

IV. LIGHT-CONE SUM RULES IN THE FINAL HADRON
LARGE ENERGY LIMIT

In this section, we shall show that the light-cone sum rule
(LCSR) method is fully compatible with the HQET-LEET
formalism that we have discussed above; moreover we ob-
tain below explicit expressions for the three universal form
factors, that are strikingly simple. Chernyak and Zhitnitsky
[3] were the first authors to use the LCSR method to calcu-
late the heavy-to-light form factors in the region where the
energy release is sufficiently largactually atq?=0). The
basic idea is to describe the decaying heavy hadron by an
interpolating local current and to use the quark-hadron dual-
ity and the Borel transformation to suppress the contribution
of the excitedB states and of the continuum. On the other
hand, the light hadron enters the game through the light-cone
distribution amplitudes, order by order in the twist expan-
sion. Later, the method was developed d8r~0 by several
groups who took into account higher-twist and radiative cor-
rections effect§6—-14]. It has to be considered as a QCD-
based approximation, although, to our knowledge, there is
not a well defined limit of the underlying theory in which the
sum rules are exact.

Our purpose is thus to study tihd@—o and E—co limit
of the LCSR expressions for the form factors, using mainly
the explicit formulas of Refd.6,9,14. For simplicity we do
not consider here the tensor form factors, only the vector and
axial ones. Thanks to the considerable effort developed in
the literature[3,6—14, our calculation does not pose any
major problem and will not be reported here in detail; nev-

solid grounds as Eqg56)—(61). Accepting them neverthe- ertheless some comments are in order.

less, everything but three normalization constants is known The twist expansion does not match théviland 1E
about the form factors, which may constitute an even morgower expansion. We have checked that the leading order
favorable situation compared to the heavy-to-heavy case, apntributions to theMl —o andE—< limit depend not only
least from the mathematical point of view. Ironically, a on the two-particle twist-two but also on the twist-three dis-
model-independent value of the form factors at some particutribution amplitudes while higher-twist£4) and multipar-
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ticle (=3) distribution amplitudes are power suppressedwhere the rescaled parametgrg and wq are finite in the
This was already found in Refg3,7,8,14 where the heavy my—co limit.

quark expansion was considered at the particular pgnt Moreover we notd6,9,14 that the integration domain
=0. This is also compatible with the finding of R€f2] that  after the Borel transformation and the continuum subtraction
twist-three terms are numerically as important as the twistis u e [Uyin,1], where
two ones, while the twist-four and multiparticle contributions

are much smaller. Actually, for the twist expansion to make

2_ 2
sense, the number of different twists contributing to a given U = My~ (for m’=0). (70)
order in 1M and 1E should be finite, which seems indeed to mn sg—q>
be the case.

According to the preceding point, the early calculations of - .
the B—V form factors are not consistent from the point of I the Mp— andE— limit, one has the expansia,,
view of the M —o and E—c limit. Indeed the authors of —+~ @o/E, which shov_vs that this is indeed the size fof
Refs.[7—9] have not taken into account the contribution of that selects the~1 region.

. . NS . We have now all the elements to perform the calculation.
the two-particle twist-three distribution amphtudb@(u) i
) . . W the standard notation for th n t$p,
and h{¥(u), as defined in Ref[26], which, however, con- e use the standard notation for the decay consfatsp

. : . fy, and fy and for the distribution amplitudé§, ¢, bp
tribute to leading order on the same footing as the ones of, é, hhS)' hﬁt), 6, , g andg(® . The behavior of these

twist-two. To our knowledge, only in the recent worKs3] o7 1i 4 to be identical h
have these functions been considered. We calculate the cdinctions neau—1 is assumed to be identical to each term

responding terms below. of their conformal expansion in the Gegenbauer p_onnomiaIs
The “surface terms” should be kept systematically, [28]: thatis, up to~(1—u)in(1-u) terms proportional to

These terms come from the integration by parts after thdhe light quark masse26]

Borel transformation, as discussed in Appendix A of Ref.

[8]. However, for our purpose we have found simpler and b~ o~ ¢H~¢l~hﬁ5>~g<f‘>~(1_u), (7

equivalent to perform the integration by pattefore the

Borel transformation; thus in the calculations below we will

use ¢p~hi~g\"'~C* (72)
1du 1 idu 1 For the B— P transitions we simply use the correlators
OP w=3 o A q-p+um'? given by formulag17) in Ref.[6] and Eq.(14) in Ref.[14]

and perform the Borel transformation after using E8p).

' The standard procedure to subtract the continuum is applied,
X| ———f(w-f'(u)|, (65 and we find that in the limim,—» andE— the B—P
q-p+um semileptonic matrix element can be written under the form
. | o (35) with
where f(u) is a function ofu which verifies f(0)=f(1)
=0 and
<v>|\/|E—1 ! fpep’ (1)
2
Then the Borel transformation is done with respect to the _ femp /
variable @+ p’)?, according to 6(mg, +mg,) ¢o(Dli(wo,po) |, (79
1 1 mz—(1—u)g?+u(1—u)m’'?
L Mzexp[— i ( )qu( | o L Lo
u u BE)=ct"F—F7T—
(67) ' fg 2E2 Mg, + M,
1
where M ? is the Borel parameter. X| pp(1)+ = o (1) (1 1(wg, o). (74)
In order to find them,—o limit of the LCSR, the sum 6
rule parameters have to be rescaled. Following Refs.
[3,7,8,14 we write the Borel parameter Here m, , stand for the masses of the quarks making the
5 light pseudoscalag;q, meson, and thé;(wg,ue) are func-
M =My (68 tions of the sum rule parameterswd,uo) through

and the continuum threshold

B ) 10All these functions are defined and discussed at length in Ref.
So = (My+ @p)*, 69  [26].
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—my,, which is finite in them,—cc limit. For the particular
. 1=12, point g>=0, Eqs.(73),(74) agree with Ref[14] in the m,
For theB—V transitions more work is needed. We have
whereA is the binding energy of the heavy mesdn= Mg recalculated the correlator considered in R6f.

® . 2
Ij(wo,,uo)Zf Odw wJeX[{—(A—w)
0 Mo

I,(p",q)=i f d*x €9V, p’ | TA(x) 7,.(1~ y5)b(x)b(0)i y5a(0)|0) (76)

taking into account the contribution of the distribution amplitutiﬁé(u) and hﬁt)(u). Using the method and notations of Ref.
[9], we find'

my idu (a) n 1 d’i
7fVmeOPgL +fvf0dUT

i * V! PO
Ie/.LVpO'E p pq

e gV +2(q-€)p! 5(@ -G
wuIl uA N il

) idu
11,(0",0) =~ myfymy [

2
m, 0 1 )
1+ 2X>(Hﬁ —®,)+hf*

1 ¢ idu
1y duErenm ar o -pua- - | Tt

idu 1
+2f\L,m\2,J'OP(q-e*)(qMJrupl’i)(Hﬁt)—d)l—Ehﬁs)), 77

the uppercase notation meaning the primitive of a lower-case In the limit my—« and E— the B—V semileptonic
function matrix elements can finally be written under the form
(37),(38) with

u
F(u)=—f dv f(v). (78) a) _ii _ )
0 { (M.E)= ¢~ 5[~ v (D)oo, o)
Compared to Eq(19) of Ref.[9], the last two terms of the +fymyh(Y(1)14(wg,10)], (80

above equation are nelf.

In taking the Borel transformation of E(77), a subtlety vMmy 1 ..,
emerges: the standard procedure considers the Lorentz-é'(lﬂ)(M,E)L=f—E h{’(1)+ Ehﬁs) (1) [11(wo, ko),
invariant decomposition ofl,, that is the coefficients of 5 81)
€, (q-€)p, and @- €*)q,,, and performs the Borel trans-
formation on the variable’ +q)? with p’?=mZ and g2
fixed to their physical value. This amounts in particular to (M ,E)= f——z[—f\i,cﬁi(l)lz(wo,uo)
consideringg- €* as a constant. While this is true for trans- B 2E
verse mesons, for whic)- €} =0, it is clearly not possible
for longitudinal mesons. Thus for longitudinal mesons we
simplify the correlatordl,, by expressingy- e|’|* in terms of

! 2 H 2. 1 1 ,
p’-q andqg- before Borel transforming onp( +q)*: g“(f)(M,E)= E E —fudl (1)1 x(wg, o)

my 1 (@’
1-—. (79 — 2 fvmvg™ (D11(wo, o) |- (83
E2 4

As for the transverse form factors at the particular pojfit
=0, Egs.(82),(83) agree with Ref[8] in the mp—co limit.

1

+fymyg (D)1 1(wg, o)1, (82

YRecall our conventions, footnote No. 10. Let us now discuss our results, Eqg3),(74) and (80)—
12They are taken into account in Réf.3], together with twist-  (83). First, asfgymg~C™ [2], the factorized scaling law
four and radiative corrections. ~M/E? is clearly seen, as anticipated in Sec. Ill. Note that
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the 1E2 dependence holds despite the fact hat g(f) , and
h{" do not vanish ati=0,1, which is a hint that this scaling

law may be independent of the LCSR calculation. Second it
still seems that we have six independent form factors to de- 2

1 1
g(M’E):EE —fpd' (D)1 x(wq,10)

fom
scribe the semileptoniB— P(V) transitions. However, us- + %gbp(l)ll(wo,,uo) , (87
ing the results of Refs[7,23,26 based on the conformal Mg, My,

expansion of the distribution amplitudes and the equations of

motion, the following relations hold exactly in QCD:

1
$o(1)+ 5 d1(1)=0, (84)
hit(1)+ }hf)'(l)—o (85)
\ 2 -
1 o
9”1+ 79 (1)=0. (86)

Reporting the above relation in Eq3.3),(74) and (80)—(83)
we obtain{;=¢;=0 and that the semileptoniB— P(V)
matrix elements can finally be written under the fof56)—
(60) with

1 1
(M, E)= = E[_fvﬁﬁﬁ(l)lz(wo:ﬂo)

+fymyh(P(D)11(wg, 10)], (88)

1 1 L
(L (ME)= T E[_fvfﬁﬂl)'z(wo,#o)

+fymyg (1)1 1 (@0, 10)]. (89)
It is interesting to note that Eq&34)—(86) can be derived

simply using the LEET projection conditid21). Indeed the
functions ¢,(u) and ¢,(u) are defined by{with ¢,(0)

=¢4(1)=0]

En-d . _
o) = [ S5 e E P, (01 75 A(X]0)a(0)[0), (90

fpmp , En-dx . £ —
—ff’g(u)nﬂzf o€ Playi(x) e, vsn"A(x|0)qx(0)[0) (91)

with pL: En, the hadron four-momenturo,the momentum  ing law seems to be affected by large correctitas)®>=0,
fraction of the quarkg,, and A the path-ordered gluon op- this is discussed in Ref7]), which may appear surprising.
erator ensuring the gauge invariance of the above matrix eM/e leave this interesting question for further investigation.
ements To conclude the light-cone sum rule method provides an
explicit realization of the HQET-LEET formalism, that is it
satisfies the predictiongs6)—(64) exactly in the limit of
heavy mass for the initial meson and large energy for the
final one. This is a remarkable nontrivial result, and we
would like to insist on the extreme simplicity of Eq87)—

A(x|0)=P exr{ ig Joldw XMA”(WX)] ) (92

Foru=1 one may replace in Eq890),(91) g,(x) by the

effective LEET fieldgy,(x) with #q,,(x)=0. Using o,
=i(9,,— v»v,) oOne immediately gets EQq(84). Egs.

(85),(86) can be obtained similarly. Furthermore it can be

checked than H corrections to LEET generates-1 cor-

(89).

In addition we show in Ref[15] that the quark models
based on the Bakamjian-Thomas formalism also verify the
HQET-LEET relations(56)—(60) between the form factors,

rections in the distribution amplitudes and thus vanish for2S Well as theyMz(E) scaling law of Eq.(61). This is an-

u=1.

other hint that the LEET formalism is well adapted to the

We would like to make here a last comment, of phenom-9escription of heavy-to-light transitions.
enological interest. While we have shown that the LCSR
approach satisfies the general relations and scaling laws
among the form factors, the same approach also allows us to
calculate some of the deviations to the asymptotic limit Here our purpose is to write down the standard form fac-
—x and E—o. As a first test, we have checked using thetorsf_ , A;, etc., in terms of the three universal functians
most recent calculations 3] that the relations between the ), and{, , a convenient way to compare our results with
form factors are quite robust, i.e., they are well satisfied eveprevious approaches, and to discuss some phenomenological
in the nonasymptotic regime. However, theyM/E? scal- applications. The former form factors are defined as follows:

V. PHENOMENOLOGICAL DISCUSSION
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MZ_m2 MZ_mZ
(PIVH[B) =1, (q?)| p#+p'#— p C g |+ fo(@?) = “ g, (93
wy . fT(qz) 20 A ' 2 2\ i
(PIT qV|B>=|M+—mP[q (p*+p'*)—(M*—mg)g”], (99
2V(g?) o
(VIV¥[B) =i+ Ty € PRI (95)
€ -q € -q € -q M2—m?2
(V]|AHBY =2myAg(q2)—— g*+ (M +my)AL(g?)| € #— ——q* | — Ap(qP)———| p#+p'#~ Ya4|,
q2 2 M+mv
(96)
(V|T#"q,|B) = —2T1(g%) e*"""p"p'Pe**, (97)
2
(VITE"q,|B)= —iTo(q*)[(M?*—m{)e* #—(e* - q)(p*+p'*)] =i Ta(g?)(e* - q)| g~ YE mz(p“+p’“)l- (99)
— Iy

Now we consider the matrix elements as given by their m?

m
asymptotic expressiofb6)—(60) with (v#,n*,E) unambigu- Ay(g?) = ( 1- ME )g(M ,Ev)+ vai(M \Ev),
ously defined in Eq92)—(4); then we identify in these equa- v (102
tions the coefficients of”, v#, €*#—(€* -v)n*, etc., with
the corresponding ones in the standard parametriz&éigr-
(98), keeping all the light mass terms although, strictly
speaking, they are subdominant in the final hadron large en-
ergy limit. The point is that these kinematical mass correc-
tions could be numerically very large, and thus should not be m m
thrown away; for exampIeM’,;/MD=0.48 and M’,;/MB Az(q2)=(l+ Iz (M,Ey) - _V§|(M1EV)}1
=0.17. Although it has a certain degree of arbitrariness and M Ev
introduces some model-dependence, this procedure amounts (104
to assume that the matrix elements are well approximated by
their asymptotic valu€56)—(60), while the form factord ., , ) my
A,, etc., are not, because of the light mass terms which ap- V(q )2(1+ Vi
pear in their definition. This was already postulated in Ref.
[32], and this is in rough agreement with RE27], where it
is found that the main light meson mass corrections are T1(0%)=¢4,(M,Ey), (106
purely kinematical.

2Ey
M +my

A(g%)= {1 (MEy), (103

gL(M !EV)I (105)

We find, with the notatiorEp(E,) for the value ofE 2
obtained by puttingn’ =mp(my) in Eq. (34), T2(q2)=( 1— F £, (M,Ey), (107
F.(q?)=¢(M,Ep), (99) -
T3(q2):§L(M,EV)—E 1_W J|(M,Ey).
(108

{(M.Ep), (100 Equations (99 —(108) make apparent the fact that the

form factors fy, A4, and T, have a “"kinematical pole”
~(1—g?/M?) with respect to the others, which is a finding
that was described in R€f32] as being essentially a relativ-
(101) istic effect. In addition, the- 1/E? dependence of th& form
factors, as discussed in Sec. lll, imply a dipole behavior for

q
fo(g?) = ( 1- 2

P

m
f(07)=| 1+ 5 |{(M.Ep),
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fo, fr, Ag, Ay, V, T4, andT5 and a pole one fofgy, A For the semileptonic decay the rafiq /T" _ reads, thanks
and T, with the heavy mass as the pole mass. This poleto Eq. (109,
dipole description of the form factors was a phenomenologi-

cal ansatz made in R€f32]. Also Ref.[32] needed to intro- T, Enman 2
duce some unknown normalization constants, which we may T z{f 1-mg/E>—1 dE} /
now interpret as the constan® C; andC, of Egs.(62)- - Mv
(64). 2
Moreover, it becomes clear from Eq99),(108) that the [fEmaX /—1—m\2,/E2+1 dE, (110
HQET-LEET predictions are close to the relations obtained my

by Stech[29] and Soare$30] who have used a constituent
qguark model approach. Except some ambiguities in the SUbWith
leading terms~m’/M or m’/E, our general relations

(99),(108 coincide with Stech’'s and Soares's ones, if we

impose{, ={|. Note that we have found no general reason M m\2/
for {,=¢, and it seems incompatible with the LCSR ex- Emaxzf 1+ W , (111

plicit expressiong88),(89), where the ratia/, /£, although
constant, depends nontrivially on the sum rule parameters,

the decay constants and the light-cone distribution ampliyhile for the nonleptonic decaB—V,V, in the factoriza-

tudesz i.e., on the; dynamics. Similarly, in the explicit andyjn, assumption, after simplification by EQ.09), it is given
covariant expressions for the form factors that we have o By [36]

tained in Ref.[15] using the Bakamjian-Thomas quark
model approach, it does not seem possible to have (|

without any assumption on the quark-quark potential. Nev- A 1R2 2
ertheless, the similarities between Stech’s and Soares’s pre- F_+: [1-V1- 1k +mV1/(va2)| (112
dictions and ours is quite remarkable, and give strong sup- o |1+ V1-1m2+ m\,l/(xm\,2)|2
port to these findings.
An interesting phenomenological discussion is done in
Ref.[33], where some tests of the form factor relations, ob-with
tained by Stech and Soares, are performed or proposed.
Moreover, these relations seem to agree quite well with lat- s )
tice data, as the study of R¢B4] shows. However, some of Me=my —my,
these applications are not possible in our case, for example X= W (113
1 2

the study of the longitudinal polarization of the light daugh-
ter meson, because the rafo/{ is not known from our
formalism®® Thus we consider here only thé/A; ratio, Note that in the stricM —c andE—o limit (that imply x
leaving other possible applications for further investigation.— ), one had", =0 in both cases, which is reminiscent of
From Eqgs.(103 and (105), this ratio is given by the fact that an ultrarelativistic quark produced by the\
current is purely left handel83]; the HQET-LEET relation
(109 implies that the naive picture at the quark level still
V(g?) (M+my)? holds at the hadron level.
A(qD) - M2+ m2—q?’ (109 The predictions(110) and (112 are compared with ex-

1 v perimental data in Table |. The agreement is striking; as for
the ratioI’ . /T _ in D—K?*, this might be accidental be-
The knowledge of this ratio has important consequences: ogause the nonzero value of this ratio is obtained from the
the one hand, it is measured gf=0 in the decaysD large, although formally subleading, kinematical terms in
—K*1v andDs— ¢l v [1]; on the other hand it provides the m,,, the reliability of which is not clear, as stressed above.
ratio I', /T'_ of the width to the helicity eigenstates= Moreover the decayp —K* is naively quite far from the
* 1. The latter is also measuredn—K* |y, [1], aswellas M—o and E—c limit, and the relation(109) is assumed
in B—K*J/4 [35] where it can be estimated if the factor- quite arbitrarily to hold in the whole range gf, otherwise
ization of the nonleptonic matrix elements is assumedhe integration in Eq(110) could not be performed. Never-
[32,36. theless these results are encouraging and appeal to investi-

gate further the applications of the HQET-LEET formalism
in heavy-to-light decays. Finally, let us stress that the general
LWith ¢, = ¢, Soares finds a good agreement between his prefelations that we have found among the form factors could
diction and the data foF, /T o, in B—K*J/i. We feel that in the b€ very useful for extracting the CKM matrix elements. It
LCSR expressions88),(89), the numerical value of the ratio has already been shown that the Isgur-Wise relations be-
C, /Cy is accidentally close to 1, because the decay constants arfveen the penguin and semileptonic form factors may allow
the distribution amplitudes are not very different for the transversghe extraction of{V,,| [4], by looking atB—K*y and B
and the vector meson. —plv,. Here we have much more constraints on the form
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TABLE I. Predictions of HQET-LEET for the rati&//A; and VI. CONCLUSION
the ratiol’, /T’ _ of the width to the helicity eigenstatas=*1 in
various decays. The second column quotes the ditictc andE
—oo limit, obtained by puttingmy,=0 in Egs. (109-(113); the

Cortectondqs (110 of (112], a5 explained n the ot As for e 162 Mas for the iniial meson and large energfor
nonleptonic decays, naive faciorization is assumed, along the Iine(;[ © flr_1a_l one, there are only three |ndeper_1dent form factors
Refs.[32,30 ’ ' esc_rlblng all the ground state heavy-to-ll_ght_weak current
e matrix elements. Moreover, a factorization formula
~Mz(E) is obtained, and a dipole scaling law 1/E?
should come from the usual expectation of thél—u) be-

We have argued that the HQET-LEET formalism seems
to be well adapted to the description of heavy-to-light tran-
sitions in the large recoil region. In the asymptotic limit of

Observable my=0 Eqg.(110 or (112 Exp. data

D—ply havior for the suppression of the Feynman mechanism. We
VIA,; atq?=0 1 1.70 havg checked explicit]y that the Iight-cone sum rule meth_od
r.IT 0 0.11 verifies these constraints, and predicts very simple analytical
+ - . . . . .
D—K*Iy expressions for the form factors. Finally, there is a first
VIA, at g2=0 1 178 1.85:0.12[1] agreement with available experlment.al. data, althpugh more
LT 0 0.15 0.16:0.04[1 observables are needed to make definite conclusions.
s ‘ ' 04[1] It is clear that there is a lot of work to do in this field.
5 Ds—dly From the theoretical point of view, one should establish the
VIA;, atq®=0 1 1.82 1.50.5([1] HQET-LEET formalism more firmly than we have done. In
) 0 0.18 particular, the radiative corrections should be handled. Some
B—ply interesting questions also concern the relations between the
VIA, atg?=0 1 1.29 - LEET Lagrangian and the light-cone quantization.
r./r_ 0 0.02 - From the phenomenological point of view, one may look
B—K*1y at some observables that are fully predictable in the final
VIA, atg?=0 1 1.32 hadron large energy limit. The question of how to treat the
main corrections is open. Finally it is tempting to search for
L, IT_ 0 0.02 .
B—K*J/ (factorization new methods which would allow us to extract the CKM
LT 0 0.005 0.03-0.08[35] matrix elements, with the possibility of controlling the theo-
A T ' ' retical uncertainties thanks to the general constraints on the
Bs— ¢J/y (factorization form factors.
r,/m_ 0 0.007
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