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We study the first-order finite-temperature electroweak phase transition of t® alige-Higgs model
defined on a four-dimensional isotropic lattice with the temporal extendjer?. A finite-size scaling study of
Lee-Yang zeros yields the value of the Higgs self-coupling of the end pok=20.00116(16). An indepen-
dent analysis of the Binder cumulant gives a consistent value for the end point. Combined with our zero-
temperature measurement of Higgs afidboson masses, this leadshb, .=73.3£6.4 GeV for the critical
Higgs boson mass beyond which the electroweak transition turns into a crod<S8&%56-282199)01311-9

PACS numbdss): 12.15~y, 11.10.Wx, 11.15.Ha

[. INTRODUCTION vances have been made with the use of the space-time aniso-
tropic lattice[16,17]. This approach alleviates the double-

The minimal standard model predicts that the electrowealscale problem that there are light modes with long
interaction undergoes a first-order phase transition at a finitaravelength > 1/T, near the end point where the transition
temperature for light Higgs boson masses. A focus of receris of second order.
studies has been whether the first-order phase transition sur- In this paper we report on a study of the end point of the
vives with sufficient strength for a realistically heavy Higgs SU(2) gauge-Higgs model employing four-dimensional
boson masg$1], since the feasibility of electroweak baryo- space-time symmetric lattices with the temporal lattice size
genesid 2] depends crucially on it. N,= 2, building upon a previous woifli.5]. Simulations have

The first-order nature of the electroweak transition forbeen carried out for a wide range of spatial lattice sizes, and
light Higgs bosons can be shown within perturbation theoryfinite-size scaling study of Lee-Yang zeros is used to find the
However, perturbation theory breaks down for Higgs bosorlocation of the end point. We measure the Higgs atid
masses larger than abaut,, due to the bad infrared behav- boson masses around the end point and estimate the value of
ior of the gauge-Higgs part of electroweak thef®y. Hence, the Higgs boson mass at the end point.
numerical simulation techniques are needed to analyze the This paper is organized as follows. In Sec. Il we present
nature of the transition for heavy Higgs bosons. the SU2) gauge-Higgs model lattice action and outline our

Extensive studies in this direction have already been perstrategy for finding the end point through Lee-Yang zeros. In
formed within the effective three-dimensional theory ap-Sec. Ill, following a brief discussion of susceptibility analy-
proach, in which all nonstatic modes of the system are intesis, Lee-Yang zeros are examined. Another approach to find-
grated out perturbatively. This approach has the advantagaeg the end point using the Binder cumulant is also de-
that the full standard model including fermions can bescribed. In Sec. IV we present results of the zero-temperature
mapped onto a three-dimensional @U[or SU(2)2 U(1)] mass measurement. Together with our result for the scalar
gauge-Higgs model, as there are no fermionic static modes aelf-coupling constant at the end point obtained through Lee-
finite temperature. In addition, thinning out the degree ofYang zero analysis, this leads to the value of the Higgs bo-
freedom to those of a three-dimensional theory significantlyson mass at the end point. Section V is devoted to conclu-
reduces the computational requirement. sions.

Results from simulations in this approach show that the
first-order electroweak transition weakens as the Higgs bo-
son mass increas¢4—6|, and that it turns into a continuous
crossover for heavy Higgs bosons with a misks= M, [7]. We work with the standard S@) gauge-Higgs model ac-
Detailed studies of the end point of the first-order transitiontion given by
including its universality class have also been mggiel(].

A potential problem with the three-dimensional approach =3
is that it relies on perturbation theory to derive the three- <
dimensional action so that numerical predictions may in-
volve systematic errors due to truncation of perturbative se- 2 2 2
ries. From this point of view a direct simulation of the four- P Mp— D)
dimensional system is preferred. Results from four-
dimensional simulations provide a check on those of the 1
three-dimensional method. t . 2_ +

Early studies of the four-dimensional 8) gauge-Higgs TP Uu®ori)s pi= ETr(q)Xq)X)'
system were carried out in Refd1-15. More recently ad- 2
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where U, ,, is the product of link operators around a intermediate values of indicates that the end point of the
plaquette 3 is related to the tree-level gauge coupling@s first-order transition is located in between the two extreme
=4/g?, « represents the Higgs field hopping parameter, and/alues. Our range of spatial volumes, unfortunately, is not
\ is the scalar self-coupling. We put the system on a spacesufficient to pin down the critical value of from the sus-
time isotropic lattice of a sizél;x N3 . ceptibility data.

Finding the end point of the first-order finite-temperature
phase transition of the model requires finite-size scaling B. Lee-Yang zeros
analyses to quantitatively distinguish the case of a first-order
transition from that of a crossover as the coupling parametert%
of the model are varied. As the main tool, we employ finite-
size scaling analysis of Lee-Yang zefd$8,19 on the com-
plex « plane for fixedg and \ [8,9,17. For a first-order
phase transition, the infinite volume limit of the zeros

The determination of the end point of the finite-
mperature phase transition of the model, thus a character-
istic feature of the phase diagram, is made by the use of the
Lee-Yang zeros of the partition functiah[18,19. Near the
first-order phase-transition point the partition function reads

pinches the reak axis, while they stay away from it if there Z=2.+Z,x exp(— Vi) + exp(—Vf,), 4
is no phase transition. We also supplement this method with
analyses of susceptibility and Binder cumulant. where the indices(b) refer to the symmetri¢Higgs) phase

Our finite-temperature simulations are carried out for theand f stands for the free-energy densities. Near the phase-
temporal lattice sizeN,=2. For the spatial lattice size we transition point we also have
takeN3=20%, 24°, 3%, 40°, 50, and 6. The gauge cou-
pling is fixed at3= 8. For the scalar self-coupling we choose
five values, A=0.00075, 0.001, 0.00135, 0.00145, andgjnce the free-energy density is continuous. One then obtains
0.0017235, which covers the range of the zero-temperature
Higgs boson mass 57M ;<85 GeV/[15]. For each value of Zoc exp[ —V(fs+fp)/2] cosh —Va(k—k)/2], (6)
\ the scalar hopping parameteris tuned to the vicinity of
the pseudocritical point estimated by the peakaposition of thavhich shows that for complex Z vanishes at
susceptibility of the Higgs field length squarg€l

Thep upd);ting algc?rgi;thm is ag con?bina’iion of over- Im(x)=2m(n—1/2/(Va) @
relaxation and heatbath methodk3], with the ratio of the

fp=fstalk—k¢), (5)

for integern. In case a first-order phase transition is present,

two for the scalar part and the gauge part as speqified in Refehese Lee-Yang zeros move to the real axis as the volume
[15]. We make at least aiterations of this hybrid over- goes to infinity. If a phase transition is absent the Lee-Yang

relaxation algorithm at each coupling parameter point forZerOS stay away from the real axis. Thus, the way the

each Iatt'cff. size. The list of co_uplllng_ values z'?nd Zt‘f’ms_i_t'cl; Wl?_ee—Yang zeros move in this limit is a good indicator for the
use in our finite-temperature simulations are listed in Table I, osance or absence of a first-order phase transition.

We also carry out zero-temperature simulations to Mea"  calculation of the partition function for complex values of
sure th_e masses of Higgs aV_It!bosons around the enq PoiNt . is made with the reweighting meth¢@l] in both imagi-
OT thgtgrst—c:trcliqerfpggsg tranS||t|on.chE)r tthe_lse r;J{\hs an mprogeﬁaw and real directions of. In those cases where we have
algorithm of Ref.[20] is employed. Details of the runs an two ensembles with the same valuexondNg, but differ-

results are discussed in Sec. IV. ent k, we combine the two runs by setting the magnitude of
the two partition functions to be equal at the midpoint be-

lll. FINITE-TEMPERATURE RESULTS tween the twok's.

A. Susceptibility In Fig. 2 we show the absolute value of the partition func-
' . ._tion normalized by its value at the real axis on the complex
Let us first look at the susceptibility of squared Higgs |
plane,
length,
Z(Rek,Im k)
=V 2y — 2 y 3 =
x,2=V((p)—=(p)") ©) Znormd K) ‘ Z(Rox0) ®)

whereV= Ng. The maximum value of the susceptibility at

its peak, calculated by the standard reweighting techniqufé)hr)‘:Q'OO.O75 anst=b60. Thehcontour Iin(_a tht.his figureir?
[21] as a function of, is plotted in Fig. 1 against the spatial SNOWN In Fig. 3. We observe three zeros in this case, whose

volume normalized by the critical temperaturkiTg distance from the real axis is roughly in Fhe ratio 1:3:5 as
=N3/N3. Errors are estimated by the jackknife procedureeXpeCteoI from Eq(7) for a first-order transition.
st Let us call the zero nearest to the real axis the first zero,

with the bin size of 16-10* sweeps, which is listed in Table and denote its location by,. We search for the first zero by

l. ; :
. he N -Raph h I h
The slope for the smallest scalar coupling=0.00075 the Newton-Raphson method applied to the equation

approaches unity for large volumes, which is consistent with Z(Rek,Imk)=0, (9)
a first-order transition, while that for the largest coupling

=0.0017235 tends to a constant, showing an absence ofsarting with an initial guess fok, obtained from the con-
phase transition. A continuous decrease of the slope for theur plot of Z,,m(«). The error ofk, is estimated by the
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TABLE |. Run parameters of finite-temperature simulation and results of the first Lee-Yang zero. Data
used for analysis of susceptibility and the Binder cumulant are markedywatid B, respectively, in the last

column.
(X 10° sweep
N Ng K Iteration  Bin size Reg Im «q Use

0.00075 20 0.129114 100 2 0.1291133 0.000047720) x,B
24 0.129103 100 2 0.1291062) 0.000028511) X,B
32 0.129102 100 4 0.129102183) 0.0000135145) x,B
40 0.129100 100 6.25 0.12910G838) 0.0000076226) x,B
50 0.129100 120 10 0.12910051) 0.0000041117) x.B
60 0.129100 180 10 0.1291003883) 0.00000232(651) x,B

0.001 20 0.129340 100 2 B
20 0129350 100 5 0.129347215) 0.000060516) N
24 0.129330 100 2 0.1293348) 0.000043218) x,B
32 0.129328 100 2 0.129330a22 0.0000213675) x,B
40 0.129327 100 2.5 0.1293288D) 0.0000122%44) x.B
50 0.129327 100 4 B
50 0129328 100 4 0.1293279737) 0.00000768%6) X
60 0.1293275 180 7.5 0.12932733) 0.0000048918) x.B

0.00135 20 0.129660 100 1 0.1296888 0.000116736) x,B
24  0.129650 100 1 0.12966(09) 0.000081932) x,B
32 0.129644 100 1 0.1296469) 0.000054220) x,B
40 0.129640 100 2 0.12964Q65) 0.000029811) x,B
50 0.129639 120 25 0.129637827) 0.0000201688) x,B
60 0.129637 120 4 0.129637%8) 0.0000129¢78) x,B

0.00145 20 0.129748 100 1 0.129743%) 0.000088538) x.B
24 0.129736 100 1 0.12973&40) 0.000056720) x.B
32 0.129728 100 2 0.1297311%) 0.000032812) x.B
40 0.129724 100 2 0.1297273815 0.0000217199) x,B
50 0.129722 120 2 0.129726B9) 0.0000152679) x,B
60 0.129724 120 4 0.12972581) 0.0000114679) X,B

0.0017235 20 0.129980 100 1
20 0.129990 100 1 0.1299875620) 0.000095119) B
24 0.129980 100 2.5 0.1299723) 0.000060421) x.B
32 0.129966 100 1 0.1299684%) 0.000038812) x.B
40 0.129968 100 1 0.12996@%) 0.000027614) Xx.B
50 0.129965 100 2 x,B
50 0129966 100 5 0.129961614) 0.000020716)
60 0.129962 120 4 0.129961(72) 0.0000158674) x,B

jackknife method with a bin size given in Table |, i.e., the For a first-order phase transition, the infinite volume limit
zero search is repeated for the set of partition functions cakanishesx$=0, and the exponent takes the value 1. In
culated from each jackknife sample of configurations, andne absence of a phase transitiafj=0 and the value of the
the jackknife formula is applied to the set of. The results exponent is generally unknown.

for ko are given in Table I. We show in Fig. 4 values of the In Fig. 5 we plot results fox$ as a function ok obtained

imaginary part of the first zero Imo(V) as a function of by fitting the volume dependence of the first zero by the form

inverse volume. . - c .
Finite-size scaling theory predicts that the volume depenglo) (see Fig. 4 for fit lines Both kg and v are taken as fit

dence of the imaginary part of the first zero is given by aParameters, and the entire set of voluiig= 203—_603 is
scaling form, employed. Filled symbols mean that they are directly ob-

tained from the simulations carried out at the corresponding

Im ko(V)=xg+CV". (100 values of\. The points plotted with open symbols are ob-
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FIG. 1. Peak height of susceptibility @f against inverse vol-
ume normalized by critical temperatuvT>=N2/N? . Dotted lines
are guides for eyes.
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FIG. 3. Contour plot of Fig. 2.

In Fig. 6 we show the exponent of scaling functidr®).
The meanings of the symbols are the same as in Fig. 5. For

tained from the first zero of the partition function calculatedA>\., where there is no phase transition, the exponent
by reweighting the partition function measured at the pointtakes a valuer~0.75. Below the end point <A, the ex-
wherexg with the filled symbol of the same shape is shown.ponent shows some trend of increase, but not quite to the
The agreement of open symbols of different shapes withivalue v=1 expected for a first-order transition. We think

errors shows that reweighting from different values )of
gives consistent results between the measured points.
At small couplingsh =0.001, g is consistent with zero,
which agrees with the result of R¢fL5] that the transition is
of first order in this region. At large couplings

that this is due to insufficient volume sizes used in our simu-
lation, for which corrections to the leadingVlbehavior are
not negligible.

To check this point we make an alternative fit of results
for the first zero adopting a quadratic ansatz in the volume

=0.0013, «§ no longer vanishes, and hence there is nodiven by

phase transition. In order to determine the end point of the

phase transition, we take the three filled points At

Im ko(V)=k§+CV 1+DV ™2, (12)

=0.00135, 0.00145, and 0.0017235 directly obtained from S o
independent simulations withoiit reweighting, and make a and show the results fok; in Fig. 7. Clearly the infinite
fit with a function linear in\. This gives the position of the volume limit x5 starts to deviate from zero around

end point to be

A.=0.0011616).
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- A=0.0017235
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£
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0.0 , ]
0.0 0.5 1.0
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FIG. 4. Imaginary part of first Lee-Yang zero as a function of

FIG. 2. Absolute value of normalized partition function as a inverse volume normalized by the critical temperature. Solid lines

function of complexx for A =0.00075 and\g= 60.

are leasty? fits with Im ko(V)=«§+CV™".
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A.=0.00116(16)
-0.5 . . -0.5 . :
0.0010 0.0015 0.0010 0.0015
A A

FIG. 5. Imaginary part of first Lee-Yang zero at infinite-volume  FIG. 7. Same as in Fig. 5. The quadratic polynomial is used for
limit as a function of Higgs self-coupling. Filled symbols are cal- fit instead of the power function.
culated without\ reweighting, while open symbols with re-
weighting from the filled symbol with same shape. Solid line is a <L4> 1
linear fit toA=0.00135, 0.00145, and 0.00172@Bled symbols. — s’

3(L22 % 3N3N, xuSl2s

B (x)=1 Ly, (13

~0.001, which is consistent with the estimatexgf above,
albeit located at the lower end of the one standard deviatioihe infinite volume limit of the minimum of this guantity
error band. should deviate from 2/3 for a first-order phase transition,
We note that the quadratic ansa&f2), formally the first  while it should converge to 2/3 beyond the endpoint.
three terms of a Laurent series, is expected to be correct in We evaluate the minimum of the cumulant as a function
the case of a first-order phase transition, for which &). of « for a given\ and volume using reweighting. We then
describes the thermodynamic limit. However, it is not a validuse a scaling ansatz
assumption in the region of where there is no phase tran-
sition. Therefore, unlike the case of Fig. 5, extrapolating the
results of Fig. 7 from large to small values »fto estimate
the location of the end point. is not justified.

BI""=Bf +CV " (14)
to extract the infinite-volume valufs.
In Fig. 8 we show— (st— 2/3) as a function ok, where

the meanings of the symbols are the same as in Fig. 5. A
change of behavior from nonvanishing values to those con-
sistent with zero ak ~0.001 shows that the first-order phase

C. Binder cumulant

Let us consider the Binder cumulaftf. [22]) of the
spacelike link operator,

1.0 T T T T T T T

0.06
09 t .
{ 0.04 {
08 | } 1@
> % { %’ NI 0.02 | 3
07 | ;9
- 0.00 EﬁEIEE§I
0.6 | 1 I
~0.02 : :
05 - : 0.0010 0.0015
0.0010 0.0015 A

A

FIG. 6. Exponent of finite-size scaling of first Lee-Yang zero.

FIG. 8. Minimum value of Binder cumulant dfg at infinite
volume limit as a function of.
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TABLE Il. Run parameters of zero-temperature simulations and L I I LA LN B
results for masses in lattice units. ! .
0.35 - _
A (X 10° sweep - 3 W mass } 1
N3X N, Iteration my My g I : % 1 1
8%x20 60 0.293844) 0.358341) i - ! 1 1
10°% 24 75 0.266224) 0.338(33) B o3 i 7
0.0011 18x28 49 0.28446) 0.317168) - & § % ! .
0.129416 13&x32 34 0.28384) 0.319169) L Higgs mass J
16°x 36 26 0.285162) 0.3152133 H . 1
183>< 36 26 0288?47) 03321100) 0.25 Co b v o by by g b v by o 07
8 10 12 14 18 18
83x 20 60 0.280642) 0.328%95) N,
10°% 24 75 0.276433) 0.329130)
0.00125 13x28 49 0.288(38) 0.299251) FIG. 9. Higgs andN masses in lattice units as a function§
0129532 13x32 34 0.285(56) 0.303758) for A=0.0011.
163X 36 29 0.286®1) 0.294164)
183% 36 315 0.289%54) 0.296571) correlated fits. To perform this fit, we divide the data sample

into subsamples, and estimate the errors of correlators from
the statistical fluctuations of subsample averages.
transition terminates around this value. Linearly extrapolat- The best fitvalue of the masses is taken to be the number
ing the two independent dataat 0.00075 and 0.001 yields given by the uncorrelated fit. The value of the Higgs boson
A.=0.00102(3) for the end point, which is consistent with mass is obtained by fitting to a linear combination of the two
the result(11) from our study of Lee-Yang zeros. Note, how- different correlators forp? and Ly .- The errors on the
ever, that only two measured points are available for thenasses are determined by jackknife analyses over sub-
linear extrapolation. Therefore, we cannot make a statemestamples. The masses obtained by the correlated fits with ei-
on the goodness of the fit. For this reason, we conservativelyenvalue smearing are in all cases well within the error bars
take the Lee-Yang valug@l) as our best estimate of the end of the uncorrelated fits.
point. Our zero-temperature simulations are carried out at two
points given by[\,«x=k.(\,N;=2)] for A=0.0011 and
IV. CRITICAL HIGGS BOSON MASS 0.00125 employing several lattice sizes to examine finite-

volume effects. The run parameters and results for masses

To determine the physical parameters characterizing thgee colected in Table II. The size of subsamples is typically
end point, namely the ratio of the Higgs boson mass tohe gnq sweeps.

boson mass and the renormalized gauge cougigg we
have to perform zero-temperature simulations. As in Refs(see Fig. 9, except for the two smallest spatial volumgs
[12-14, we extract the Higgs boson masg, in lattice units  _g3 163 for which somewhat different values are obtained

2 . .
from correlators opj andL, , . TheWboson mass in latticeé  compared to those of other volumes. We then discard those
units my, is obtained from the correlator of the composite regyits and take an average over the rest of the volumes. This

Our results do not show significant volume dependence

link fields yields the values given in Table Ill. Settird,,=80 GeV,
3 we obtain
1 T
Wi= 3 STr(rrafUxcai), (15
rk=1 My=70.9+1.1 GeV (A=0.0012, (16)
where 7, is the Pauli matrix and, is the angle part ofb,
such thatd,=p,a, with a,e SU(2). My=76.8-1.1 GeV (A=0.00125. (17)

Masses are extracted from the correlators fitting to a hy-
perbolic cosine plus a constant function. Simple uncorrelate aking a linear interoolation to the critical valua
least-square fits and correlated fits with eigenvalue smooth-’ 9 P ) C
ing proposed by Michael and McKerrd®3] are used. The =0.00116(16) from the Lee-Yang zero analysis, we find
application of this method is discussed in detail in R&#]. . . . )

The actual procedure of extracting the mass parameters is TABLE II!. Averaged masses in lattice unlt_s and renormalized
the following. First we determine the reasonable time inter-9auge couplings from results in Table Il excluding those for the two
vals for fitting the correlator data. The guideline is to choose™allest volumes.
as large an interval as possible with a reasonaBldegree R 2
of freedom value. For this purpose correlated fits with eigen- M Mw Hw 9r
value smearing are used. We find this to be necessary sincg0011  0.285@2) 0.320241) 0.8864136) 0.571227)
the data are strongly correlated for different time distances 00125 0.287@6) 0.298§30) 0.9607134 0.576833)
Having fixed the fitting time interval, we next carry out un-
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TABLE IV. Summary of the fit parameters for the static potential and the renormalized gauge coupling.

A
K N3X N, A M D C g2=27A

122x28  0.0349%98) 0.302162) 0.0394168) 0.09682) 0.585697)
0.0011 14x32  0.0343%2) 0.278390) 0.0367345) 0.0967221) 0.575587)
0.129416  18x36  0.0340630) 0.2898107)  0.0397%28) 0.0963213)  0.570750)
18x36  0.0339422 0.279142) 0.04061262)  0.09633%3) 0.568737)

12°x28  0.0356146) 0.2788121)  0.02814310)  0.0975131)  0.596677)
0.00125 14x32  0.0345670) 0.2573113)  0.035357) 0.0976639)  0.5791117)
0.129532 18x36  0.0338€31) 0.255979) 0.041€35) 0.0974012) 0.567352)

183x36  0.0344485  0.267636) 0.0383141) 0.097044) 0.577@59)

My =73.3:6.4 GeV, (18 A.=0.00116(16) and turns into a smooth crossover Nor
>\e.
where the error is dominated by that Xof . SettingM,=80 GeV our result for the critical Higgs bo-
From measurements of Wilson loops we also determineson mass iy .=73.3£6.4 GeV. This is consistent within
the values of the renormalized gauge couplirgusing the  error with the valueM ; .=74.6+ 0.9 GeV[17] obtained in a
method described in Refgl2—-14. The potential as a func- four-dimensional anisotropic lattice simulation for the same
tion of the distanceR is fitted by temporal size. The same work also reported that the critical
mass decreases for larger temporal size, and extrapolates to
A My =66.5+1.4 GeV in the continuum limit. This value is
V(R)=— Ee"\"R+C+ DG(M,R,Ly), (190  consistent with the three-dimensional result 66.2 GéY
Thus results from various methods, in three and four dimen-
sions, agree well.
For a comparison with the experimental lower bound
n>87.9 GeV[25] for the Higgs boson mass, we need

fit is obtained in all cases. The potential is then fitted by Eq?hgcgggdthgg?ggg eonftth; f(acrrrirsil((:);ls I?gi? ?%L:getﬁgsighr_

(129) using aIIRvanes..Our re.sults for the fit parameters andand three-dimensional simulations noted above imply
gr for various spatial size lattices are shown in Table IV. Wey o+ this may be made perturbatively, with which we
see thagr is constant within errors. The averaged values arg;q My .=80+7 GeV for our N;=2 s’imulation This
. ; L c + .
given in Table Ill. The values do agree within errors, show-\,51.6 is about 10% larger, albeit with a comparable
ing that our simulations for the twh values correspond t0  orror than the resul,, .=72.4+ 1.7 GeV in the continuum
. : . ; c A1
the same renormalized gauge coupling. Therefore, the linegf,it  optained from  a four-dimensional anisotropic

extrapolation tok. mentioned above is justified, since we gy,qy[17], possibly due to scaling violations. We also note

use Higgs boson masses at equal renormalized gauge cout the three-dimensional approach reported the values

plings. _ _ My=72.4+0.9 GeV [9] and My ;=72+2 GeV [10].
Finally, let us try to estimate the effect of fermions compining all the available results, we conclude that the

and the U1) gauge boson on our result. We make thisgaciroweak baryogenesis within the minimal standard model
estimation through the perturbative expression for thgg oyciuded.

parameterx=)\3/g§ of the dimensionally reduced model
in terms of the physical parameters of the standard model
[24]. Using our results for the Higgs boson mass and
the renormalized gauge coupling, we firg=0.121+0.020
for the end point. Including the effect of fermions and Part of this work was carried out while Z.F. was visiting
the U1) gauge boson, this value correspondsvtg .=80  KEK with support from the Foreign Researcher Program
+7 GeV. of the Ministry of Education of Japan. Part of the numerical
calculations was made on the VPP-500/30 at the Information
Processing Center of the University of Tsukuba and
the PMS-11G PC-farm in Budapest. This work is supported
We have studied the end point of the finite-temperaturen part by Grants-in-Aid from the Ministry of Education
first-order transition of the S@@) gauge-Higgs model on a of Japan (Nos. 09304029, 10640246 Hungarian
space-time isotropic lattice of a temporal extensiyp=2.  Science Foundation Grants No. OTKA-T016240/T022929,
The results from Lee-Yang zero and Binder cumulant analyand Hungarian Ministry of Education Grant No. FKP-0128/
ses show that the first-order phase transition terminates 4997.

whereG(M,R,L) stands for lattice artifact&f. [13]). The
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