
PHYSICAL REVIEW D, VOLUME 60, 013001
The end point of the first-order phase transition of the SU„2… gauge-Higgs model
on a 4-dimensional isotropic lattice
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We study the first-order finite-temperature electroweak phase transition of the SU~2! gauge-Higgs model
defined on a four-dimensional isotropic lattice with the temporal extensionNt52. A finite-size scaling study of
Lee-Yang zeros yields the value of the Higgs self-coupling of the end point atlc50.00116(16). An indepen-
dent analysis of the Binder cumulant gives a consistent value for the end point. Combined with our zero-
temperature measurement of Higgs andW boson masses, this leads toMH,c573.366.4 GeV for the critical
Higgs boson mass beyond which the electroweak transition turns into a crossover.@S0556-2821~99!01311-9#

PACS number~s!: 12.15.2y, 11.10.Wx, 11.15.Ha
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I. INTRODUCTION

The minimal standard model predicts that the electrow
interaction undergoes a first-order phase transition at a fi
temperature for light Higgs boson masses. A focus of rec
studies has been whether the first-order phase transition
vives with sufficient strength for a realistically heavy Hig
boson mass@1#, since the feasibility of electroweak baryo
genesis@2# depends crucially on it.

The first-order nature of the electroweak transition
light Higgs bosons can be shown within perturbation theo
However, perturbation theory breaks down for Higgs bos
masses larger than aboutMW due to the bad infrared behav
ior of the gauge-Higgs part of electroweak theory@3#. Hence,
numerical simulation techniques are needed to analyze
nature of the transition for heavy Higgs bosons.

Extensive studies in this direction have already been p
formed within the effective three-dimensional theory a
proach, in which all nonstatic modes of the system are in
grated out perturbatively. This approach has the advan
that the full standard model including fermions can
mapped onto a three-dimensional SU~2! @or SU(2)̂ U(1)]
gauge-Higgs model, as there are no fermionic static mode
finite temperature. In addition, thinning out the degree
freedom to those of a three-dimensional theory significan
reduces the computational requirement.

Results from simulations in this approach show that
first-order electroweak transition weakens as the Higgs
son mass increases@4–6#, and that it turns into a continuou
crossover for heavy Higgs bosons with a massMH*MW @7#.
Detailed studies of the end point of the first-order transit
including its universality class have also been made@8–10#.

A potential problem with the three-dimensional approa
is that it relies on perturbation theory to derive the thre
dimensional action so that numerical predictions may
volve systematic errors due to truncation of perturbative
ries. From this point of view a direct simulation of the fou
dimensional system is preferred. Results from fo
dimensional simulations provide a check on those of
three-dimensional method.

Early studies of the four-dimensional SU~2! gauge-Higgs
system were carried out in Refs.@11–15#. More recently ad-
0556-2821/99/60~1!/013001~8!/$15.00 60 0130
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vances have been made with the use of the space-time a
tropic lattice @16,17#. This approach alleviates the doubl
scale problem that there are light modes with lo
wavelength,j@1/T, near the end point where the transitio
is of second order.

In this paper we report on a study of the end point of t
SU~2! gauge-Higgs model employing four-dimension
space-time symmetric lattices with the temporal lattice s
Nt52, building upon a previous work@15#. Simulations have
been carried out for a wide range of spatial lattice sizes,
finite-size scaling study of Lee-Yang zeros is used to find
location of the end point. We measure the Higgs andW
boson masses around the end point and estimate the val
the Higgs boson mass at the end point.

This paper is organized as follows. In Sec. II we pres
the SU~2! gauge-Higgs model lattice action and outline o
strategy for finding the end point through Lee-Yang zeros
Sec. III, following a brief discussion of susceptibility anal
sis, Lee-Yang zeros are examined. Another approach to fi
ing the end point using the Binder cumulant is also d
scribed. In Sec. IV we present results of the zero-tempera
mass measurement. Together with our result for the sc
self-coupling constant at the end point obtained through L
Yang zero analysis, this leads to the value of the Higgs
son mass at the end point. Section V is devoted to con
sions.

II. THEORY AND SIMULATION

We work with the standard SU~2! gauge-Higgs model ac
tion given by

S5(
x

F (
m.n

b

2
Tr Ux,mn1(

m
2kLx,m

2rx
22l~rx

221!2G , ~1!

Lx,m[
1

2
Tr ~Fx

†Ux,mFx1m̂!, rx
2[

1

2
Tr ~Fx

†Fx!,

~2!
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where Ux,mn is the product of link operators around
plaquette,b is related to the tree-level gauge coupling asb
54/g2, k represents the Higgs field hopping parameter, a
l is the scalar self-coupling. We put the system on a spa
time isotropic lattice of a sizeNt3Ns

3 .
Finding the end point of the first-order finite-temperatu

phase transition of the model requires finite-size sca
analyses to quantitatively distinguish the case of a first-or
transition from that of a crossover as the coupling parame
of the model are varied. As the main tool, we employ fini
size scaling analysis of Lee-Yang zeros@18,19# on the com-
plex k plane for fixedb and l @8,9,17#. For a first-order
phase transition, the infinite volume limit of the zer
pinches the realk axis, while they stay away from it if there
is no phase transition. We also supplement this method w
analyses of susceptibility and Binder cumulant.

Our finite-temperature simulations are carried out for
temporal lattice sizeNt52. For the spatial lattice size w
takeNs

35203, 243, 323, 403, 503, and 603. The gauge cou-
pling is fixed atb58. For the scalar self-coupling we choo
five values, l50.00075, 0.001, 0.00135, 0.00145, a
0.0017235, which covers the range of the zero-tempera
Higgs boson mass 57&MH&85 GeV@15#. For each value of
l the scalar hopping parameterk is tuned to the vicinity of
the pseudocritical point estimated by the peak position of
susceptibility of the Higgs field length squaredr2.

The updating algorithm is a combination of ove
relaxation and heatbath methods@13#, with the ratio of the
two for the scalar part and the gauge part as specified in
@15#. We make at least 105 iterations of this hybrid over-
relaxation algorithm at each coupling parameter point
each lattice size. The list of coupling values and statistics
use in our finite-temperature simulations are listed in Tabl

We also carry out zero-temperature simulations to m
sure the masses of Higgs andW bosons around the end poin
of the first-order phase transition. For these runs an impro
algorithm of Ref.@20# is employed. Details of the runs an
results are discussed in Sec. IV.

III. FINITE-TEMPERATURE RESULTS

A. Susceptibility

Let us first look at the susceptibility of squared Hig
length,

xr2[V~^r2&2^r&2!, ~3!

whereV[Ns
3 . The maximum value of the susceptibility a

its peak, calculated by the standard reweighting techni
@21# as a function ofk, is plotted in Fig. 1 against the spati
volume normalized by the critical temperatureVTc

3

5Ns
3/Nt

3 . Errors are estimated by the jackknife procedu
with the bin size of 103–104 sweeps, which is listed in Tabl
I.

The slope for the smallest scalar couplingl50.00075
approaches unity for large volumes, which is consistent w
a first-order transition, while that for the largest couplingl
50.0017235 tends to a constant, showing an absence
phase transition. A continuous decrease of the slope for
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intermediate values ofl indicates that the end point of th
first-order transition is located in between the two extre
values. Our range of spatial volumes, unfortunately, is
sufficient to pin down the critical value ofl from the sus-
ceptibility data.

B. Lee-Yang zeros

The determination of the end point of the finite
temperature phase transition of the model, thus a chara
istic feature of the phase diagram, is made by the use of
Lee-Yang zeros of the partition functionZ @18,19#. Near the
first-order phase-transition point the partition function rea

Z5Zs1Zb} exp~2V fs!1 exp~2V fb!, ~4!

where the indicess(b) refer to the symmetric~Higgs! phase
and f stands for the free-energy densities. Near the pha
transition point we also have

f b5 f s1a~k2kc!, ~5!

since the free-energy density is continuous. One then obt

Z} exp@2V~ f s1 f b!/2# cosh@2Va~k2kc!/2#, ~6!

which shows that for complexk Z vanishes at

Im~k!52p~n21/2!/~Va! ~7!

for integern. In case a first-order phase transition is prese
these Lee-Yang zeros move to the real axis as the volu
goes to infinity. If a phase transition is absent the Lee-Ya
zeros stay away from the realk axis. Thus, the way the
Lee-Yang zeros move in this limit is a good indicator for t
presence or absence of a first-order phase transition.

Calculation of the partition function for complex values
k is made with the reweighting method@21# in both imagi-
nary and real directions ofk. In those cases where we hav
two ensembles with the same value ofl andNs , but differ-
ent k, we combine the two runs by setting the magnitude
the two partition functions to be equal at the midpoint b
tween the twok ’s.

In Fig. 2 we show the absolute value of the partition fun
tion normalized by its value at the real axis on the complek
plane,

Znorm~k![UZ~Rek,Im k!

Z~Rek,0!
U ~8!

for l50.00075 andNs560. The contour line of this figure is
shown in Fig. 3. We observe three zeros in this case, wh
distance from the real axis is roughly in the ratio 1:3:5
expected from Eq.~7! for a first-order transition.

Let us call the zero nearest to the real axis the first ze
and denote its location byk0. We search for the first zero b
the Newton-Raphson method applied to the equation

Z~Rek,Im k!50, ~9!

starting with an initial guess fork0 obtained from the con-
tour plot of Znorm(k). The error ofk0 is estimated by the
1-2
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TABLE I. Run parameters of finite-temperature simulation and results of the first Lee-Yang zero.
used for analysis of susceptibility and the Binder cumulant are marked withx andB, respectively, in the last
column.

(3103 sweep!
l Ns k Iteration Bin size Rek0 Im k0 Use

0.00075 20 0.129114 100 2 0.1291133~23! 0.0000477~20! x,B
24 0.129103 100 2 0.1291068~12! 0.0000285~11! x,B
32 0.129102 100 4 0.12910273~91! 0.00001351~45! x,B
40 0.129100 100 6.25 0.12910086~72! 0.00000762~26! x,B
50 0.129100 120 10 0.12910041~51! 0.00000411~17! x,B
60 0.129100 180 10 0.129100308~303! 0.000002321~51! x,B

0.001 20 0.129340 100 2
0.1293472~15! 0.0000605~16!

B
20 0.129350 100 2 x
24 0.129330 100 2 0.1293357~18! 0.0000432~18! x,B
32 0.129328 100 2 0.12933093~122! 0.00002136~75! x,B
40 0.129327 100 2.5 0.12932802~80! 0.00001223~44! x,B
50 0.129327 100 4

0.12932797~37! 0.00000763~26!
B

50 0.129328 100 4 x
60 0.1293275 180 7.5 0.12932743~37! 0.00000489~18! x,B

0.00135 20 0.129660 100 1 0.1296888~34! 0.0001167~36! x,B
24 0.129650 100 1 0.1296619~29! 0.0000819~32! x,B
32 0.129644 100 1 0.1296465~20! 0.0000542~20! x,B
40 0.129640 100 2 0.1296426~15! 0.0000293~11! x,B
50 0.129639 120 2.5 0.12963782~137! 0.00002016~88! x,B
60 0.129637 120 4 0.12963754~68! 0.00001299~78! x,B

0.00145 20 0.129748 100 1 0.1297482~35! 0.0000885~38! x,B
24 0.129736 100 1 0.1297384~20! 0.0000567~20! x,B
32 0.129728 100 2 0.1297318~15! 0.0000328~12! x,B
40 0.129724 100 2 0.12972751~115! 0.00002171~99! x,B
50 0.129722 120 2 0.12972654~80! 0.00001529~79! x,B
60 0.129724 120 4 0.12972517~61! 0.00001146~79! x,B

0.0017235 20 0.129980 100 1
0.1299875~20! 0.0000951~19!

x,B20 0.129990 100 1
24 0.129980 100 2.5 0.1299755~24! 0.0000604~21! x,B
32 0.129966 100 1 0.1299654~15! 0.0000383~12! x,B
40 0.129968 100 1 0.1299663~15! 0.0000276~14! x,B
50 0.129965 100 2

0.1299616~14! 0.0000207~16!
x,B

50 0.129966 100 2
60 0.129962 120 4 0.12996122~71! 0.00001585~74! x,B
e
ca
n

e

en
a

it

rm

b-
ing
b-
jackknife method with a bin size given in Table I, i.e., th
zero search is repeated for the set of partition functions
culated from each jackknife sample of configurations, a
the jackknife formula is applied to the set ofk0. The results
for k0 are given in Table I. We show in Fig. 4 values of th
imaginary part of the first zero Imk0(V) as a function of
inverse volume.

Finite-size scaling theory predicts that the volume dep
dence of the imaginary part of the first zero is given by
scaling form,

Im k0~V!5k0
c1CV2n. ~10!
01300
l-
d

-

For a first-order phase transition, the infinite volume lim
vanishes,k0

c50, and the exponent takes the valuen51. In
the absence of a phase transition,k0

cÞ0 and the value of the
exponent is generally unknown.

In Fig. 5 we plot results fork0
c as a function ofl obtained

by fitting the volume dependence of the first zero by the fo
~10! ~see Fig. 4 for fit lines!. Both k0

c andn are taken as fit
parameters, and the entire set of volumeNs

35203–603 is
employed. Filled symbols mean that they are directly o
tained from the simulations carried out at the correspond
values ofl. The points plotted with open symbols are o
1-3
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Y. AOKI, F. CSIKOR, Z. FODOR, AND A. UKAWA PHYSICAL REVIEW D60 013001
tained from the first zero of the partition function calculat
by reweighting the partition function measured at the po
wherek0

c with the filled symbol of the same shape is show
The agreement of open symbols of different shapes wi
errors shows that reweighting from different values ofl
gives consistent results between the measured points.

At small couplingsl&0.001, k0
c is consistent with zero

which agrees with the result of Ref.@15# that the transition is
of first order in this region. At large couplingsl
*0.0013, k0

c no longer vanishes, and hence there is
phase transition. In order to determine the end point of
phase transition, we take the three filled points atl
50.00135, 0.00145, and 0.0017235 directly obtained fr
independent simulations withoutl reweighting, and make a
fit with a function linear inl. This gives the position of the
end point to be

lc50.00116~16!. ~11!

FIG. 1. Peak height of susceptibility ofr2 against inverse vol-
ume normalized by critical temperatureVTc

35Ns
3/Nt

3 . Dotted lines
are guides for eyes.

FIG. 2. Absolute value of normalized partition function as
function of complexk for l50.00075 andNs560.
01300
t
.
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In Fig. 6 we show the exponent of scaling function~10!.
The meanings of the symbols are the same as in Fig. 5.
l.lc , where there is no phase transition, the expon
takes a valuen'0.75. Below the end pointl,lc , the ex-
ponent shows some trend of increase, but not quite to
value n51 expected for a first-order transition. We thin
that this is due to insufficient volume sizes used in our sim
lation, for which corrections to the leading 1/V behavior are
not negligible.

To check this point we make an alternative fit of resu
for the first zero adopting a quadratic ansatz in the volu
given by

Im k0~V!5k0
c1CV211DV22, ~12!

and show the results fork0
c in Fig. 7. Clearly the infinite

volume limit k0
c starts to deviate from zero aroundl

FIG. 3. Contour plot of Fig. 2.

FIG. 4. Imaginary part of first Lee-Yang zero as a function
inverse volume normalized by the critical temperature. Solid lin
are leastx2 fits with Im k0(V)5k0

c1CV2n.
1-4
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THE END POINT OF THE FIRST-ORDER PHASE . . . PHYSICAL REVIEW D 60 013001
'0.001, which is consistent with the estimate oflc above,
albeit located at the lower end of the one standard devia
error band.

We note that the quadratic ansatz~12!, formally the first
three terms of a Laurent series, is expected to be corre
the case of a first-order phase transition, for which Eq.~7!
describes the thermodynamic limit. However, it is not a va
assumption in the region ofl where there is no phase tran
sition. Therefore, unlike the case of Fig. 5, extrapolating
results of Fig. 7 from large to small values ofl to estimate
the location of the end pointlc is not justified.

C. Binder cumulant

Let us consider the Binder cumulant~cf. @22#! of the
spacelike link operator,

FIG. 5. Imaginary part of first Lee-Yang zero at infinite-volum
limit as a function of Higgs self-coupling. Filled symbols are ca
culated withoutl reweighting, while open symbols withl re-
weighting from the filled symbol with same shape. Solid line is
linear fit to l50.00135, 0.00145, and 0.0017235~filled symbols!.

FIG. 6. Exponentn of finite-size scaling of first Lee-Yang zero.
01300
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e

BLs
~k![12

^Ls
4&

3^Ls
2&2

; Ls5
1

3Ns
3Nt

(
x,m51,2,3

Lx,m . ~13!

The infinite volume limit of the minimum of this quantity
should deviate from 2/3 for a first-order phase transitio
while it should converge to 2/3 beyond the endpoint.

We evaluate the minimum of the cumulant as a funct
of k for a givenl and volume using reweighting. We the
use a scaling ansatz

BLs

min5BLs

c 1CV2n ~14!

to extract the infinite-volume valueBLs

c .

In Fig. 8 we show2(BLs

c 22/3) as a function ofl, where

the meanings of the symbols are the same as in Fig. 5
change of behavior from nonvanishing values to those c
sistent with zero atl'0.001 shows that the first-order pha

FIG. 7. Same as in Fig. 5. The quadratic polynomial is used
fit instead of the power function.

FIG. 8. Minimum value of Binder cumulant ofLs at infinite
volume limit as a function ofl.
1-5
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Y. AOKI, F. CSIKOR, Z. FODOR, AND A. UKAWA PHYSICAL REVIEW D60 013001
transition terminates around this value. Linearly extrapo
ing the two independent data atl50.00075 and 0.001 yield
lc50.00102(3) for the end point, which is consistent w
the result~11! from our study of Lee-Yang zeros. Note, how
ever, that only two measured points are available for
linear extrapolation. Therefore, we cannot make a statem
on the goodness of the fit. For this reason, we conservati
take the Lee-Yang value~11! as our best estimate of the en
point.

IV. CRITICAL HIGGS BOSON MASS

To determine the physical parameters characterizing
end point, namely the ratio of the Higgs boson mass to thW
boson mass and the renormalized gauge couplinggR , we
have to perform zero-temperature simulations. As in R
@12–14#, we extract the Higgs boson massmH in lattice units
from correlators ofrx

2 andLx,m . TheW boson mass in lattice
units mW is obtained from the correlator of the compos
link fields

Wx[ (
r ,k51

3
1

2
Tr ~t rax

†Uxk ax1 k̂!, ~15!

wheret r is the Pauli matrix andax is the angle part ofFx
such thatFx[rxax with axPSU(2).

Masses are extracted from the correlators fitting to a
perbolic cosine plus a constant function. Simple uncorrela
least-square fits and correlated fits with eigenvalue smo
ing proposed by Michael and McKerrell@23# are used. The
application of this method is discussed in detail in Ref.@14#.

The actual procedure of extracting the mass paramete
the following. First we determine the reasonable time int
vals for fitting the correlator data. The guideline is to choo
as large an interval as possible with a reasonablex2/degree
of freedom value. For this purpose correlated fits with eig
value smearing are used. We find this to be necessary s
the data are strongly correlated for different time distanc
Having fixed the fitting time interval, we next carry out u

TABLE II. Run parameters of zero-temperature simulations a
results for masses in lattice units.

l (3103 sweep!
k Ns

33Nt Iteration mH mW

83320 60 0.2938~44! 0.3583~41!

103324 75 0.2662~24! 0.3380~33!

0.0011 123328 49 0.2844~46! 0.3171~68!

0.129416 143332 34 0.2838~34! 0.3191~69!

163336 26 0.2851~62! 0.3152~133!
183336 26 0.2887~47! 0.3321~100!

83320 60 0.2806~42! 0.3285~95!

103324 75 0.2764~33! 0.3291~30!

0.00125 123328 49 0.2884~38! 0.2992~51!

0.129532 143332 34 0.2851~56! 0.3037~58!

163336 29 0.2863~91! 0.2941~64!

183336 31.5 0.2892~54! 0.2965~71!
01300
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correlated fits. To perform this fit, we divide the data sam
into subsamples, and estimate the errors of correlators f
the statistical fluctuations of subsample averages.

Thebest fitvalue of the masses is taken to be the num
given by the uncorrelated fit. The value of the Higgs bos
mass is obtained by fitting to a linear combination of the t
different correlators forrx

2 and Lx,m . The errors on the
masses are determined by jackknife analyses over
samples. The masses obtained by the correlated fits with
genvalue smearing are in all cases well within the error b
of the uncorrelated fits.

Our zero-temperature simulations are carried out at
points given by @l,k5kc(l,Nt52)# for l50.0011 and
0.00125 employing several lattice sizes to examine fin
volume effects. The run parameters and results for ma
are collected in Table II. The size of subsamples is typica
500 sweeps.

Our results do not show significant volume depende
~see Fig. 9!, except for the two smallest spatial volumesNs
583, 103 for which somewhat different values are obtain
compared to those of other volumes. We then discard th
results and take an average over the rest of the volumes.
yields the values given in Table III. SettingMW580 GeV,
we obtain

MH570.961.1 GeV ~l50.0011!, ~16!

MH576.861.1 GeV ~l50.00125!. ~17!

Making a linear interpolation to the critical valuelc
50.00116(16) from the Lee-Yang zero analysis, we find

d

TABLE III. Averaged masses in lattice units and renormaliz
gauge couplings from results in Table II excluding those for the t
smallest volumes.

l mH mW RHW gR
2

0.0011 0.2852~22! 0.3202~41! 0.8864~136! 0.5712~27!

0.00125 0.2877~26! 0.2988~30! 0.9607~134! 0.5768~33!

FIG. 9. Higgs andW masses in lattice units as a function ofNs

for l50.0011.
1-6
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TABLE IV. Summary of the fit parameters for the static potential and the renormalized gauge coup

l

k Ns
33Nt A M D C gR

2[ 16
3 pA

123328 0.03495~58! 0.3021~62! 0.03941~68! 0.0968~2! 0.5856~97!

0.0011 143332 0.03435~52! 0.2783~90! 0.03673~45! 0.09672~21! 0.5755~87!

0.129416 163336 0.03406~30! 0.2898~107! 0.03975~28! 0.09632~13! 0.5707~50!

183336 0.03394~22! 0.2791~42! 0.04061~262! 0.09633~3! 0.5687~37!

123328 0.03561~46! 0.2788~121! 0.02814~310! 0.09751~31! 0.5966~77!

0.00125 143332 0.03456~70! 0.2573~113! 0.0353~57! 0.09766~39! 0.5791~117!
0.129532 163336 0.03386~31! 0.2559~79! 0.0416~35! 0.09740~12! 0.5673~52!

183336 0.034442~35! 0.2676~36! 0.03831~41! 0.09704~4! 0.5770~59!
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8/
MH,c573.366.4 GeV, ~18!

where the error is dominated by that oflc .
From measurements of Wilson loops we also determ

the values of the renormalized gauge couplinggR using the
method described in Refs.@12–14#. The potential as a func
tion of the distanceR is fitted by

V~R!52
A

B
e2MR1C1DG~M ,R,Ls!, ~19!

whereG(M ,R,Ls) stands for lattice artifacts~cf. @13#!. The
potential is determined from the rectangular Wilson loops
fitting the time dependence with three exponentials. A sta
fit is obtained in all cases. The potential is then fitted by E
~19! using allR values. Our results for the fit parameters a
gR

2 for various spatial size lattices are shown in Table IV. W
see thatgR is constant within errors. The averaged values
given in Table III. The values do agree within errors, sho
ing that our simulations for the twol values correspond to
the same renormalized gauge coupling. Therefore, the lin
extrapolation tolc mentioned above is justified, since w
use Higgs boson masses at equal renormalized gauge
plings.

Finally, let us try to estimate the effect of fermion
and the U~1! gauge boson on our result. We make th
estimation through the perturbative expression for
parameterx5l3 /g3

2 of the dimensionally reduced mode
in terms of the physical parameters of the standard mo
@24#. Using our results for the Higgs boson mass a
the renormalized gauge coupling, we findxc50.12160.020
for the end point. Including the effect of fermions an
the U~1! gauge boson, this value corresponds toMH,c580
67 GeV.

V. CONCLUSIONS

We have studied the end point of the finite-temperat
first-order transition of the SU~2! gauge-Higgs model on a
space-time isotropic lattice of a temporal extensionNt52.
The results from Lee-Yang zero and Binder cumulant ana
ses show that the first-order phase transition terminate
01300
e

y
le
.

e
-

ar

ou-

e

el
d

e

-
at

lc50.00116(16) and turns into a smooth crossover forl
.lc .

SettingMW580 GeV our result for the critical Higgs bo
son mass isMH,c573.366.4 GeV. This is consistent within
error with the valueMH,c574.660.9 GeV@17# obtained in a
four-dimensional anisotropic lattice simulation for the sam
temporal size. The same work also reported that the crit
mass decreases for larger temporal size, and extrapolat
MH,c566.561.4 GeV in the continuum limit. This value i
consistent with the three-dimensional result 66.2 GeV@9#.
Thus results from various methods, in three and four dim
sions, agree well.

For a comparison with the experimental lower bou
MH.87.9 GeV @25# for the Higgs boson mass, we nee
to include the effect of the fermions and U~1! gauge boson.
The good agreement of critical mass from the fou
and three-dimensional simulations noted above im
that this may be made perturbatively, with which w
find MH,c58067 GeV for our Nt52 simulation. This
value is about 10% larger, albeit with a comparab
error, than the resultMH,c572.461.7 GeV in the continuum
limit obtained from a four-dimensional anisotrop
study @17#, possibly due to scaling violations. We also no
that the three-dimensional approach reported the va
MH,c572.460.9 GeV @9# and MH,c57262 GeV @10#.
Combining all the available results, we conclude that
electroweak baryogenesis within the minimal standard mo
is excluded.
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