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Thirring Model in Terms of Currents: Solution and Light-Cone Expansions

G. F. Dell'Antonio
Istituto di Fisica Teorica dell'Universita, Napoli, Italy

and

Yitzhak Frishman*
5'eizmann Institute, Rehovot, Israel

Daniel Zwanzigert
Neu Fork University, Neu Fork, Neu Fork 10012

(Received 20 December 1971)

Exact expansions of operator products, in terms of c-number functions singular on the
light cone and regular operators, are exhibited explicitly in the Thirring model. For the
products |I &(x) g& (x') and $2(x) g2 (x') of fermion fields the expansion reduces to one term
only, with the c-number function having a singularity on the light cone which depends on
the coupling constant, and the regular operator depending only on the currents, which are
free. The resulting formula allows one to calculate all Wightman functions in terms of
current matrix elements and thereby provides a simple and complete solution to the
Thirring model. The different charge sectors are realized as inequivalent irreducible rep-
resentation spaces of the canonical current commutation relations, on which the charged
field g acts as an intertwining operator.

I. INTRODUCTION

Renewed interest in the Thirring model' has
been occasioned by recent investigations of scale
invariance and operator products at short dis-
tances. ' In particular, the question of anomalous
asymptotic dimensionality of local operators is
nicely answered in that model, where the asymp-
totic dimensionality depends on the coupling con-
stant, as demonstrated by Wilson" and I.owen-
stein' using the Johnson' and Klaiber' solutions,
respectively.

The short-distance expansion of Wilson' was re-
cently generalized to lightlike distances' ' (light-
cone expansions). It is a very interesting problem
to investigate the structure of possible light-cone
expansions of products of operators in the Thirring
model. We undertake this task in the present
paper.

We show that light-cone expansions for products
of fermion field operators exist in the Thirring
model. More explicitly, we demonstrate that the
products P, (x)P~t(x') and $, (x)$2~(x') are equal to a
product of a c-number function times a regular
operator [see Eqs. (6.4)]. The c-number function
has a singularity on the light cone, the strength
of which depends on the coupling constant. The
regular operator is written in terms of the cur-
rents only. Hence the light-cone expansion in the
Thirring model for the above-mentioned products

is extremely simple, containing one term only
with one given singularity. Thus the behavior of
all matrix elements of each of the above products
are related. The most singular matrix element
at short distances is the vacuum expectation value.
All matrix elements have the same light-cone
singularity. '

Our method differs from other treatments of the
Thirring model' in that we do not start by defining
the current in terms of the spinor fields, and we
thus avoid all complications connected with sepa-
rating the points in those fields by an infinitesimal
amount. The properties of the currents are en-
tirely determined by their conservation laws and

by their commutation relations, namely, the
Schwinger term. ' Since the canonical commuta-
tion relations for the spinor field break down in
the Thirring model, 4 there is an advantage in
avoiding manipulations based on them. The com-
mutation rules between the currents and the fields
are those of Johnson. '

The structure of the operator products P, (x)P|t(x')
and $, (x)(mt(x') is determined in two ways. In one
we use equations of motion as derived from com-
mutation rules with the Hamiltonian and total mo-
mentum operators, given as integrals over a
Sugawara-type" "energy-momentum tensor
written in terms of currents only. In the other we

use a consistency condition, taking the products
of four field operators in different orders. In

988



THIRRING MODEL IN TERMS OF CURRENTS. . . 989

both approaches, we use an irreducibility assump-
tion for the currents, namely, that any operator
which commutes with the currents is a function of
the charges only.

Our principal result is a formula which express-
es the products g, (x}g~t(x') and $, (x)$2t(x'), for any
x and x', as a singular c-number function which
multiplies a regular operator which is a function
of the currents only. This formula provides a
very simple solution of the Thirring model. For
by expressing the product of two spinor fields in
terms of the currents, the Wightman functions for
the spinor fields are reduced to vacuum expecta-
tion values of operators depending on currents
only. ' These are trivially obtained because the
currents in the Thirring model are free fields.
Our derivation shows that the Thirring model is
determined by the dynamics of the currents and
the commutation relations between the currents
and the spinor fields; the equations of motion and
commutation relations of the spinor fields are an
algebraic consequence of the irreducibility assump-
tion about the currents. The circle of reasoning
back to the original formulation of the Thirring
model, defined in terms of spinor fields only, is
completed when, at the end, the currents are ex-
pressed in terms of limits of products of spinor
fields.

Finally, we construct the Hilbert space on which
the charged field g acts as a local field. Each
charge sector is realized as the representation
space for an irreducible representation of the
commutation relations of the currents (which are
canonical). Different values of the charges corre-
spond to different inequivalent representations,
only the vacuum sector being represented by the
Pock representation. The charged field g is then
constructed as an intertwining operator between
the different charge sectors.

The program of the paper is as follows. In Sec.
II we set up our equations of motion, using the
Sugawara energy-momentum tensor, and all the
relevant commutation rules. The Poincard and
dilatation generators are expressed in terms of
currents, and the dimensionality of the spinor
field is found by commutation with the dilatation
generator. In Sec. III we obtain the operator ex-
pansion for the products g, (x)P~t (x') and $,(x)(2t(x')
in the two ways mentioned above. The strength
of the singularities in those products agrees with
the value of the dimension of the spinor field as
calculated in Sec. II. In Sec. IV commutators be-
tween spinor fields are calculated and all Wight-
man functions are reduced to current matrix ele-
ments. In addition the singularities of the remain-
ing products g„(x)g~t(x') and gt(x)$8(x') are deter-
mined, in agreement with the results of Ref. 3

for the four-point functions. In Sec. V the Hilbert
space is constructed on which j and g act as local
fields. Finally in See. VI we summarize our re-
sults and discuss them with reference to short-
distance and light-cone expansions.

II. EQUATIONS OF MOTION AND

COMMUTATION RELATIONS

We have, in the Thirring model, ' a vector cur-
rent j„and an axial-vector current j», the com-
ponents of which are related by

U

jsp ~pvj (2.1)

with E'
yp Cpj 1 and happ &y y

= 0. Both currents
are conserved. The equation of motion for the
spinor field P is

ip((x) =gj(x)p(x), (2.2)

[j,(x, t),j,(y, t)] =0,

[j,(x, t),j,(y, t)] =ice'(x -y),

[j,(x, t),2, (y, t)] = 0.

(2.3a)

(2.3b)

(2.3c)

c is a positive number, ' which fixes the normaliza-
tion of j.

At this stage it is useful to introduce the follow-
ing variables:

u =t+x, (2.4a)

v=t-x, (2.4b)

j,(u, v) =j,(u, v) +j,(u, v),

j (u, v) =j,(u, v) —j,(u, v).
(2.5a)

(2 ~ 5b)

where g is the coupling constant and t(=—a"y„, with

y& the Dirac matrices.
The conservation of the vector and axial-vector

currents follow from the definitions j„(x)
=P(x)y„f(x) and j»(x) =g(x)y„y,P(x) and Eq. (2.2).
The relation (2.1) follows directly from this defini-
tion. However, for the purpose of further use of
the equation of motion (2.2) Johnson had to sepa-
rate the points of the two fields in the current such
that j„(x)=P(x+e}y„P(x—e), in order to be able to
calculate Green's functions. The advantage of our
method is that we do not look into the structure
of the current in terms of the fields. The commu-
tation rules containing the Schwinger term turn
out to be sufficient to determine the structure of
the operator products mentioned in the Introduction.

The commutation rules are
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Hence

B B B

BX BQ BV

and thus

8)j'„=2[8„j-(u, v) +s„j,(u, v)] =0,

&I"l„j,=-,'[-&j (u, v)+s„j,(u, v)]=0.
We conclude, therefore,

j +=j+(u), -

j =j(v).-

(2.6a)

(2.6b)

(2.7a)

(2.7b)

As we shall see later, the last equation is well de-
fined, singular factors being taken care of by the
normal ordering.

Let us now choose the following set of y matri-
ces:

This is the set in which y, is diagonal. In this
basis the conserved charges

)), fj„(v)dv, (d fj (v=)dv

are shifted by the spinor field P according to

Combining this result with the commutation rules
Eqs. (2.3a)-(2.3c), one obtains

Q A'1 =41[Qd —(a+a)],

QA. =4.[Q. —(a+a)],

(2.13a)

(2.13b)

[j,(u), j,(u')] =2ic6'(u -u'),

[j (v),j (v')]=2ic6'(v —v'),

[j,(u),j (v)] =0.

(2.8a)

(2.8b)

(2.8c)

and Eq. (2.12) reads

S„y,(u, v) = --,'ig:j+(u)y, (u, v):,
8„(,(u, v) =--,'ig:j (v)y, (u, v):.

(2.14a)

(2.14b)
Following Johnson, 4 we postulate the following
commutation rules between the current and the
spinor field:

Note that under a Lorentz transformation given by
a "boost" angle 8 such that tanh8=P, the velocity,
we have

[j,(x, «), y(y, «)] = -ay(y, «)6(x -y),

[j,(x, «), 4(y, «)] = [j,(x, «), 4(y, «)]

ay, 0(X-, «)&(x S), -

(2.9a)

(2.eb)

u-e eu,

v- eev,
(2.16)

where a and a are yet to be determined. For the
free spinor field with g =0, we know that a = a =1.
Combining these commutation relations with Eq.
(2.7a)—(2.7b), one immediately gets

j (u)-e j+(e u),

(v)-e j (e v),

and also

(2.16)

«II«((j(x) =N:j(x)(i'(x): ~ (2.12)

[j+(u), p(u'v')] =-(a+ay, )p(u'v')6(u —u'),

(2.10a)

[j (v), g(u'v')]=-(a —ay, )P(u'v')5(v -v').
(2.10b)

Note that the current j„satisfies the Klein-Gordon
equation with zero mass, j.„=0 [this is immediate
from Eqs. (2.7a)-(2.7b), since 0=48„8„]. Hence
we can decompose j, into positive and negative
frequencies in an invariant manner. We can thus
define normal ordering for products of currents.
We also define a normal ordering for a product
of a current with a spinor field by

:j„(x)y(x):=q~„"&(x)y(x)+y (x)j„'-'(x), (2.ii)
where j „' (x) is the part that contains the creation
operators (namely, positive frequencies) and
j~ )(x) that which contains the annihilation opera-
tors (negative frequencies). Following Klaiber, '
we redefine Eq. (2.2) to read

g(u, v)- e+»e«2$(eau, e ev). (2.17)

Thus the quantities j+(u), j (v), p, (u, v), and p, (u v)
transform into themselves under a Lorentz trans-
formation. For g, and ()'j, this is achieved in the
basis in which y, is diagonal.

We should emphasize that the equations of mo-
tion (2.14a) and (2.14b) admit any transformation
law for P, even that of a scalar field [a mass
term would determine the law to be (2.17)]. In
the present work we adopt the transformation law
(2.17), which is the usual one for a spinor field.
We also know that the anticommutation relations
determine the transformation law. However, we
are not going to assume any canonical rules, since
these are eventually going to be broken down.
Also, we do not start by defining the current as
a bilinear product in the Fermi fields with all the
complications of point separations needed to get
the Schwinger term" and for solving for the
Green's functions. 4 This is all taken care of by
the commutation rules (2.8) and (2.10) and the nor-
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i[M,H]=P, i[M, P]=H,

i[D, H] =H, i[D, P] =P,
and defined by

i[H,j,(u)] =i[P,j, (u)] =&„j,(u),

i[H, j (v)]=-i[P,j (v)]=a„j (v),

i[D,j,(u)] =+ i[M,j,(u)] = (ue„+ I)j,(u),

i [D,j (v)] = i[M-,j (v)] = (va„+ 1)j (v) .

(2.18a)

(2.18b)

(2.19a)

(2.19b)

(2.19c)

(2.19d)

These are the commutators for a vector field of
canonical dimension. The generators may be ob-
tained from an energy-momentum tensor of Suga-
wara form ""built out of currents only

~
' ' f)t ~6 pv

=:2j pj -4 pv jo.j2C
(2.20)

which is divergenceless, symmetric, and trace-
less, so

=1. 2e„+e„=e„+e„=—:j,(u):,2c (2.21a)

1e„-e„=e„-e„=—:j'(v):.
2c

(2.2lb)

For one may verify that with

mal ordering in the equations of motion (2.12). The
expressions for the currents as limits of bilinear
products of spinor fields are in fact obtained by
us in Sec. IV and resul. t from the operator expan-
sion.

The equations of motion (2.6) and the commuta-
tion relations (2.3) or (2.8) define a quantum dy-
namical system for the j's. For this system we
introduce Poincar6 generators of time translation
H, space translation P, Lorentz boost M, and the
dilatation generator D, with nonzero commutators

H+P =—:j,' u:du, (2.22a)

H -P =—:j '(v): dv,2c (2.22b)

D +M =—u:j+'(u): d u,
1

(2.22c)

1
D —M= —v:j '(v):dv,

2C
(2.22d)

the defining commutation relations (2.19) are satis-
fied. Because u =t+x and v =t -x, these integrals
may, of course, be evaluated at fixed time and are
time-independent. In Sec. V it will be verified
that these operators do exist on the Hilbert space
constructed there.

We now use the irreducibility assumption about
the currents which says that anything which com-
mutes with them is a function of the charges only.
Thus the Poincare-dilatation generators satisfy-
ing (2.19) can differ from expressions (2.22) only
by an additive Hermitian function of the charges.
However, H and P appear on the right-hand side
of (2.18) and hence they are uniquely given by
(2.22). In addition, the indeterminacy in M and D
merely corresponds to the possibility of adding
the generator of a gauge transformation to M and
D. Thus we may take Eqs. (2.22) to be true with-
out any loss of generality.

The equations of motion and transformation laws
of the charged field are now found to be determined
by the commutators of ( with j, the only assump-
tions needed for this result being the existence of
the generators and the irreducibility of the j's.
Let us calculate the commutator of e„„with P.
According to Eq. (2.21) we need only

—:j„'(u):,p(u', v') =—:j,(u)())(u', v'): 6(u -u')+ g(u', v')6'(u -u'), (2.23a)

2, .j '(v):, p(u', v') =—
I

a-a '
:j (v)g(u', v):5 (v —v')+ y(u', v')6'(v -v').

C 4mc
(2.23b)

(2.24)

This result follows from a straightforward use of
our normal ordering, whereas elsewhere" limit-
ing procedures are employed. In deriving (2.23)
we have used the fact that Eqs. (2.10) are valid
for positive and negative frequencies in u and v

separately and that

—[&"(x)]'+ [()' '(x)]' =—()'(x)
27r

where A can be either j„(u) or j (v). Thus

6( )(x)
ai
27r xk zc

6(~) xd, wi 1
dx 2n (x+ic)''

[5' (x)]' =— 5"(x).
27r dx

(2.26)

(2.26)

The positive and negative frequencies are defined
by

The space-time translations for the charged
field g now follow from

a"())=— dp dXe""' "A()), -
27r 0 &„g(u, v) =-,'i[H +P, P(u, v)], (2.2'la)



DE LL'ANTONIO, FRISHMAN, AND ZWANZIGER

s„(1)(u,v) = 2i -[H -p, g(u, v)],

which yields

S„g(u, v)=:j,(u)y(u, v):,

-i a-a '
S„p(u, v)=:j(v)y(u, v): .

(2.27b)

(2.28a.)

(2.28b)

become an identity, provided mc =1.
Let us now look at the Lorentz transformation

and dilatation properties of P. By integrating Eqs.
(2.23) with u and v and using Eq. (2.28), we get

—2'i[D+M, g(u, v)] =ue„y(u, v)+ g(u, v),(a+ ay5)2

8mc

(2.30a)

a —a=gc. (2.29)

These equations are consistent with the original
Eqs. (2.14) for

5 2

, i [D—-M, ((u, v)] =vs„g(u, v) + g(u, v) .
(2.30b)

However, the equations for s„p, and 8„$2 are
extra. " They provide additional information which
we put in instead of employing the method of point
separation in the equations of motion.

This can be nicely demonstrated for the case of
free fields, whereg=0, a=a=1. In this case the
Dirac equation takes then the form

So we obtain the important Lorentz transformation
law for P,

1[M, ((M, v)]=(ua„-va„y y')((g, y), (2.$1)
27Tc

and we see that g will transform like a spinor only
if

8„$2 =0,

8„$,=0,

a a (a+ a)' —(a —a)'
1 =1.

mc 4mc
(2.32)

and thus [I)) =p, (u), f2=—$2(v). The extra equations
are

&„t,(u) = --, :j.(uN i(u):,

a„y,(v) =-—:j(v)[1),(v):,
C

with" j,(u) = 2:f, (u)P, (u):, j (v) = 2:P, (v)P, (v): .
Let us take the equation for 8„$,(u}. By the meth-
od of separation of points, we have for the right-
hand side~

a'+ a'
1[D, ( (u, y )] = (y8 „+y9,+ (t(e, y ),4mc

(2.33)

so g has the anomalous dimension

This relation and Eq. (2.29) fix a and a in terms
of the coupling constant g and the normalization
constant c. Note that the Lorentz transformation
properties of g are not determined by the equations
of motion (2.28) and have to be introduced as an
outside requirement. In fact if the right-hand side
of the last equation were 2, g would be a vector,
and so on.

Finally we observe that

——:j,(u+ e)g, (u):c

= ——:P~t(u+e)y, (u+e)g, (u):2'. t
c

:(1(u)(q (u + 6)$q(u + f):2i.
c

:$~(u)l/i) (u+ 6)[$~(u) + f9„()(u)]:2i.

a'+ a'
4mc

(a+ a)'+ (a —a)'
8mc

or by Eqs. (2.29) and (2.32)

1 g'c
+

2 4m

(2.34)

(2.35)

= ——lime(0~ y, (u)q~t(u+c)~0) s„p, (u)
C

=—s„p, (u) .
Thus in the free case the apparently new equations

We see that the dimension is changed from the
canonical dimension —,

'
by the coupling strength

g2c/4v. In Sec. III the same anomalous dimension
will appear in the operator product of g(x) and

P (x'). We shall obtain operator products in two
ways. In one of them we shall not use any equa-
tion of motion, but only a consistency condition
on the product of four fields.
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III. PRODUCTS OF SPINOR FIELDS IN TERMS OF CURRENTS

Let us first start with the Eqs. (2.28a) and (2.28b). They can be integrated to read

Q V

P(u, v) =:exp (-—(a+ay, ) j,(u )du'e'xp ——(a —ay, ) j (v')dv') P(u v ):.
Qp Vp

(3.1)

We are thus motivated to try, for the product P, (u, v)g~t(u', v'), an expression of the form

fi Z V

p, (u, v)py(u', v')=p(u, u', v, v'):exp ——(a+a) j ($)d( exp ——(a —a) j (e)de):,
C Vt

where hopefully E is a c-number function dependent on the differences u -u', v -v'. Let us therefore con-
sider the expression

V
g, u

p=exp —(a-a) j {e)de exp —(a+a) j~+~(g)d()
V tl

V

xp, (u, v}py{u',v') exp —(a —a) jt: ( )dtl eexp —(a+a) j( (()d(). (3.2)
V 8

It can be shown that E commutes withj, (u) and j (v). One uses

(3.3)

other commutators of the j's with themselves being zero. We conclude that I' is a function of the charges
only. Observe that by using the commutation relation (3.14) given below and their analogs for the annihila-
tion parts of the currents given after Eq. (4.4), the quantity E, defined by Eq. (3.2) commutes with any (I)

spacelike to both (u, v) and (u'v'). Therefore E must in fact be independent of the charges, so it is a c-
number function of the differences u-u', v -v', E =E(u -u', v -v'). From Eq. (3.2), we thus obtain

Q Vl

{Ij(u,v)g ~t(u', v') = E(u-u', v - v'):e xp —(a+a) j, (g)dg+(a —a) j (q)dq
C 8 V

(3.4)

Our task is now to determine the function F(u -u', v -v').
One way to do that is to use the equations of motion (2.28a) and (2.28b) directly on Eq. (3.2). We get

(a+ a)'B„E(u-u,v-v )=-, . E(u-u, v-v ),4mc(u -u' -ie

S„E(u —u', v —v') =—,. E(u —u', v —v'),(a —a)'
4a'c(v -v' —ie)

where

(S.5a, )

(3.5b)

[y~t(u', v'), j&;&(u)]=—,. q~t(u'v'), (S.ea)

(s.eb)

have been used. Equations (3.5a) and (3.5b) can be integrated to give

E(u, v) =E (u-ie) {'+' ~ "'(v -ie) (3.'I)

The phase of E(u, v) is determined by F (u, v) =E(-u, -v) which is immediate from Eq. (3.4). Using also
the positivity of g(g)gt(g), with g a test function we get

E(u, v) =f (iu+c) ~'+') 4"(iv+e) (' ')
with f, positive. By definition the factors. (iu +a) and (iv + e) have phases between --,'m and + —,'a'.

Another way of finding F(u, v) is to look into the product

g, (u) e vi)gx (u» vm)gi(us, vs)g) (u4, v4)

(3.8)

(3.9)



994 DE LL'ANTONIO, FRISHMAN, AND ZWANZIGER

and to use Eq. (3.4} once for the products g, (u„v, )gzt(u„v, ) and p, (u„v, )pzt(u„v~) and once for
gzt(u„v, )p, (u„v, ) [see (3.10) below] and then for $,(u„v, )gzt(u„v, ). A comparison between the two expres-
sions yields the result (3.7) for E. We also get, with this method, a determination of G(u, v} which appears
ln

g V

pv (u', v')p, (u, v) =G(u' —a, v ' —v): exp (-—(a+ a) j, (()d( exp ——(a —a) j (X)dp):,
Q V

(3.10)

an equation which is derived in the same way as Eq. (3.4). Before we can compare the two expressions
we have to commute several terms. Let us outline the calculation. We have, on the one hand,

2P 2 1 3& 3 I 4& 4

tip Vy

=p(u—u, ,v, —v, ):exp(-—(a+a) j, (()d( exp ——(a —a) j (v))dp):
82 V2

Q3 V3

xp(u, —u, v, —v ):exp(- —(a+a) j,(I')d(' exp ——(a-a) j (X')dp'):
tl4 V4

((u, —u, —ie)(u, —u, —ie ) ~ '"" '"((v, —v, —is)(v, —v, —is) l ' ' "~'"
Qg —Q4 —L 6 Q2 —Q3 —'L E Vg —V4 —L & V2 —V3 —'L 6

tip iL tl

x exp ——(a+a) j (k)d( exp ——(a+a) j, (( )d\')'
2C u2 2C

g V1 "3.
xexp ——(a —a) j (zl)dzl exp ——(a —a) j (zl')dq'

2c 2c (3.11)

where we have used the following identity:
I

exp -ip, j d exp -iA, j' 'd'
8 Q

=exp -iA, j '~ 'd ' exp -ip, j d

which holds for either j, or j . On the other hand,

$z(uz, vz)[pz(uz) vz)(z(uzj vz)]$z (udj vd) =G(uz uzj vz vz)E(uz u4) vz v4)

(3.12)

(3.13)

f(uz —u —26)(u -u —zc) ~ ((v —v —zt)(v —'v —zc)
Qg -Q2 - Z6 Q3 —Q4 - L 6 ((VZ -V2 ZC)(VZ --V~ —iE)

Q3 Qy

x:exp ——(a+a) j (()dfexp ——
(,a+a) j (( )dj')',2c 2c

xexp ——(a —a) j (zl)dq exp ——(a —a) j (zi')dq'2c 2C

where we have used

Q3 i u -u -ic &"'i'i'"
d, (u„v, )exp(- —(a a) j('~(()d( = exp ——(a+a) j(')(()d( d, (u„v, )

ti2 Q2 "I "2

(3.14)

iL V3 V3 V —V —$C ~a-a )2/4mc

g, (u, v)exp ——(a —a) j~' (zl)dq = exp ——(a —a) j '
(zl)dzl g, (u, v)2C 2c Vy «V2 «LC

and the equations for g, obtained by Hermitian conjugation of these. Comparing Eqs. (3.11) and (3.13) we

see that the operator parts are identical, since
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Comparing the c-number parts we get, for

f(u, v)=—E(u, v)(u -ie) '+' '"'(v -iE) ' '

g(u, v) —= G(u, v)(u -ie) '+' '(v -iE)

the following equation:

f(u, v) f(u', v') =g(u", v")f(u+u'+u", v+v'+v").

(3.15)

(3.16)

The solution of this equation is

f(u, v) =g(-u, -v)

~ C2fg+C3V
j.

as one can easily convince oneself by taking a logarithm of both sides of Eq. (3.16) and then differentiating
with respect to u and v ~ cy c2 and c, are constants. From Lorentz covariance of the expression in Eq.
(3.4) one deduces that c, =c, =o, and thus the solution (3.7} is obtained. We also get, as a side result, the
solution for G,

G(u, v) =F(u, v). (3.17)

IV. WIGHTMAN FUNCTIONS, COMMUTATORS, AND BILOCAL OPERATORS

In Sec. III we obtained our basic result, namely, the formulas that express the product of two spinor
fields at arbitrary points in terms of currents,

(C)( u, v)P, (u', v') =f0[x(u-u')+c] '+' '[i(v —v')+f]
Q

x exp ——(a+a) j (()d(+(a —a) j (q)dq)2c I

(i)~t(u', v')g, (u, v) =f [i(u'-u)+e] &'+') )'"[i(v —v')+e] l' ') ~4"

zx:exp ——(a+ a) j+($)d$ + (a —a) j (q)(fq
8 V

(4.1a)

(4.1b)

and the corresponding relation for $, obtained by a- -a. Here f, is a positive real number whose value
determines the normalization of $,. We saw that these formulas follow algebraically from the commuta-
tion relations of the j's with the g's, and that the equations of motion of the g's are not needed to derive
them. On the other hand, by differentiating them with respect to u and v, the equations of motion (2.28)
and their integral form (3.1) result. They also provide a complete solution oi' the Thirring model, For
once a representation of the j's acting in the vacuum sector is chosen, Eqs. (4.1) determine all the Wight-
man functions, as shown below.

We choose the Fock space representation of the commutation relations (2.8), with vacuum
~ 0),

j';)(n) I o}= o.
In terms of Fourier components, j,(p), with j,(-p) =jt, (p), p&0, we have"

(4.2)

j.(n) =,
2 )ig. [j.(p)e ""+i'(p)e""),

[i,(p),~', (p')] =2cp6(p -p }, p, p" O

(4.3}

other commutators being zero. Because of the charge selection rules, all nonvanishing Wightman func-
tions contain equal numbers of g, 's and g, 's (and g,'s and g, 's), so all that remains to be done is to find
out how to commute the spinor fields to group them in pairs like (4.1).

From Eqs. (4.1) we have directly

'( )+ ( + ) / 'tr '(v v )+g ) w

Z Qg —Q2)+6 1 2
(4.4)
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Using Eqs. (4.la) and (3.17) and equations analogous to (3.17}with the annihilation part of the currents in-
stead of creation

u u -u -ze '""'4-
d,(v„v,)exp(- (a+a) j, (()d( = exp ——(a+a) 'j, (()djp,,(a„v,)

u 2 u2 3 1

( e )2/47Icie (e-e) /47Ic

P,(a„v,) exp(- (a —a)f ja ~ (e)de) = exp — (a —d)f j~ ~ (e)de P, (a„v,)
v2 v2

we get

( ) ( ) 2( )
'2(Q3 —Ql)+E 2(Q1 —Q2)+E '" i(v, —v, )+E 2(v, —v, )+E
'2(Q1 —Q3) + E2(222 —Ql') + E 2(V1 —V3) + E 2(V2 —Vl) + E

X(1(Q2) 52)gl (Q3, 53)gl(Qlj 51),

which combined with Eq. (4.4) yields

2(Q Q )+E (a+a) /4((c 2(5 5 )+E (a-a) /4vc

2 V2 —V1g+ 6
(4.5)

(Q, —Q, )(v, —5,) &O.

Similarly by commuting $2 with expression (4.1a), we find

( ) ( ) t( )
'2(Q1 —Q2) + E 2(Q3 —Ql) + E 2(51 —52) + E 2(53 —Vl) + E

2(Q2 —Ql) + E 2(Q1 —Q3) + E 2(V2 —51) + E 2(51 —53) + E

l 2(Q2) 52)kl ( 3) 3}4(Qlj Vl} '

Because of the Klein transformation relating commutation of different fields, we may assume that g, and

$2 anticommute at (some) equal time. It follows that

2 2& 2 1 1& 1 l+ ( V 4+g 1 1& 1 2 2& 2 (4.5)

Because of the condition (2.32), (a+a}' (4)2c) '=(a —a)'(422c) '+1, required for a spinor Lorentz trans-
formation law, one sees that (4.4) and (4.5) correspond to anticommutation laws for spacelike separation,

(4.7)
(e2-a 2) /47fc

2(Q1 —'Q2) + E 2(211 —V2) + E
((jl(Qlj 5 )$ 1( 25Q22))— .j x ~ j 1 42( 2) 52)41(Ql) Vl) ~

s~u2 —u, ~+ e s~v2 —v,~+ e

Using formulas (4.1)-(4.7), all Wightman functions involving arbitrary numbers of g's and j's are easily
calculated (and hence all matrix elements as well). Thus, the commutation relations of the j's and the g's
determine a unique solution of the Thirring model for which the j's are irreducible.

Our basic formula (4.1) expresses the products of two spinor fields (,(x)goal(x') and pit(x')(}),(x) in terms
of currents. Conversely it may be used to express the current as the product of two spinor fields as the
space-time points approach each other. From Eq. (4.1) we see that the bilocal operator defined by

R[g, (x')g, (x)] -=[i(Q' —Q) + E]'"' /'"'[i(v' —5)+ E]' ' ' /'" (12(x')(,(x) (4 8)

is regular as the points approach each other and in fact has the limiting value R[P, (x)g,(x}]=f~a Its deriva-
tives are also seen to be regular, and we have

lim i —R[q, (Q', 5')q, (Q, v)] = f, j,(Q),
u', v' u, v 2c (4.9a)

lim i —R[glt(Q', 5')g, (Q, v)]= f,j (v). (4.9b)

The differentiation may be made part of the limiting process and we obtain alternative expressions for
the current in terms of spinor fields

j,(Q) =, , i lim, fR[(})lt(Q', 5')g, (Q, v)] f, /, —
((2+ (2) 0 u', v'~ u, v Q

(4.1Oa)
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j (v)= i lim, (R[qt, (u', v'))I), (u, v)]-foj. (4.10b)

(4.11a)

The corresponding expressions with a- —a and g, -)1), are also available [and are necessary for j (v)
when a= a]. An equal-time limit with u'+ v'=u+ v may be used to give a meaning to the equation of motion
for (, Eq. (2.14) as the limit of a nonlocal equation involving g only. " This brings us back to the original
formulation of the Thirring model conceived as a theory of a self-interacting spinor field.

The singularity structure of the products g,g, and gtg, are determined by Eq. (3.11) for the fourfold
product P, (x, )g~t(x, )g, (x,)P~(x,). We see that

R[(,(u, v)g, (u', v')] —= [i(u —u')+c] ('") ~'"'[i(v —v')+e] ~' ') ~'"g,(u, v)g, (u', v'),

R[(, (u, v)P, (u', v')] =- [i(u —u')+ e] '"" '"'[i(v —v')+ e] ' ' '"q~t(u, v)y~t(u', v') (4.11b)

are smooth as the points eoineide, and similarly for g, with a- -a. To obtain the remaining regular bi-
local products it is sufficient to consider the fourfold product g, (x,)g, (x,)g,(x,)g, (x,) which is easily ex-
pressed in terms of currents and normal ordered. One finds that

R[(,(x)(2~ (x')] -=][i(u- u') + c] [i(v —v') + e]j(" '~'"' y, (x))mt(x'),

R[g,(x)y~t(x')] = f [i(u -u') + ~] [i(v —v') + e]}("' "~'"
y, (x)y~t(x'),

R[g, (x)g,(x')] =- ([i(u —u') + e] [i(v —v') + e]}' ' '~'"
y, (x)g,(x'),

R[g~(x)g~t(x')] -={[i(u -u ')+e][i(v -v')+e] j&"-"' '"y~t(x)(J'(x')

(4.12a)

(4.12b)

(4.13a)

(4.12b)

are also smooth, and similarly for P, —(, and a—-a. In Sec. V a Hilbert space will be constructed on
which g(x) acts as a local field. One may also show that the regular bilocal operators defined here are
local fields for x' =x. Their dimension may be found by commuting with the dilatation operator, which
agrees with simply counting linear dimensions in-the defining equations. The resulting dimensions (in
units of mass) are"

d[((x)] = [(a+a)'+ (a —a)']/Svc =-,' +g'c/4))',

d(R[$~(x)g,.(x')]j =0, i =1,2

d(R[g, (x)g, (x)]j =[(a+a)'+(a —a) ]/2)Tc =2+g c/v,

d(R[y~t(x)q, (x)]j =d(R[y2t(x)g, ()()]j = a'/mc =a/a,

d fR [(I),()()q, (x )]j= a'/wc = a/a.

(4.14a)

(4.14b)

(4.14c)

(4.14d)

(4.14e)

Note that all bilocal operators are scalars, except for R[(,g,],R[g~tg~] and (1-2), which are second-rank
tensor s.

V. CONSTRUCTION OF THE FIELD

We shall now construct explicitly the field P(x),
solution of (2.2)." Let f(p) be a, real function on
the positive real axis, finitely differentiable and
with support contained in a&p& b, for some a, b

&0. Define

4.(f)=~ ~ f (P)[i.(P) +i, ( P)] dp, -
C p&p P

& (f) =(-)~ ~ f(P)[j,(P)-j,(-P)]dP,
C p&0 p

o'~(f ) = 0+(f) +i')(~ (f).

It is immediately verified that (II)„s, are Hermitian
operators which satisfy canonical commutation
relations [167)'f, d p f '(p) = 1] and that they com-
mute with the charge operators Q, . We write
the Hilbert space as a direct sum,

x=63K, , q=(q„q )

in such a way that Q, acts on R, as multiplication
by q, ." Denote by n-,' the restriction of n, to the
subspace SG, . The assumption of irreducibility of
the j,(f) in each charge sector is now made pre-
cise by the requirement that the representation R,
generated by the c(', (Ref. 21) be-irreducible for
each q. The commutation properties of the field
with Q, show that (I), 2(f ) maps (a subset of) X,,
into+, ,",where e,'=a+a, e', =a+a. An irreduc-
ible representation of the fields can therefore be
found in a space which is no larger than
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X.
&e COBC g XR

where q g C„t) if q+=n+n, (a +a)+n2(a —a), q
=P+n, (a —a)+n, (a+a) for some n= (n„—nm)pgxg.

We consider in detail only the ca.se at+a (the
other cases correspond to the "decoupling" of one
of the currents j„and, are to be treated separately,
along the same lines but with obvious simplifica-
tions. For the choice aa=n'c [Eq. (2.32)] we can-
not have a=-a}. When ao +a, one can classify
the representations giving c(, P, and n. We assume
that there exists a representation which has a vec-
tor 0 invariant under space-time translations.
By convention, we associate o. =0, P =0, and n=0
to this representation and denote by R„ the repre-
sentations characterized by (0, 0, n), and by 3C„ the
corresponding subspaces. The Hilbert space we
consider is then X=6„K„.

The generators of space-time translations are
represented formally by (2.22a) and (2.22b), which

we rewrite in the form

If+I' = P ~,'(P)~.(p)dp,
P&0

(5.1)
P ~'(P)~ (P)dp,

P&o

with

f (P)
+(P)

( p)1/2 '

Let a- be the restriction of n, to SCo. From IIQ
=PQ =0 and (5.1), one derives no (f)Q =0, for all
functions f of the class considered. Ro is there-
fore a Fock representation. We study next the
structure of the representations R„. They are
completely described by the following.

Lemma 2. Let J+(p) be functions on [0, ~),
square-integrable, Holder-continuous (from the
right) of order e &0 at the origin, and such that
J,(0) =1.

Let

c
Ap, , (f)=-~"-,(f)(—„t.J ~ Z-, (()4,

p, =n, e', +n, e', . (5.2)

The representation of the canonical commutation
relations generated on X by the Az, is then of
Fock type.

A proof of this Lemma is to be found in Appendix
A. Here we will only add the following remarks,
which are easy consequences of Lemma 1.

Remark 4. The statement in the Lemma holds
true for each J in the class considered [J =—(J„J )].

This is a consequence of the fact that

J 1 2 dp
l J(p) —J'(p)l' & for any pair J,J'.

p

Remark &. Using Eq. (5.2) it is possible to ex-
tend the definition of n —",(f) to all f's for which

JI lf(p)l'(fp&-, P dp&
0

for some e &0.
Remark 3. Since (1j&p}J(p) are not in Z, (0, ~),

the representations R„and R„are not equivalent
for n+n'. In particular, R„ is not of Fock type if
n~O.

Remark 4. The functions J,(p, xo), J,(p l
A.) de-

fined by

1
J(p;x()) =- (1 —e""o)J,(P), -~ &x() &+~

are square-integrable in P and continuous in x„A.
at x0=0, A. =1 uniformly in p over the compacts.
Therefore translations in space-time, Lorentz
transformations, and dilatations are implemented
by strongly continuous groups of unitary operators,
in each X„. The generators of space-time transla-
tions are the ones given in (5.1}where the normal-
ordering prescription is given in terms of the m

—„
and coincides with the prescription in terms of
A, , ~, as seen from (5.2). Also, the energy-mo-
mentum density e„,(x, t) as given in (2.20) exists
on each X„as a bilinear form, and also as an un-
bounded operator when smeared, at fixed t, with a
twice-differentiable function of x.

Remark D. Also the generators M, D of the
Lorentz boosts and of dilatations exist; indeed,
using the fact thativ p (8/sp)v p defines in L'(R, )
a self-adjoint operator, one can easily check
that (2.22) defines on each X„aself-adjoint opera-
tor, provided fu J,'(u) & ~.

Before proceeding further, we want to show that

Q, is indeed, in a well-defined sense, "the integral
of j,(x, t) at fixed t. Recall that, so far in this sec-
tion, Q, are operators the eigenvalues of which
are used to label the representations R„which
occur in X.

Lemma ~, In each sector X„there is a dense set
D of vectors such that, for QED

lim, „x j, x, tdx
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for all t, for every sequence f„such that

P nP 'dP&~, n0 =1 lim „p g pdp=g0
n~o

for all functions g(p) continuous at P =0.and which converges to I, [L(x)=1, ()'x] in the sense
I

Proof. Let D be the set of finite linear combinations of those vectors in R„which are obtained by apply-
ing polynomials in A& t, (f) to coherent states Ig))„where g, f& 2, and continuous at p =0." Every )CD is
in the domain ff„(x)j,(x, t)dx; one computes

I(,ff.(*))(*,&)«(
(
((Q=() , f.(()~"&,(()d(+((, ~sf.(p)&.

";(P)8-"'4(l(

~~ f.(-p)(~;",,)'(P) '"dp ~ ~.

The first integral on the right-hand side converges to 1, while the two other terms converge to zero,
since, if J'(P) is a function continuous atP =0, such is also ))P J'(P) and moreover lim~ o)) p J(p) =0. This
concludes the proof of Lemma 2.

It is now convenient to define two families Uz, V~ of unitary operators on . U~ maps 3G„onto X (;i (5j
is the Kronecker 5) and is such that'4

n 1 n-61 n n 61
UJA. J fUJ —A.J P p UJ+J —+J ~

The operator VJ is similarly defined, with 5' instead of O'. UJ and VJ are uniquely defined by this equa-
tion, since the representations R„—,R„—q1, R„—q2 are equivalent and irreducible; here R„~ is the rep-
resentation of the canonical commutation relations generated by A~, (f) (Ref. 21). From (5.2) it is evi-
dent that, as a set of operators on X„, R —,and R„coincide. The operators UJ, VJ all commute.

The free group generated by Uz and V~ (fixed J') acts transitively on the sectors 3C; from Lemma 1,
Remark 3, it follows then'5 that the algebra of operators generated by Uz, Vz, exp[i(j), (f)], exp[in, (f)] is
irreducible.

Since R „- and R~—~ are equivalent, the operator UJ-'U J, leaves each X„ invariant; in fact, its
reduction to X„belongs to Rn, and is given explicitly by

ri 'U, [„=xp, &, (a+a) ' [J (p)-Z,'(p)]dp+(a —a)f [I (p)-Z (p')]dp' —H.c)
~":(P)-

U, '4, (f)=&,(f), V, 'l.(f)=- 0(f)

and obtain equations for Fz, gz using (2.10a) and (2.10b). We prove that these equations admit a unique
solution (unique apart from normalization); this solution is then used in (5.3) to define P, ,(f).

We shall give details only of the determination of F~(f), the results for g~(f) will only be quoted.
It is expedient to begin by determining an "approximant" to (C)„denoted by g, A(u, v) which satisfies

(5.3)

(notice that j du[J, (u) —J', (u)] =0).
We turn now to construction of the field P(x), given the Hilbert space X=% 3C~ and the representations

fl„described above. " The crucial remark is the following: If P(f) exists, then U~ 'g, (f) and V~ '(t), (f)
must commute with the Q „and must therefore be "functions of the j,'s and of the Q, 's, " due to the irre-
ducibility of R for each n. We write

[j,(u), g, )[(u', v')] = —(a+a)g, ~(u', v')5A, (u -u'),

[j (v), g, A(u', v')] = —(a —a)g, A(u', v')5A (v -v'),
where

1
5A(x) =— e""dp, A=(A„A, ).

apl&A

(5.4)

For fixed (u, v), g, A(u, v) will turn out to be a bounded operator; the field P, (u, v) will then be obtained by
taking the strong limit, whenA„A -~, on a suitable domain, of gg, A(u, v)f(u, v)dudv, for suitable test
functions f(u, v). From (5.4) and the transformation of A~„under U~ it follows that FA(u, v) must satisfy
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[j,(u), FA(u, ', v')] = (a+a)[J, (u) —6A (u -u')] 6 A(u', v'),

[j (v), PA (u ', v ')] = (a —a)[J' (v ) —5A (v —v ')] FA (u', v ') .
The operator 6'A(u, v) leaves X„ invariant for each n,; the solution of (5.5) is then known to be

(5.5)

Px(u, v) =Cd(Q; u, v) exP(f hx (u, u )j('u ),du '+f'hx (v, v )j (v'')d. v')

where

u'

hx (u, u')=h . f d(u")du" —ex (u'-u)).

(5.6)

It can be checked that f ~&A (u, P)~(fp&~, since Ph(u, p) =J,(p) —5A (P) e'~"=O(p') atp =0, for some e &0;
the exponential in (5.6) defines therefore a unitary operator

We now substitute (5.6) in (5.3), and recast the expression thereby obtained for g, A(u, v), in the form

P, h(u, v)=vh(Q;u, v) exp(Jhx ( , )juu()d „ufuh 'v(v, vx')j (v)dv')U~. ,

where the expression between colons is defined to be

(5.7)

exp hA, u, u' j+' u' du'+ AA v, v' j ' v' dv' U~ exp AA, u, u' j, u' du'+ hA v, v' j v' dv'

(5 8)

and j",j' ' are the positive- and negative-frequency parts of j. As defined in (5.7), the normalization of
field depends on J, for fixed vA(Q;u, v). One has, however, the following identity: If J„J,have support in

1pjp &A], then

Q+Q ~ ~ p
0

also, one can verify that

&i,Pa —fHao U U &f Pa —f &aoJ (a, ap) ~
p

= v A (Q; u, , v; J)v A '(q; u, , v, J')(rj, A (I, v; J')

(5 9)

(5.10)

where

[J.(~, ~Q)] (P) =e'"""'J,(P)

Using (5.10), the requirement that (rj, A(u, v) transform correctly under space-time translation leads to

P, (vx)=uv (QZx}:ex (hPx { , )uj,u( ) u' djev(vh, xv')j (v )dv')U'
In the same way, one obtains the following expression for P, A which is an approximant of g,:

( ,p)=uv(Q; u): d(~ ehxp, (uu'}j(u }du +'J,h,, (vv, )j'(v ')dv )p, ':, , '

(5.11a)

(5.11b)

where hA' is obtained from hA, replacing a with -a. Notice that the dependence of )jA(Q; J), p, A(Q; J) on J is
only through the exponential factor in (5.9); in particular, vA, p, ~ do not change when J is transformed by
translations, Lorentz transformations, ~

and dilatations.
The dependence of vA, p. A on Q is not relevant to determine the transformation properties of gA

—= ())'j, A, (2 A) under Lorentz transformations and dilatations, since Q is an invariant. Also, the commutation
properties of )(j, ~ with itself (e.g. , at spacelike distances) and of g, ~ with itself, do not depend on vA, p, ~.
The commutation properties of (, A with g~t A, or of P, A with PJ' A, do depend on )j„,)j, j). It can be easily
checked [compare, e.g. , Eq. (4.4) and following lines] that, when aa=nmc, the usual commutation proper-
ties at spacelike separations of g~(u, v) with itself and with $A(u'j v') are obtained if and only if, for fixed J,
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(a) v(m, m )vt(m, m, ) = v(m, +1m,}vt(m, +1m,},
(b) p. ( m, m, )p&(m, m, ) = p, (m, m2+1)p, t(m, m, +1),

(c) v(m, m, )p, (m, +1m,) = p, (m, m, )v(m, m, +1)(-)",

(d) v(m, m, )pt(m, +1m, -1)= pt(m, m, —1)v(m, m, -1)(-)",
where

(a+ a)Q+ —(a —a)Q
m~ =-

4aa

(a+ a)Q —(a —a)Q+
2 4aa

and relations (a), (b), (c), and (d) follow from considering (]I}„(1)t},(q„qJ), (y„y, ), and (]I}„]1)J'),respective-
ly (we have suppressed the J dependence in v and p). Relations (a) and (b) imply

v(m, m, ) = p(m2)e'~ ~) "2

p, (m, m, ) =o(m )e'~'~)~2&,

where p, a' and ((}),$ are Hermitian. Combining with (c) we get that p and a must be constants and that
(modulo 2m)

(e) (t)(m, m, ) —(I) (m, m, +1),= g(m, m, ) —g(m, + 1m, ) +nm .
Relation (d) renders no new information. From (e) we get, that for a given Q,

tll y

(f) p(m, m, ) = —g [Q(m —1m2) —Q(m- lm2+1)]+((m )+m,n„

Let us now use the freedom of a unitary transformation

~&iE(m~m2), ~, &-iE(m~m2) &i V'(mlm2) E(m~+1m2) j pI)yg8 vi~

I g~&(™y~2)I g ~+(ift1~2) —g~ ~~(~]~2) +(~1 ~2+~) I I&2'

We choose I' in such a way that

F(m, m, ) —F(m, +1m, )+y(m, m, ) =0,
which brings us to v depending on J only. Solving for E,

mg

F(m, m, ) = P(I)(m —lm, )+F(m2) .

As for g„we have in the exponential i times

F(m, m, ) —F(m, m, +1)+P(m,m, ) =F(m, ) —F(m, +1)+g(m, )+m,n]]'.

Choosing & such that the last combination is m, nm we finally get that without loss of generality

«(Q;z}=«(z}, )«((),J}=«(z)e' '"'=g (z)exp(i«« "
),

where [compare (5.9)]

«(&')«*((; J(]l&())l'-]II ())]I']—+ '„,', f[II ())]I'-]l ())]I'] —)=«(z)

(5.12}

and a similar formula, with a--a, for p, ~(J). From (5.11), (5.12), and the definition of hA, hA one can see
that )A(u, v) -=(]I), A(u, v), P, ]}(u,v)) satisfies the differential equation

—(A(u, v) =2 (a+ ar ):i+5(u)I(u,]v}]}):,

(1)A(u, v) =2 (a —a r,):l'—(v))A(u, v):,
(5.12)
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where

i./2 c ij
j-', (u) =- )]p ei™o.,(p)@)+- ~i e *'"~'.(p)dp .

217 0 dep (A 23 0 (P

Under I orentz transformations and dilatations, the field )A(u, v) transforms according to [compare (2.15)
and (2.17)]

e' dv"(uv)e ,
'" =exp ' '

P)d (e u e vv),(a+y a)' —(a —y a '
'll'c

(5.14a)

(a +y, a)' + (a —y, a)'
(5.14b)

where, in (5.14a), A'=(e A, e A ).
To prove (5.14a) one selects J, so that

»pp&. -(Cpll pl«. ]~ C pl lpl« 'A.], snpp J (:Cpllpl«] ~Cp lip l«'A j.
One also uses

ehjdeU U ~
e' dde g"d(p) =g(ehep) (5.15)

Equation (5.14b) is proved similarly. We find again [compare (2.31)] that a "spinori&e" factor in (5.14) is
only obtained if a a = (2n+1)2)[c.

One can now compute the product of any number of p,. A, , )]t},
'. z., i, j =1, 2 possibly with different cutoffs.

We may expect (the proof is outlined in Appendix B) that these (bounded) operators be approximants for the

corresponding product of [C},. (u, v), g,'. (u, v), i =1,2. One finds without difficulty that; e.g. ,

P, e(u, v)P,
' (v')x=Pu(u', xv u—v';d) exp(J[[he (u, u")vhx (u', u")]j,(u")du

+ AA VqV +&A V pV g V dU

P, x(u, v)d, x(u', v') =Gx(u —u', v —v';d): exp(f [hx (u, u")+h„', (u', u")]j,(u")du"

+J[[he (v, v")+hx (v', v")]j (v")dv")P, }},:,

(5.16)

(5.i7)

where the:: symbol is defined as in (5.8). Here

p'~(u —u', v —v'; Z) =exp gA (u-u')+ (A (v -v')
I

]d (J)l',(a+ a)' +, (a —a)'
4mc A+ 4mc

(A, (u) = [e*""-l~, (~)l']—,
0

2 2

Gx(u —u', v -v'; d)=exp [F[,(u —u') v(x (v-v')])v, (d)u, (J),
(5.is)

}[jA (u, u")+hA (u', u")= . [e~ (u'-u") —ej[,(u —u")].

In analogy with Eq. (4.13a) we define

8[(, A(u, v)P, A(u', v ')] —= g, A(u, v)P, A(u', v')G A '(u - u', v -v'; t) .
One can now see [compare (5.16) and (5.17) with (5.11)] that the proof of convergence, when A, A -~ of

g, A(u, v)g, A(u, v ) is no more difficult than the proof of convergence of g, A itsen; one must only notice
that [compare (4.7) and (4.13a)]

lim G (u-u', v -v')=C[i(u-u')+e][i(v-v')+e]p" '"~'"C(J').
A~~~
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Only slightly more complicated is the proof that,
on a suitable domain

y, ,(u, v)y, A(u', v') '
y, (u, v)y, (u', v') (5.19)

(in the sense of distributions), and that the (strong)
limit of R[g, A(u, v)g, A(u', v')] is "smooth" at u =u',
v =v' in the sense that, taking expectation values
between vectors from a suitable dense set in K,
one obtains many times differentiable functions of
u -u', v -v' at u =u', v =v'.

One recovers therefore the behavior of the prod-
uct $, (u, v)P, (u', v') at the light cone and at the
origin [compare (4.V) and (4.13a}];one can also
prove that R[$, (u, v)(, (u, v)] is a local (distribution-
valued) operator. Similar remarks apply for
P, (u, v)g ~t(u', v') (notice that here R[g, (u, v)g~(u, v)]
= C}and in general for any product of any number
of fields P„P~, P„and $2t and for their behavior
when some of the coordinates become lightlike or
coincide. The results for the behavior at the light
cone coincide of course with the ones given in
Sec. IV. Convergence proofs are outlined in
Appendix B; accepting them here, it follows from
(5.14a) and (5.14b) that the field P(u, v) has the
right transformation properties under Lorentz
transformations and dilatations. From (5.13) it
also follows that P(u, v) satisfies the correct Thir-
ring equations, since, from (5.16), it follows that
(4.10a) and (4.10b) hold as an operator equation
[on a dense domain on which Jj,(u)f (u)du,

gj (v)g(v)dv as defined by (4.10a) and (4.10b),
coincide with the operators which appear in (2.3),
and determine them uniquely].

The product of any number of fields g(f }, P~(g)
can be defined, on a dense domain in X: containing
the vacuum. Therefore the Wightman functions
exist, and coincide with the ones obtained in Sec.
IV (and in Klaiber's paper'). Since we work con-
sistently within the Hilbert space R which has
positive metric, this result provides an indepen-
dent proof that Klaiber's kernels are of positive
type.

Finally, since much interesting work has been
done recently in the general area of "reconstruct-
ing the fields from the observables, " which is in
essence what has been done in this section for the
Thirring model, a few comments are in order.
If J is a bounded interval on the real line, we
denote by a( J) the smallest norm-closed-algebra
(see, e.g., Ref. 25) of operators which contain
all e'~~~, e' ~~~ support fC J. We denote by a(J )
the smallest norm-closed-algebra of operators
which contains all a(J'), J'A O'=Q. We denote by
a —"(J) [a—"(J )] the restriction of a(J) [a(J )] to
X—". From (5.2) one sees that, if supp J,C J,
suppfC J'

~n (f) ~n-nb~-abm(f )

J J n( ) n nfl heal (f )
J J p )RGZ

VI. CONCLUSION AND COMMENTS

The Thirring model is conventionally defined in
' terms of the equations of motion, whereas we have

expressed our solution in terms of c, a, and a
which appear in the commutation relations. The
relation between the two is

a- a=gc,

to agree with the equation of motion, and

(a+ a)' (a —a)'
4wc 47t c

(6.1)

(6.2)

to ensure a spinor transformation law. The choice
of c is a convention which normalizes the currents
to have strength c'~', as seen by Eqs. (2.3) and

(4.3). Since the combination gj is what appears
in the equation of motion, it is the quantity gc' '
or g'c that has physical meaning and which mea-
sures the strength of the coupling. The solution
of Johnson4 corresponds to the choice

1

v[1 —(g/2m)']
' (6.3)

We would also like to note that requiring the com-
bination

g, (u, v)g,"(u', v')+ZP~t(u', v')P, (u, v)

to vanish for spacelike separations, (u —u')(v -v')
&0, we get that

[(a+ a)' —(a - a)'] (4vc) ' =n

has to be an integer with X=(-1)"". Thus odd

and therefore U~ and V~ provide a "canonical"
unitary equivalence between the a-"(J) for different
n. However, since from (5.2) for any f,

"(f) — 0""'—"'-(f )-+c,(f )I
UKVa UKV~

+n(f ) vn-K6 -nB (f )+c (f )I J'

and since I E a(J) for all J, it is seen that the U~
and V~ provide a unitary equivalence between
a-"(J') and a —"(J'), for any pair n', n, even if
J f1J'e P. Therefore, also the commutants [a—"(J)]'
and [a—" (J)]' are unitarily equivalent, for each J,
and one has what is called "strong unitary equiva-
lence. '"' Still, as we have seen, one can construct
a countable number of inequivalent Bose fields
g~'"~(u, v) (corresponding to a a = 2vNc) and a count-
able number of inequivalent Fermi fields P

'""
(u, v),

each of which (a) is local relative to the observ-
ables [this follows from (2.9a) and (2.9b)], (b) co-
variant, (c) is irreducible, and (d) admits precisely
[a(R,)]" as the set of observables. "
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values of n correspond to anticommutators and even values to commutators, which is an instance
of the connection between spin and statistics. Our final results are

0

[i(u -u')+e][i(u-u') +e]"'~"[i(v-v')+e]"'~"

2 ~ 1/2 8 V

x:exp -i —+ — j,(g)d$ —i — j (q)dq

y~t(u', v')P, (u, v) =
S Q —Q +E Z Q —Q+E' Z V —V +f

(6.4)

g2»2 u g V

x:exp -i —+ — j,($) d$-i — j (q)dq
4 c I

and similarly for P, with u —v and j+—j . We note that the singularity may be reexpressed in terms of
the invariant separation

[i(u-u')+e] "'~4'[i(v -v')+e] "'~"=(-x'+ibex') "'~"
with 2x' = (u —u') + (v —v '), 2x' = (u —u') —(v —v '), and x' = (x')' —(x')'.

We have here a very nice example of an exact short-distance expansion, as suggested by Wilson2' and

an exact light-cone expansion, as postulated recently by several authors. ' '
As for short distances, the most singular matrix element is the vacuum expectation value. The singular-

ities of all other matrix elements are connected by one regular operator. The light-cone expansion here
contains one singular function only, and one regular bilocal operator. Such a structure supports the postu-
lates in Refs. 6 and 7. We note that the singularity on the light cone is a dynamical one, depending on the

interaction.
The Thirring model as originally formulated was a theory of a spinor field, in which the current was de-

fined as a product or, more precisely, as the limit of a product of spinor fields. Our method may be sum-
marized as the reversal of this procedure. We began with the current and its properties, and expressed
the bilocal operators P, (x)g~t(x') and P, (x)(at(x') in terms of the current. Ultimately the charged spinor
field itself was constructed as an operator which intertwines different inequivalent representations of the

current commutation relations.
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APPENDIX A: PROOF OF LEMMA j.

To avoid a cumbersome notation, which would obscure the simplicity of the proof, we shall concentrate
on the case n= (1,0) —= g'. The proof of the general case follows along the same lines. We also neglect all
indices and write

A, (f)=a, (f)(g )
—(asa)f ~ J,(p)dp.

The irreducibility of the A, 's is obvious, given that of the a, 's. We notice that X~&contains all vectors
of the form

Q~'U Q g v AQcfv 0= &g &g+S . (A1)

[Recall that we assume at this stage that g(u, v) exists, and obtain necessary conditions on the representa-
tions R„. Later on, we shall prove that these conditions are also sufficient for the existence of the field

y(u, v).]
We now compute the expectation value of the number operators N„N (associated to A, ) in a vector of

the form (Al) and show that it is finite. According to Ref. 29, this proves the assertion in the Lemma.
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Using (5.2) one can write

(f,g~(N, +N )~f,g) = dN dpdqdp'dq'f (P)f (P')g(q)g(q')
K&p

x (II, )t), (P, q )[A,"(~)A+ (&() +A (N) A (~)](I), (P ', q ')II) .

(A2)

Using the commutation properties of A, and g„one rewrites (A2) as the sum of two terms (corresponding
to +),

Jle(q)l'-, (f(p ee)f(pe e) q, (e)f(-p)f(pe e) q, (e)f(-pe e)f(p)+If (p)I'lq, (e)l')G(p, q)qp qeqq,

(A3)
where for the (-) case one has also yet to interchange f and g.

If one takes g, fPD, the coefficient of G(p, q) in the integral is in D(»xD(, &xL(„&, since J+(N) is Hblder-
continuous at )c=0 of order e &0. The kernel G(p, q) is given explicitly in (3.8) and is seen to be in S&»
x S(,&,

' the integral in (AS) is therefore unconditionally and absolutely convergent. It follows that
(f,g~((N, +N )~ f,g)&~. This concludes the proof of Lemma 1, for the case n=6'.

The general case is treated along the same lines, using instead of (A1) vectors of the form

0,' (f„g, )y.' (f.',g' )I II) -=l(f„g ) " , " (f.', g.' )). (A4)

APPENDIX 8

We plan to outline here the proof of the strong
convergence (on a suitable domain, and in the
sense of distributions) of the sequence of operators
g, A, P, A (and of their products) when A„A
To ensure that the essential steps in the proof are
not obscured by an elaborated notation, we shall
give details only for the convergence of ]((t), j on
the vacuum 0, and take A+ =A =A. We consider
therefore the sequence of vectors in K,

JP, A(u, v)f(u, v)dudv 0=-
i f)A, (B1)

and prove that it converges in the topology of BC

(and therefore to a vector in K, since X is com-
plete), for fixed f& S. We shall use the decomposi-
tion, for A & Z,

each n, a Fock space for A~ + and has a corre-
sponding tensor-product decomposition relative to
subsets of independent "degrees of freedom. "
Equation (B2b) follows from (B2a) and from the
fact that U~ maps K —~ onto X~„—~~&. Because of
(B2b), one has, for every I;&A,

Fz(u, v) = FA(u, v)Fz) ~(u, v),

where, setting, "
(a+ a)' (a —a)'

G=
4mc ' 4mc

zdp zdP
pv, e (e, v ) = exp (p

—e'e'+ e —e"").
Since 8'A (u, v) is easily seen to be bounded and in-
finitely differentiable for fixed A„O& A, & ~, we
shall only have to prove that

Xg XA (3 Xg

and correspondingly

(B2a)
t[Fz („,(u, v ) —FA ) A, (u, v)]X(u,, v)dudv=-Mz ~(X)

(B4)
4, z(~, v) =P, .A(~, v) 4, z).(~, v). (B2b)

Equation (B2a) formalizes the fact that K„ is, for
converges to zero when A -~, Z &A for every
XGS. One has

Mz ()(X') = p g" X(P, + ' ~ +P„,q, + +q„)
f (B5)

n, m &p;
n+m~l m, n m, n

where R ~ 'Ap is the subset of R+'" defined by

A, ~p,. &Z, A, ~q,. &Z, x=1, ... , m,

j =1, ... , n.
It is convenient to write Mz ~(X) as the sum of
three series, corresponding to m=0; n=0; m, n

& 1, respectively, each of which is shown to con-
verge to zero when A -~. We shall outline the
proof for the third series (m, n. & 1), denoted by
M'P&))(X). Using the inequality

Pl + +Pm & (P N. ..P N)1/qqe

m
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lMP&, (x)l & K„
m, n~l

where

dPg d Q'n 1
* 1+N/m 1+N/n mN+N

&n

(B6)

K„=sup I $ q X($ q)l&

On the right-hand side of (B6) the integrand is
positive; the integral can then be majorized by
the sum of the integrals over the regions O,-, O,.
defined by

0, :(A & p,. &Z;Ao&p„, K&i; Ao&q, Vj),

0,. :(A &q, &Z; A, & .q„kWj; A, &P,. V i I.

The right-hand side of (B6) is then majorized by

p o" 1 ~ dp ~ dp
N ~ m t nt mNnE

pl+Nlrb

pz+N/m
Ap

valid for all p,.ER„. m, n&Z, one has, for every
N&0,

sequence defines a vector which we shall denote by

P,(u, v)f (u, v)du dv Q;

linearity and continuity in f are easily demon-
strated using (B7) and the corresponding proper-
ties of

JP, A(u, v)f(u, v)dudv 0

(a crucial remark is that N, K„can be chosen to
be independent of g for all g in some neighborhood
of f, in the topology of 8). in the same way, one
proves the sequence

y, ~(u, v)f(u, v)dudv lX)

converges strongly, whenA -~, for all XGD
-=&a,p, mDm, p ~

Here D—"
~ denotes the set of finite linear combina-

tions of vectors obtained by applying a polynomial
of order P in the ut(f), fC g, to coherent vectors
llg)) for which fig(p)l'dp

Since convergence can be proved to be uniform
on each D—"

~, uniformly in a sufficiently small
neighborhood of f, it follows that these Cauchy
sequences define on D a closed operator, continu-
ous in f, which we shall denote by

X y+ N/n +@ m
0

which, in turn, is majorized by

pm gn ] mm+j. / A N/m
0

m! n~ m"n" N PP A A"
m, n~l

+g~ Vl ~

(Bv)

The series in (B'7) is, for N sufficiently large (de-
pending on p, v) absolutely convergent, uniformly
in A for A&e&0. Each term in the series con-
verges to zero when A -~; the series converges
therefore to zero when A -~. We have in this way
established that, when A —~, the vectors

fy, A(u, v) f(u, v)dudv 0
form a Cauchy sequence. For all fCS this Cauchy

In the same way, on the same domain, one can
define the closed operator

Finally, through majorizations similar to the
ones given in (B5), one proves that the vectors

0* ~ (f ) "4,*,~. (f.)fl, 4*=4,4', i=i, 2 (B8)

converge, when A, , . . . , A, -~ (l & k &n), uniform-
I

ly in the remaining A,.'s.
This extends the domain of definition of the op-

erator J((u, v)f(u, v)dudv to a domain K, dense
in X and invariant under action of f*(j) and of
a*, (g), gpss„. also, the uniform convergence of
the sequence in (B8) shows that its limit, on K,
is precisely the product of the limits of the com-
ponent factors.
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We derive from field theory a formula that expresses the discontinuity of any multiparticle
scattering function across any normal threshold cut in terms of specified limits of scatter-
ing functions for other processes. The special case that expresses any inclusive cross section
as a discontinuity has been used extensively in recent work on high-energy processes. Other
cases of the general formula also appear to have important implications, which are briefly
discussed.

I. INTRODUCTION

Recent studies of high-energy processes based
on the work of Mueller have exploited a formula
that expresses any inclusive cross section as a

discontinuity in an appropraite multiparticle scat-
tering function. ' This formula is a special ease
of the general discontinuity equation displayed
in Fig. 1. We describe this equation in detail in
the next section. It has been discussed earlier


