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We analyze the growth rates of perturbations of the generic dust-filled Bianchi type-I cos-
mology (which exhibits anisotropy but not rotation). Anisotropy induces coupling between
gravitational wave and density modes and can enhance the power-law rate of growth of the
density perturbations. A maximum growth rate for pregalaxy perturbations is t ~3 (where t
is cosmic time), so that no conclusive solution to the galaxy formation problem is found. The
detailed structure of the flow of energy between gravitational wave and density modes and of
the growth of rotational modes (decoupled from other perturbations) is presented. We also
give a detailed discussion of the gauge-invariance properties of these perturbations.

I. INTRODUCTION

Following the pioneering work of Lifshitz' and
Lifshitz and Khalatnikov, ' several authors have
considered the problem of perturbations of iso-
tropic, homogeneous cosmological models. ' ' The
hope has been to find an instability leading to the
gravitational growth of perturbations analogous to
the Jeans instability' for stationary Newtonian sys-
tems. It is now well recognized that no exponential
(in time) growth of the Jeans type can occur in iso-
tropic models, but instead the growth is limited to
a power of the cosmic time t. For instance, in the
"flat" (k=0) dust (pressureless perfect fluid)
Friedmann"0-Robertson" "-Walker" (FRW) mod-
el, the rate of growth of the quantity 5m/w is pro-
portional to t"' (where 5w/w is the relative per-
turbation in the energy density, measured by a

comoving observer).
With the recent renewed interest' " in aniso-

tropic homogeneous cosmologies, it seems a nat-
ural step to consider perturbations in such models.
The generic strongly anisotropic model has the
property that in at least one direction there is no
expansion near the initial singularity. This is true
even though the over-all volume of the universe is
increasing because of expansion in other directions.
This lack of expansion in one direction can be ex-
pected to strongly affect the growth of perturba-
tions. We have found such effects, and find they
result in density growth which can be faster than
in the isotropic case. In some dust models of the
type considered here, 5w/so is proportional to t"
with v arbitrarily close to —,.

A power-law density growth as found here is not
spectacularly different from the isotropic case.
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Hence the problem of galaxy formation in isotropic
(FRW) models is not solved in any of our models,
strictly speaking. However, the more vigorous
growth rate exhibited here (which can yield rather
remarkably large net growths over a finite period)
may signal the existence of even stronger growth
of perturbations in more realistic models not yet
discussed in the literature. In this sense, our re-
sults yield hope and encouragement that the galaxy
formation problem will be solved within the clas-
sical context, in that exponentially growing small
perturbations might be found in such 'More realis-
tic" models.

The alternate viewpoint, in our opinion the view-
point much more likely to be true, accepts rather
modest t' growth rates as inevitable in any general-
relativistic cosmological model. The problem at
hand is then to reconcile the experimental fact of
the existence of galaxies with the slow power-law
growth rate. This problem is essentially un.-
changed between the isotropic and anisotropic
models.

Doroshkevich, Zel'dovich, and Novikov" have
given a discussion of part of the problem we con-
sider here. Their treatment concentrated on the
density perturbation and was based on a Newtonian
formulation of the expected behavior. Their treat-
ment gives very clear insight into the physics, so
long as the velocities associated with the perturba-
tion are small. This paper will concentrate on a
full relativistic treatment of the yroblem, showing
the effects of the density-gravitational-radiation
interactions, and discussing the relativistic gauge-
invariance problem (which does not arise in a non-
relativistic treatment).

II, GALAXY FORMATION IN ISOTROPIC MODELS

In an isotropic (FRW) model, an acceptable solu-
tion to the galaxy problem is a perturbation 6m/w

-10 ' at the time hydrogen recombines (at a tem-
perature of -2&&10''K). At this time the age of the
model is -3X10' years, and the horizon size holds
about 104 galactic mass in baryons. After recom-
bination, there is essentially no pressure to oppose
condensation growth and condensations the size of
clusters of galaxies (and presumably galaxies also
by fragmentation) form in -10' years. The t"'
growth rate for condensations in an FRW model
requires a time ratio of -10' for a 10' factor
growth in 6m/so, and a density contrast of unity is
usually taken as the onset of rapid collapse due to
nonlinear effects. The source of a perturbation of
magnitude 6'/w - 10 ', or of the growth rate which
produces this perturbation, is the galaxy formation

problem we discuss here. We note that a realistic
model, to take account of the observed isotropy of
the O'K microwave radiation, must be very iso-
tropic at and after the time of the last scattering
of the microwave radiation. '4 If, as usual, we take
this instant to be the recombination time, then an-
isotropy must have been small when the hydrogen
recombines: The isotropic t"' law therefore must
hold after that time. (We will always quote the
parameters appropriate for dust models, for sim-
plicity. )

A I'%%uq fluctuation on the order of the size enclos-
ing one galaxy (-10'0 particles) clearly cannot be
a random fluctuation. It is of course possible that
the random fluctuations occurred much earlier,
when there was time enough for a 6m/M perturba-
tion to grow from one of order 10 "to one of or-
der unity. This viewpoint accepts that the forma-
tion of galaxies is closely tied up with the begin-
nings of the universe itself, and that special. initial
conditions are necessary for the creation of gal-
axies of the size now in existence.

However, the initial singularity may be a chaotic
state, as the idea of Misner" suggests. The galaxy
formation problem then becomes one of finding
mechanisms which damp out all but the modes of
perturbation that lead to the observed scale of con-
densations. It is known, for instance, that aper-
turbation which has wavelength less than a horizon
size oscillates if the pressure does not vanish. "
In a realistic model, the damping processes of
shock waves, etc. are expected to reduce the am-
plitude of this oscillating wave. A perturbation
with wavelength longer than the horizon size, re-
gardless of pressure terms, grows until the hori-
zon has grown to in'elude it, since no restoring
forces have time to act until the horizon allows
communication. This perturbed region acts like a
dust FRW model, evolving independently of its sur-
roundings. Thus, if horizons exist, the galaxy for-
mation problem can be approached by a search for
the dissipative and damping mechanisms which
would select out particular condensation sizes. Re-
cent discussions of this type have been given by
Rees" and Peebles and Yu" and in references they
give.

A comment should be made concerning initial
conditions (that is, the spectrum of perturbations
which exist near the initial singularity) with regard
to the existence of horizons. Appeal is usually
made to the statistical fluctuation spectrum as a
function of the number, N, of particles: 6N/N
- N "'. When the region under consideration is in
good thermal equilibrium (in which case the region
must be smaller than the horizon size), we can
reasonably expect fluctuations of such a spectrum.
But, if the region is of a scale much larger than a
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horizon size, we can take one of two viewpoints.
If we assume the universe is in fact uniform even
on a very large scale, then probabilistie arguments
still lead to the estimate 5N/N N-"'. However,
on such a scale, where there is no causal contact
between parts of the region, there is also no justi-
fication for such a uniformity assumption. The
perturbations on a scale larger than a horizon
scale ean be very large, and it is possible that a
new range of variation is continually brought into

play as the horizon expands (the chaotic cosmol-
ogy).

Even with regard to the question of fluctuations
within the horizon size, there is no justification
for an assumption of thermal equilibrium. Ther-
mal instabilities can play a very important role,
resulting in perturbations much larger than the
statistical perturbations 5N/N - N '". These in-
stabilities may dominate gravitational effects at
later stages of the universe. We will not consider
such perturbations, but only adiabatic ones, in
which gravitational processes are dominant. As
mentioned above, a reasonable model can have
been strongly anisotropic only very early in its
history, in accord with the isotropy of the black-
body radiation observed now. Hence, the thermal
instability effects which come into play during the
large anisotropy phase of the universe ean typical-
ly occur only on a very small length scale, since
they can operate only within the horizon size. The
one exception is the special model which has no
horizon in some direction. In this case, thermal
instabilities could be very important at all epochs
in its history.

III. THE ANISOTROPIC MODEL

The anisotropic background model we use is of
the Euclidean-homogeneous (Bianchi type-I)
form'4'25

ds' = ——d~'+e'"e'~. dx'dx'
$$y

(3 &)

and we work in the coordinate basis (dr, dx').
Here n = a(v), and P, , =P,,(7') is a 3x3 diagonal
traceless matrix which describes the anisotropy.
The function y =y(T} is redundant and can be elim-
inated by changing the time coordinate to cosmic
proper time I,, defined by

dt =y-'"dv. .
The function y is useful in understanding how equa-
tions behave under time-variable transformations,
however, and we will keep y in the formulation.

The unperturbed field equations are given in the
Appendix. Here we merely present the solution.

The dust background model (cosmological term
A =0) obeys

P, ) b(-) u+c;q, (3.2)

with b, , and c,, traceless, diagonal arrays of con-
stants. Here u is related to the proper time by

du=e 3 dt, (3.3}

and the function a obeys

wp
e 3a™= — sinh- bu

3b
(3.4a)

(3.4b)

Here
j.

b =Sb,-,.b,.~, (3.5a)

and w p is def inc 1 by

Tpp w w pe '", wp constant (3.5b)

giving the B 3=e '"behavior of the energy density
for dust. The integration constants are chosen in
(3.3) and (3.4) so that u = -~ when t =0, while u = 0
when t =~. The Tpp Gpp Einstein equation gives
the behavior of the density w:

3e -80' b2 (3.8)

t+—
~ (3.'|)

This constant determines the epoch at which mat-
ter becomes dominant over the anisotropy in deter-
mining the expansion and is invariant under scale
changes.

For each of the three eigenvalues P,. of the anisot-
ropy matrix, we have

(3.8a)

where

sq ——b, ,/b, (3.8b)

and the constants c,-& have been set equal to zero

Equations (3.4b), (3.7), and (3.8) below show that.
except for an over-all scale factor in e which can
be adjusted by a spatial coordinate (scale) change,
the only constant entering the average expansion of
the background model is the combination

t, =4b/uto.
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by a spatial coordinate transformation. The pa-
rameters s,. determine the shape anisotropy of the
model. They obey

our background model moves along lines x' = con-
stant. Hence, the coordinate size directly mea-
sures the amount of mass contained within a hori-
zon. The proper horizon size is related to II, by

Sz +S2 +S3 =6
~ s~+ $2+$3 =0 ~ (3.9)

H~~=R, H, (no sum). (4.2)

Near the initial t =0 singularity, the background
model is very anisotropic. At these times, t&&t„
the over-all expansion in the different directions
is governed by

R =—e"e~

cc t '+'~ ~' (asymptotically as t-0). (3.10)

Equations (3.9) require that the s, , if labeled in
order of increasing size, obey

2~&$ ~& ] ~&$ ~&] ~&$ (3.11)

(We will use other, more convenient, orderings of
the s, in the remaining sections of this paper, )
We see from (3.10) that, except for the case
s, = (-1, -1, 2), there is always a direction in which
there is actually conA'action in the early anisotrop-
ic model (t«t, ). In the case s, = (-1, -1,2) and in
the case s,. =(-2, 1, 1), the models are axisymmet-
ric; and the perturbation scheme is simple to deal
with, as we shall see below. The case s,. = (-2, 1, 1)
has an extreme blue shift (rapid contraction) in one
direction. This case and the case s,. =(-1, -1,2)
limit the behavior of computer-generated results
for general s,

The integration defining H, cannot in general be
performed in closed form. However, it is clear
that horizon sizes can be arbitrarily large, for
certain directions at an early epoch. " For a direc-
tion with s =2, in the particular axisymmetric
model which admits this value, the integral defin-
ing the horizon diverges at its lower limit. Follow-
ing the discussion in Sec. II, we then expect there
will be no growing modes (since every wavelength
lies within the horizon); and we shall see in our
discussion below that this is in fact the case.
Waves with the same coordinate size (hence span-
ning approximately the same amount of matter)
will become oscillatory at vastly different times,
if their direction of propagation is different, in any
one particular model, because of the wide range of
horizon sizes possible. We will verify this direc-
tional effect in the next section and will see that
we are correct in our implicit assumption in the
statement above; that it is the horizon size in the
direction of propagation of the perturbation which
determines whether the perturbation is oscillatory.

V. THE PERTURBATION EQUATIONS

IV. HORIZONS IN ANISOTROPIC MODELS
Our perturbation scheme uses a frame with

Q gp Ot 0 so that perturbed metric can be writte n

H& =:~' —(t =proper time)

~

~

t
-ne-8 ~dt

0
(4.1)

The coordinate size is relevant because the dust in

In the discussion of isotropic models, it was
pointed out how crucial was the role of the horizon
in determining when the growing phase of the per-
turbation stops and the oscillatory phase begins.
Growth continues for all perturbations of size
larger than the horizon size, but can be slowed or
reversed by pressure or other effects when the
horizon size becomes larger than the perturbation.
The formula for the coordinate size of the horizon"
in the anisotropic model with metric (3.1), in the
i th coordinate direction, is

1
ds = — d7' +e' "e'8 (g~ iP~ )dg~dxij l

It is assumed that

e28 I g ea8ij l lj (5.2)

The gauge freedom still allowed will be discussed
below.

The detailed calculation of the perturbed field
equations is found in the Appendix. In this paper
we will deal exclusively with dust perturbations of
dust models, although formulas are given in the
Appendix for general fluids. In isotropic models,
the absence of pressure means that perturbations
do not oscillate (no restoring forces) even when the
scale is smaller than a horizon size. In our aniso-
tropic models, there is a coupling between gravita-
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tional waves and density perturbations. This has
the effect of giving an oscillatory character to the
density perturbations once they are within the hori-
zon size, with the curvature providing the springi-
ness even if the pressure vanishes. Hence our con-
sideration of only zero-pressure models has most
of the qualitative features of a model with pressure,
but the mathematics is simpler because the sound-
wave modes do not enter.

The perturbed Einstein equations, Eqs. (A11)—
(A13) in the Appendix, are Fourier analyzed to turn
them into ordinary coupled differential equations.
When a particular wave vector k, is singled out,
the perturbation h'& is

k',. (x) v ) = i). ', (v.)e"."' (k, = constant) . (5.3}

(V ),. ~ es)))))~R~)),

where (V ), are the transverse Fourier-trans-
formed components of the perturbed velocity:

(V,),k, =0,
and 0 is defined by the equation of state

p = &rw (v=0 in the case of dust).

These transverse velocity components determine
the rotation uniquely, and these components are
decoupled from all other perturbed quantities and
from each other. The longitudinal component of
velocity, in dust models, is constant:

V,.k, = constant,

and can be set equal to zero by an infinitesimal

The sum in the exponent is over three spatial di-
mensions, and k„k„k„are considered three time-
independent constants (no metric enters the sum
k,x'). All quantities appearing in the equations are
Fourier analyzed in this way.

An analysis of the equations of motion shows that

coordinate transformation. This transformation
amounts to a gauge transformation. All the gauge
freedom in the "physical modes" of the problem,
i.e., the density perturbation, the wave perturba-
tions, and the rotation, are fixed by the choice
V,.k,. =0 which we make. (See Appendix. In partic-
ular, the rotation is gauge-invariant. } There is
some gauge freedom remaining to be specified, as
we shall se in Sec. X when the complete perturbed
metric is reconstructed.

In order to simplify the analysis at this point,
we shall assume that k,. is an eigenvector of b,~.
Since the matrix b,.~ is diagonal, this states that k,
has only a single component, which we convention-
ally call k, in the remainder of the discussion. We
denote by s, the value of $ in this direction, and we
no longer constrain $, to be the largest of the $,.
Thus, $3 has the range -2 &$3 2.

We sketch the derivation presented in the Appen-
dix. With the gauge fixed, and the choice of wave
vector k =k, only, we define gravitational waves in
the usual way as the transverse-traceless part of
the metric perturbation. " The result is a 3x3
traceless symmetric matrix with vanishing (i, 3)
components. Of the two linearly independent com-
ponents of this matrix, one polarization mode of
the radiation [that described by the (1, 2) perturbed
metric components of the metric] is completely de-
coupled from other perturbations and evolves free-
ly in the background geometry. This decoupling is
a result of our assumption that only k, is nonvan-
ishing. For general k,- both radiation polarization
modes will be coupled to the density perturbations.
However, it is useful, in fact, to have-the free
wave available as a standard solution to which the
coupled waves can be compared. (The waves of
both polarizations are decoupled in isotropic mod-
els. ')

The remaining perturbation equations, then, re-
duce to two coupled second-order equations, for
the density contrast 5 =5M)/so, and for q, the vari-
able describing the coupled gravitational waves.
These equations are

OEK f )(f+t~) + ~s~ t~ ) 2+ (FK t ) 3 tq+ ~ (2t+tq) +tq2ss' 2t t+t, dt

t 2

)(t+I,) )Ew t ) — )s)5= —, (s, —',s,))),le t ) —', s—,(,—' n+ —(t+t, )3t t+t,

(5.4)

and where

df~ t(t+t, ) dt ' 2 t(t+t~) dt ' K-=k, (-,'w, ) "' (5.ea)

(5.5) is the "scale-invariant wave number. " (That is,
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E is the wave number invariant under changes of
scale n - o, + constant. ) Also

(5.6b)

(notice that FK' = k'k, ). These equations cannot be
solved analytically, in general.

The two equations (5.4) and (5.5) can always be
combined into a single fourth-order equation except
in the axially symmetric cases when the coupling con-
stant s, —s, vanishes, and which we consider sep-
arately below. This is a profitable procedure only
in the limit t« t„ in which case the coefficients
simplify considerably. In particular, as t-0, we
find F&'tm-0. From (3.10), (4.1), and (4.2), we
see that II~~ t if s,.42. Hence, the limit FK't'-0
implies ksk, (H~3)'-0, i.e., k+, -0 (since k, and H,
have opposite scale properties). In the following,
we will write the product k,H, as simply kH. (The
limit kH-0 means that the wavelength exceeds the
horizon size for small t. This is always true suf-
ficiently near the singularity, for nonaxisymmetric
backgrounds, with s, vs, .) The general solution to
to the fourth-order equation can be found explicitly
in this case. In particular, for the dust density
contrast, we find

5 =—+B+Ct ' '3 ' 1+Din-
t tb

A, B, C, D constants. (5.7)

The "wave", described by g, is not oscillatory in
this limit, but is a sum of simple power laws ob-
tained by inserting the roots given here for 5 into
(5.5).

By comparison, the solution for the dust pertur-
bation in an isotropic background is

+~t' =/'v ' '+~'v' '
t (5.8)

where v is the volume element.

Although this result was derived in a scheme with

only k, +0, it is valid for general 0, , since the lim-
it kH«1 removes all k dependence from the solu-
tion. For general k, , s, in (5.7) must be replaced
by the constant

b,,k, k,

bk, k,

and the 3-direction is defined to be the propagation
direction. This directional dependence of the most
rapidly growing modes is induced by the anisotro-
py, so that the background geometry dictates the
growth rates in an anisotropy-dominated approxi-
mation. The directional dependence appears in the
term t'&' 's~~' in (5.7).

The growth is most rapid when the 3-direction is
such that s, ~ -1. As can be seen from (3.10), this
inequality implies contraction in the 3-axis direc-
tion (i.e., the propagation direction). On the other
hand, the universe is expanding in those directions
for which s& -1, and the growth rate is lower in
those cases, being lowest for that direction with
the largest s. If the value of s is close to 2, the
growth rate approaches its minimum value, i.e.,
no growth at all.

When considering the combined fourth-order
equation, the values s,=+2 are excluded. In these
cases the coupling constantbetween waves and density
perturbations is zero as (5.4) and (5.5) show. One
would guess that the most rapidly growing density
contrast should be found in the direction for which

s, = -2 (but s, not precisely equal to -2). However,
it turns out in computer calculation ' that the cou-
pling is then so small that in many cases (depend-
ing on the time interval under consideration) the
larger coupling constant associated with s, g-2
gives a larger final density contrast despite the
smaller exponent in the power rate of the density
contrast 5. The role of the coupling constant is
discussed further below.

The dust-filled model with s =(-W3, 0, v 3 ) illu-
minates the importance of the directional effect.
According to (5.7), the maximum growth rates of
the density contrast corresponding to the axis
di.recti.ons gi.ven above are t"' t'33 and to'8
respectively. We choose the anisotropy parameter
t, equal to 300 yr and the scale-invariant wave
number K=10 yr ' ', which corresponds to a wave-
length A. -10' ly (ly = light-years) at the present time,
t= 10'o yr. The quantity kH reaches the value 1,
and the oscillatory behavior begins in the three
directions, when respectively t =18 yr, t =0.3 yr,
and t = 10 "yr. At the time t = 10 "yr, the aver-
age growth rate in the third direction, t ', drops
further from this already low value. This oscil-
latory transition occurs 18 orders of magnitude in
time earlier than the transition for the mode which
starts out at the highest rate t' '.

VI. THE DIRECTIONAL DEPENDENCE

OF DENSITY PERTURBATIONS
VII. THE AXIALLY SYMMETRIC CASES

The solution given by (5.7) depends on the direc-
tion of the wave propagation vector, since s3 enters

The axially symmetric cases with s, = s, and s,
=+2 are especially simple. The waves and the den-
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sity perturbations are uncoupled because the cou-
pling constant s, —s, is zero for waves traveling
in the symmetry axis direction.

Equation (5.4) has the following (exact) solution
for the density contrast in the model universe with

s, =2, for momentum vector k,. in the 3-direction:

5t~ (t+ t ~)
5 =—+B +3Kt+ tb

(7.1)

For large values of t (t» t~), this result is identi-
cal with the isotropic solution (5.7). However, for
t« tb, the differences are pronounced and there
are no growing terms. For a long wavelength, k,
=0, we find an approximately constant mode, but
if k, @0, all modes are dying in the limit t« tb.
The value s, =2 defines the direction of infinite
horizon size, and the density perturbations with
wave vectors oriented in this direction do not grow
at all when t« tb. Statistical fluctuations associ-
ated with this infinitely long communication chan-
nel are possible, but these fluctuations would not
grow. A small change in the wave direction would
not change the situation considerably, since the
coupling constant s, —s, would be small.

The other axisymmetric universe (s, = -2) offers
an opposite example. If the wave vector is along
the symmetry 3-axis, we find

5t t 5/3
0 — +B ——+3K

t+tb t t+tb (7.2)

VIII. BEHAVIOR OF SHORT-WAVELENGTH

PERTURBATIONS IN ANISOTROPY-
DOMINATED MODELS

The solution (5.7) for the behavior of 5 near the
singularity was obtained assuming both anisotropy

The roles of t and t+t, are interchanged (as is the
sign of t, /t) from (7.1). Here we have in the ap-
proximation t« tb a growth rate of k,'t' '. Conse-
quently, a short-wavelength mode grows faster
than longer ones. The constant A can be so chosen
that the term A/(t+ t, ) cancels the negative contri-
bution of -Bt~/t at some early time to result in a
positive, growing density contrast 5.

In the coupled case (s, A+2), the behavior of the
density contrast 5 is more complicated than in the
axially symmetric solutions. The two modes of the
density contrast have to behave (in some limit, at
least) like solutions (7.1) and (7.2) do, and an esti-
mate can therefore be made of the form of the
most rapidly growing term. This estimate yields
the function t ' ' 3+ constant in an anisotropy-
dominated limit (small t), which agrees with (7.1)
and (7.2). .In the next section, we will find under
what conditions this estimate is close to the actual
solution.

dominance, t« t„and that the wavelength is larger
than the horizon size, kH«1. It is possible to con-
sider an intermediate regime in which the back-
ground model is still anisotropy-dominated but the
wavelength is short enough to fall well within the
horizon size: kH» 1.

As g and 5 are coupled, it is clear that their be-
havior is neither purely oscillatory nor smooth
and slowly varying. We expect that in the very-
short-wavelength limit, both g and 5 will be oscil-
latory. At longer wavelengths, 5 loses the super-
imposed oscillatory character. In general, we find
the "wave" quantity q represents the more oscilla-
tory modes, whereas 5 represents smoother
modes.

We proceed by making use of an averaging pro-
cess, similar to those proposed by Brill and
Hartle" and Isaacson. " We average (5.4) over a
short interval of time, but over many wavelengths
with a smoothly varying weighting function. We
assume that the average value of the wave is ap-
proximately zero:

(q) =0.
Computer calculation" shows this is a fairly good
approximation for short wavelength. The assump-
tion kH»1 implies I'K't'»1. Because of this, in
this limit (5.4) becomes independent of wavelength
and is simply an equation describing 5. This equa-
tion shows that 5 has an over-all period of order t,
the high-frequency parts being averaged out by the
averaging procedure.

The averaging procedure brings the right-hand
side of (5.4) approximately to zero. On the left-
hand side, the slowly varying coefficients are ap-
proximated according to the assumptions t« t„
EE't'» s,'. The averaging yields a simple equa-
tion

(8.1)

Generally, (d/dt)(5) is equal to (d5/dt) (because
the weighting function is slowly varying), and we
can solve (8.1) for (5). The solution is

(5) o- t ~' "3 '+ constant (kH» 1, t« t„) .
(8.2)

The procedure which averages the right-hand
side of (5.4) to zero yields a decoupled equation
with solutions similar to (7.1) and (7.2). Although
we can see that constant terms such as in (8.2)
may eventually become negligible [as will the de-
caying terms, similar to the A, term in (7.1)], we
keep them to accord with possible numerical re-
sults.
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It must be emphasized that (8.2) is a short-wave-
length approximation. For longer wavelengths,
but still in the large-anisotropy approximation, we
expect the solution to go over to the solution given
in (5.V) for waves with kII«1. The averaging con-
ditions assumed to obtain (8.2) are less accurate
for longer wavelengths. In fact, (8.2) fails com-
pletely near kH =1, since the oscillatory behavior
does not occur for perturbations larger than the
horizon size.

Eventually, the model will evolve to the isotropic
regime (t» t,) and the power-law growth of (5.8)
will hold, since in this limit the coupling between
waves and density, which contains (s, —s2) as a
factor, vanishes.

Doroshkevich, Zel'dovich, and Novikov' derive
the density contrast in the anisotropic approxima-
tion using the time development of the volume ele-
ment and a Newtonian analysis. They give as their
main result the two power laws I, ' and
t ~' "& ', as found here, in the large-anisotropy
regimes with kH«1 and kH» I, respectively.

properties of the metric,
, (A49), give

q, =q- —2g,-,F (9.3)

(l 1 i 2) 2 (0 1+I 2)P33

= -(P„—P22)1l+2m V~/k . 3

as the gauge behavior of q, (Here E' is a constant
number, the Fourier amplitude of the spatial gauge
function; see Appendix). Comparing (9.3) with
(9.2), we see that a change in gauge merely
amounts, as far as q,. is concerned, to a shift in
the lower limit of the integral (9.2). Recalling that

q, is'orthogonal to k„we see that, in fact, two of
the three F' may be fixed (i.e., E' and E') by a
choice of the integration constant to,. appearing in
(9.2). We shall, however, temporarily assume a
general gauge, and not make such a choice.

From (9.1) we see that l1 = sk'k, + Sr, while p, 33

= sk'k, + x Hence, p, ', + p, ', = 2~ We use this fact
and insert (9.1) for l1'3, so that the 6» = T» per-
turbed equation, (A36), becomes

IX. RECONSTRUCTION OF COMPLETE

PERTURBED METRIC

p', =p', +-,' (q'k, + q, k')+ sk'k, +r5'„ (9.1)

where p', = q'k, =p'~k, =0.
A straightforward calculation shows that the solu-

tion of (A37) is

q, =-410,(V~),(k3) 'e' e' 1

The analysis so far has concentrated on the
"physical" quantities associated with the perturba-
tion equations. We have discussed the density con-
trast 5, the rotation V&&k& j, the coupled gravitation-
al waves [q= —,'(p. ', —p, 22) in our case when k,. has
only a S-component], and the decoupled wave gf
= p. ', . These quantities clearly are not sufficient to
specify the metric completely. However, a com-
plete specification can be obtained in the form of
time integrations involving these dynamical quan-
tities. This is done by means of the perturbed Gpf
= T«eq tui an o(As36) and (A37) in the Appendix.
Initially, at least, in this section we will work in

a general gauge (which, however, has g2„=0). As
is usual in these problems, we expand p', [see
Eqs. (ASS)]:

(9.4)

(Here, as before, 2q=p, ', —p, 32.) At this point, it
is well to investigate the gauge properties of this
equation. Using (A48), we find [L and It refer to
the left- and right-hand sides of (9.4), L and R the
gauge-transformed sides]

L =L+2FO(2H —P„)—SF3(2n —P3,)P„, (9.5)

while

It =R —230F3k3-F3(P„- P„)'. (9.6)

e-(3/2)333(~1 + ~2 )

~t
e -(3/2) 833

The gauge terms are written in (9.5) and (9.6) in
the order they arise in (9.4). The quantity F2 is a
constant, the Fourier amplitude of one of the gauge
functions. For more detail, see (A47). The com-
bination 2E,(-P33-3d.P33) vanishes in view of (3.2).
The remaining gauge terms then are equal on the
two sides of (9.4), in view of the zero-order field
equation (A2) + (AS).

Equation (9.4) can be integrated directly:

(9.2)
f't

x J~ e '"e'3„e'31dt (no sum).
tot

(In this section we work in terms of proper time t;
the dot indicates d/dt. ) The gauge transformation

x[22ey3k3 '-
2 (p» —p22)(p', —~'2)]dt.

(9.7)

The lower limit in (9.V) is determined by requiring
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the solution have the gauge properties appropriate
to the quantity g', + p, ', . If a gauge transformation
is performed, it is found that the term arising
from the left-hand side is, in fact, the antideriva-
tive of terms which arise under the integral, using
the known transformation properties of V, and q.
[This is true only in virtue of the zero-order field
equation, (A2)+(A3). ] But on the right-hand side,
the gauge terms give rise to the antiderivative
evaluated at the limits of integration. To get equal-
ity of the gauge terms, we thus must choose the
lower limit so that the antiderivative vanishes
there. A glance at (A2)-(A4) shows that ~ is the
proper (and only) choice. We have a curiously dis-
tinct situation from that found above for the q,
The general solution of a gauge-invariant equation
does not have the proper gauge properties unless
a particular value for the integration constant is
chosen. [Recall that in the solution (9.2), picking
a particular gauge picked out the particular inte-
gration constant. ]

We have now essentially completed the construc-
tion of the metric, once the gauge is known. From
the equations of motion, we obtain, for dust (see
Appendix),

gauge-invariant. The gauge invariance is straight-
forward to explain. The usual expression for the
gauge properties of any tensor T,

T T=T —Z(T

(where Z~ indicates the Lie derivative with re-
spect to the gauge field $), shows, when expanded
out order by order, that the nth-order perturba-
tion to T depends only on the gauge to the n-m —1
order, if the first m orders of T vanish. Hence,
the first-order rotation is gauge-invariant, be-
cause the unperturbed rotation is zero, while the
second-order rotation discussed in this section
depends only on the first-order gauge.

That rotation is decoupled from other perturba-
tions to first order can be understood by consider-
ing the kinematical equation giving the evolution of
the rotation (for dust):

~us, ou = (~so.n+~au. s)u

(10.1)

5 = ——' p. + V,.k&g'~dt+ constant. (9.8)

[This is simply the equation curl(curl u) =0."]
The rotation tensor is a skew-symmetric tensor
satisfying

P = p. —2EO J ksk'dt+ 6Eoa. —2E sk„ (9.9)

Since V, = constant for dust, (9.8) gives p, = g', + p',
+ass in terms of 6. A particular choice of V, [the
only component to enter (9.8)] fixes the gauge for
the quantities 6, q, q&, Q,.z, and (g', + p, ', ) and can
be thought of as fixing Eo [see (A51)]. The general
gauge transformation law for p, ,

QJ~BQ = 0 ~
8 (10.2)

Because (10.1) is homogeneous in v„s, the rotation
to any order solves an equation involving only
quantities of lower order. This circumstance al-
lows us to obtain the rotation to second order. In
this section, we assume a general gauge (with 6g, „
=0) to first order. The (Oi) second-order compo-
nents are obtained directly by writing (10.2) out in
terms of components:

shows that even with F, fixed, it is possible to
change the constant in (9.8); a choice of the value
of the constant amounts to a choice for F'. Final-
ly, we have seen that the gauge amplitudes F ' and
F2 have been fixed by choosing the constant to,. in
the two equations (9.2).

To reconstruct the metric, our computation of 5,
with (9.8), gives p. . Also, q=-,'(p, ', —p, ', ) and g~
= p, ', are known. From (9.7), we find p', + p.'„
and, finally, (9.2) gives p, ', and u', . The entire
construction of p, ~, is then complete, and the met-
ric perturbation k', is found by use of (5.3).

(10.3)

Because in zero order both the rotation and the
spatial components of the velocity vanish, (10.3)
gives

(10.4)

Since u0=1 (through first order) if proper time t
is used, so that y= j., then

(10.5)

X. ROTATION TO SECOND ORDER

We have already mentioned' that the rotation ~,.~
is decoupled from other perturbations and is

We have written out the right-hand side of (10.5)
to show the explicit time dependence. (Both the
first-order rotation e~~&~ and the first-order spatial
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velocities 5u,. are constant in time if the back-
ground model contains dust, although they may be
position dependent. )

To obtain the components m, ,'. , it is necessary
to expand (10.1). We find

+ab', 0= 2 e e cd[5+a,a 5 b,c 5~a,b~a, c]

(i) -20. -28, 5ude e (10.6)

Again, the only time dependence is via the zero-
order metric, so this equation can be straightfor-
wardly integrated to give

(u'&=A + ~e '"e" dtab ab cd

&& [2 %la a5Qb c —2 5@a b5Qa c —(d b 5l4a] ~

(10.7)

where A„are antisymmetric functions of x ' only.
It is straightforward to check that (10.6) is gauge-
invariant. The gauge properties of the solution
(10.7) show that the arbitrary functions A„may be
chosen as the integration constants in the solution
in one particular gauge as indicated. These func-
tions then change, however, under a first-order
gauge transformation.

It should be emphasized that no use was made in
this section of the Fourier-transform technique.
Therefore the specialization of the wave vector to
0, =(0, 0, 0,), which we setpreviously, was not
done here. The results here are completely gen-
eral.

XI. CONCLUSIONS

The calculation of perturbation growth rates in
an anisotropic cosmology presents enormous tech-
nical difficulties. The major physical reason be-
hind these difficulties is the coupling of density
perturbations to gravitational waves. Further
complication may be expected if a background mod-
el with rotation were chosen, and the use of such
a rotating background (for example, a Bianchi
type-IX model'7") should be expected to yield im-
portant new clues as to the evolution of proto-
galaxies.

The growth of density perturbations in the non-
rotating, anisotropic, type-I models discussed
here demonstrates the flow of energy between
gravitational waves and protogalactic conglomera-
tions. Detailed results from numerical calcula-
tions will be presented by one of us separately, "
but they bear out the analytic approximation re-

APPENDIX

The unperturbed metric is

1
ij (A1)

suits presented in the present paper. The net ef-
fect on the growth rates of a density perturbation
is to modify the power law exponent. The growth
rate in an isotropic (FRW) dust model is f'i', and
in the anisotropic models can be from t to t' ',
depending on direction and on the model, t being
cosmic time.

Although no spectacular change in the power-law
exponent is seen, the total effect on a density per-
turbation, integrated over a suitable cosmic epoch,
defined by the growth of the horizon, can be enor-
mous.

The calculations presented here are for dust,
and the only stop to the growth of a perturbation is
due to the stealing of energy by gravitational radi-
ation. In a fluid model, pressure provides another
source of springiness to stop perturbation growth
(and make it oscillatory), but this mechanism
comes in only when the horizon size is large
enough to allow communication via sound waves
among all parts of the perturbation. Here this
growth phase is limited by the outflow of gravita-
tional radiation (due to the anisotropy-induced cou-
pling to density modes), and an additional limit
can be imposed by stopping calculation when the
horizon size becomes too large.

The calculations here and elsewhere" presented
are expected to be valid up to the time the horizon
size is large enough to include pressure effects.
The integration time for the growth of perturba-
tions is thus roughly proportional to the horizon
size in a particular direction in a particular mod-
el. It is found that those directions with the larg-
est horizon (longest growth period for density per-
turbations) have the lowest coupling between grav-
itational waves and density modes, and have the
slowest power-law growth rates. Medium-length
horizon distances, however, do show, in numeri-
cal results, "a large enhancement, due both to in-
creased power-law rate of growth due to gravita-
tional wave effects and to increased growth period,
over the isotropic case.

No solution to the galaxy formation problem—
that of providing a density contrast of 5-10 ' by
the hydrogen recombination time t-3&&10' yr —is
claimed. The growth rates calculated here are
simply not high enough to support such a claim.
However, the effects here discussed do suggest
that further investigation —especially of perturba-
tions of rotating cosmologies —is desirable.
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where w 0+3& 0(w+p) =0~ (A6)

r = r(7), o' = o'(&), P»» = P»»(7),

and where Po is diagonal and traceless: P« =0.
The functional form of either n or y can be spec-

ified by choice of time-coordinate 7. The zeroth-
order field equations are (, 0 = d/d7)

2r& = 2o»-,pyp 3ro—»... 3rc—»,0
—rP;&,OP;&,0

m =m e 3(~+~)
0 (A "I)

P = ow, a = constant. (A8)

In this case an important, although simple, class
of solutions results, with o. (u) being given by

e'»0 '~"~' = A sinh[(1 —a')-,' bu],

an equation which is equivalent to the Bianchi iden-
tity. This equation results in

= 2 (w+3p),

2
3 + I

= 2 ™.oy,o+ y™,oo+ 3y™,o

=2~(w P)~

(A2)

(A3)

A =constant, b =-, bah,.~.

The perturbed metric is

ds'= dr'- +—e'"e'8 (5' +h' )dx'dx',1

y
(A9)

28 8»08 ~ (A 0
—2g 0R 2)

= y OP»» o+ 2r&;» op r OP;» p

where the small functions h"& are functions of 7
and of x'

h', =I', (7, x'). .

We assume that
=0 (A4) 8 gs &2 8 gsis j ps i

Here w is the energy density; p is the pressure of
the fluid; and the unperturbed fluid velocity field is

uQ (yl/2 Q 0 Q)

The solution of (A4) is (3.2), where u is defined by

as required by the symmetry of the metric. The
(Op, ) components of the metric are not perturbed:

5g p=0. (A10)

Because of these conditions, the perturbation in
the fluid velocity is

5u =duo=0, 5u; is nonzero.

du = y 2e "dw.

From the field equations comes the relation

(A5) The first-order field equations are (w and p are
unperturbed quantities, Os' and 6p are the perturba-
tions)

g 5R~: -2 yphp —y(hoo+2o. oho+2PUoh»» 0) =5w+35P,

«0»: h'».Jo-h. »0-2&»». oh'»J+ A».oh';J+ A», oh, » Pp, oh'»0, »
=-2r "(w+-P)~u»

g 5ft»J ' 2 e e ' [h J +h j, e »e bhjph, J],+ 4 rph J,0+ 2 rh'», 00+2 rh, o(O», 05 J+~ J,o)'
(A11)

(A12)

where we have used the notation

+ 2 ya 0 h'; 0+ yP, , 0 h, 0
—yP2» 0 h'2 0

= 2 (6w —5P)5»,

(A13)

We make a Fourier analysis of these equations and pick out one particular wave vector k,. by writing

h', .(x, 7) =»», », (7)e"»", h, =constant,

6w =W(7)e»»",

6p =I'(7)e»'"",

ou, = iV,.(v.)e'2»*,

»» =»»'»(7).

(A14)
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The resulting field equations are ordinary differential equations, involving only functions of 7:

——,
'

y oij, 0
—y(g Op+ 2o. p»» 0+ 2y ' 'e '"b,j»» 'j o) = W+ 3P,

»j, ',.3k, —p. ok»+y 'j e 3"( 2-b, »ij'»k, ,+2b„»»», k, +. b,,pk, b,-3»j'3k, ,)=.-2y 'j3(w+P)V, ,

(& kjk»+ 9 k»'e a3e k k3lj j &k kj)+ 3 yo& ',0+ yo», 0»»*jo+»*;;0+ye». 3I».35'j

(A15)

(A16)

+y'j'e 3"(Ij3b,»j
—2b,jp», 3+2b,,p, 'jo) =(W —P)5'j. (A17}

k,-j-=5„.—k, k, (k,k,) '.
This operator has the properties

k,-,l, =l,. for any l,. such that l,k, =0.

It is numerically equal to the operator

(A19)

if k, is an eigenvector of P,j. This last operator,
although mathematically useful, is not in general
constant, whereas k,, is independent of time.

We use the constant operator k,.z first to define
the "perpendicular" components of V,.:

(U) =—Vk, , (A20)

Equation (A16) (projected by use of k,j) and (A17)
(projected by use of k,.kj3) together result in

p o( V,),.+ (w +p) ( V, )» 0
= 0 . (A21)

If (A7) holds, that is, if p=ow, o =const, then

Here we made use of (3.2) to write

P,-, ,=b,jy 'j3e. ~, b,, =constant. (A18)

To further analyze these equations, we use the
projection operator

O=y 'j3Pk, k, +P,U, k, +(w.+P)(U»k, )o.
In dust models, both I' and p vanish, so that

V,-k, = constant.

(A24)

(A25)

The constancy of V, k, in these models is indicative
of the lack of sound waves when the pressure van-
ishes.

Both (A21) and (A24) may be derived directly
from the first-order field equations, as we have
indicated. They are equivalent to the perturbed
Bianchi identities, however, and may also be de-
rived from them.

From Eqs. (A15)-(A17) above, or directly by
considering the perturbation of (A6), one obtains

4 58+ y' 3[e3"~"~~5w] =0,
3(1+o) 3P (A26)

where P=oW, P =vw, and the perturbed expansion
5e is

Thus (V,), determines Q... and it is in turn deter-
mined by Q,.J:

(U~)» = -2Q» jkj(k,k, )
~ .

The projections of (A16) in the direction of k,.
and of (A17) in the directions k,.k,. yield, after use
of (A15) and (A6),

(V ).~w ' '+' ~e3aa~g3a (A22) 58 = 5u' + —'y'
~ f 3 30 (A27)

(Here 8 = e" is the "radius of the universe. ") Thus

(V~)» is constant if a'=0 (dust).
The interpretation of (V~),. as determining rota-

tion comes from the definition of the rotation ten-
sor:

(d~p —=3 (»»8 ~ -»»~ 3)(5 p+»»»»~)(5 p+'l»»»p) .
The unperturbed rotation vanishes. The first-
order rotation has only spatial components and is
given by

(5»L»)»j 3 (»»j»»»» j),
The Fourier component with wave number k,. is
defined by

In the case of dust, we have V, =constant, and we
further can choose a gauge so that V, k, = 0. [See
(A51) below. ] The Fourier-transformed (A26) then
becomes

5=-W/w =--,' i»+constant, »»=a =0, V,.k,. =0.
(A28)

Further analysis of the field equations yields
coupled equations in several components of p, '&.

One of these components is decoupled if k,. is an

eigenvector of b,jand hence of .P»j. If that as-
sumption is made, then

(A29}

fk xS
(5(d)»j = $Q»je

and Q,.&
is given by

2 (Vjk» V»kj) 2 [('Vi)jk» (VI)»kj]

(A23)
[The c„.of (3.2) may be set equal to zero by a
zeroth-order spatial linear coordinate transforma-
tion; and we assume this transformation has been
carried out. ]

We define the following parts of p, '&.
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S
p, =p,

r—= —,
'

[p, —p, ',k,k, (k,k,) '],
q, =2p', k,k, ,(k,k e '"e ', ) ',
q q

——g, (k„k, , k„k.q) .

(ASO)

As in the text, we assume b,, to be diagonal and k,.
to have only a 3-component:

1+ P. 2+ jtL

r = -'(V ', + u', ),
q 2e2cte28 ~3 /k

q2= e pp& a/ks

q, =0,
q' =q =0

(A33)

(b,,) = diag(s, b, s,b, s,b),

with

S1+ S2+ S3 = 0,
s2 +s2 +s2 =6

b = constant;

(k,.) =(0, 0, kp).

Definitions (A30) become

(A31)

(A32)

1 1

1 1'0 -='0 1~ 9@='0 2 ~ (A34)

There are thus two algebraically independent com-
ponents in q, and two in q'&, these four plus p, and r
make up the six components of the p',. (which is
symmetric when the upper index is lowered using
the unperturbed g,&). We define

When Eqs. (A15)-(A17) are rewritten in terms of g, r, q, , and q'&, assuming (A31}and (A32), the result
is as follows:

Equation (A15) becomes

—p ypg p
—y(p pp+ 2n pp p)+ 2y'~'e s"b[(s, —s,)q p

—(s, + s,)p p+3(s, + s,)r p] = W+ 3P .

Equation (A16) breaks into two sets of equations:

(i = 3) r p
——,

'
y "e ' bs,r = y '~'(k, ) '(zv+ p) V, ——,

'
y '~'e ~bq(s, —s,)

and

(ie3) 2 q&p
—n pq, —bs&y '"e '"q, =-2y '~'(k, ) 2(w+p)(V~), e'"e'~» (no sum).

Equation (A37) gives a first integral of (A41} below.
Equation (A17) yields

5R, : 2e '"e ' r(k, )'+-,' y, p, p
—y r +p4pyn p, p6pyu pr+pyp „-2yrpp+y' 'e bs, p. p W P,

5R', +5RP, : e 2"e ' »(kp)'r+2 yprp+Syn prp+yrpp+yn pp p
—~ y ~Pe P"bspp p=W-P,

5R', —5R', : yq«+( —,'yp+Syo. p)qp+(k, )'e»e '"@+ay"'e '"p, pb(s, —s,)=0,
5R'& (je3): y(e '"e ' »q&)«+ [-, y +Spyo. p+2y'~'e '"b(s, —s&)](e '"e ' »q, )p=0,

5R', : e '"e ' (k,)'qz+ ,'ypq&p+Sy-n pqlp+yqf pp+2y'"e '"b(s, —s,)q&p=0.

(A35)

(A36)

(A37)

(A38)

(A39)

(A40)

(A41)

(A42)

(A43)(A38) -(A39) = 0,
and eliminate r «and r p. Then we form (A38}
+2(A39) (dot means derivative with respect to
proper time):

To obtain (5.4) in the text, set P =p = 0 and y = 1.
It is also necessary to use a particular (partially)
fixed gauge. As shown in (A51), V, may be set to
zero by a gauge transformation, and we do so in
the derivation of (5.4). Equation (A36) and its de-
rivative will be used to eliminate happ and rp in
terms of lower derivatives and of g. We form the
following equation:

ji+6u j+4e '"e . ' (»k)'pr =SW. (A44)

We multiply (A43} through by e '"e 's»(kp)' and use
(A44} to eliminate r. The resultant equation con-
tains j, q, W, j,, and ji but no undifferentiated
factors p. We can, therefore, use (A28) to elimi-
nate p. , rewrite in terms of 5 = W/se, and insert the
explicit time dependences from (3.4), (3.7), and
(3.8). The result is (5.4). Equation (5.5) follows
quite simply from (A40), by inserting y= 1 and the
explicit time dependences from (3.4), (3.7), and
(3.8), and eliminating j, in favor of 5.

In general, we see that q, is not coupled to the
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other metric perturbations, p, , x, g, and gf. Cou-
pling does appear if k, is not an eigenvector of b,&,

but as we have seen, the rotational perturbation
described by (V~), is still independent of other per-
turbations. We also see that gf is decoupled.
Again, coupling appears if k,. does not have the
eigenvector property assumed. From (A35), (A36),
(A38), (A39), and (A40), we see that p, , r, q, W,
and P are all dependent on one another, although

g becomes decoupled from the rest when s, = s,.
The metric perturbations described above are

not gauge-invariant. We have partially chosen a
gauge by the conditions

&oo= ~&o.- = o- (A45)

Four more gauge transformations are consistent
with these conditions, these being the infinitesimal
coordinate transformations

x"-xi' = x"+ g",

5gpv 5gp& 5gp&

(The semicolon denotes covariant differentiation in
the unperturbed metric. ) The g" consistent with
(A45) are

y"-f.(x'),
(A46)

g' = -f Jl y ' 'e '"e 's, dr+f '(x') .t

The four functions fo and f ' are functions of the
spatial variables x' only. The f ' correspond to
arbitrary infinitesimal coordinate transformations
in a fixed r = const hypersurface, and f, corre-
sponds to an arbitrary reshaping of the 7 =const
hypersur face.

The Fourier-analyzed forms of f, and f' are

f (xi) E eisa x~ f i(xi) Eieilta x~

E„E' const. (A4 t)

Their effect on p, ',. is

f
pi -pi =p* +E -uu y "'e ~e" dT-e" &e" & j"y '"e "e ",.dT+2y'"(~ 5' +P ). . .

-F~k —e ~ F e ]qkq. (A48)

The effects on p. , r, g, Of, and q, , when k, is an
eigenvector of P,, with only k, w0, are

P, =ii+2EO —(k,)' y 'i'e '"e ' "dv

Thus Eo and E' affect only the density and coupled
gravitational wave perturbations. The latter, q,
is gauge-independent when s, = s„as is qf no mat-
ter what s,. is. The two variables q,. are affected
by F', but the rotation is not:

+ 3y' 'n —2F'k, , (Vi);-(V,);=(V ); (A50)

r =r -Eo(-2y"oi, +bs, e '"j,
rl-q =q+b(s, —s,)e '"E„

Of Of Of P

q,.—q,. = q,. —2e'" e's, ,E' (i = 1, 2) .

(A49)

The effect of a gauge transformation on V, in a
dust model is

V3 Vs = V3 -E~k3 . (A51)

Since V, is constant according to (A25), V, may be
removed by fixing the gauge.
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