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in Eq. (9) and the residuals are not significantly
different within 3 of superior conjunction, but
then the corona effect can increase the errors in
the measurements to a significant level.

V. CONCLUSION

Relativistic effects in time-delay experiments
to transponders on radial trajectories in the field
of the sun have been estimated through a Newton-
ian best fit of the relativistic terms in the relativ-
istic expression of the time delay. For transpon-
ders moving toward the sun, the relativistic re-
siduals are of the order of 100 m and so, rather

difficult to detect. -For transponders moving away
from the sun, they are of the order of 5 km and
larger than the errors in the measurements. In
addition, the residuals in this case, due to the
second-order curvature of the metric (P), are of
the order of 1 km and also larger than the errors
in measurements. The residuals due to the in-
crease of the optical path for photons grazing the
surface of the sun are at a 2-km level except very
near superior conjunction (&+3 ). Except for the
last one, these estimates of general relativistic
effects as best-fit residuals are smaller than those
obtained by simple evaluation of relativistic terms
or from the divergence of relativistic and Newton-
ian predictions by orders of magnitude.
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It is shown that if the Hamiltonian constraint of general relativity is imposed as a restric-
tion on the Hamilton principal functional in the classical theory, or on the state functional
in the quantum theory, then the momentum constraints are automatically satisfied. This
result holds both for closed and open spaces and it means that the full content of the theory
is summarized by a single functional equation of the Tomonaga-Schwinger type.

It is well known' ' that the whole message of
general relativity is conveyed by the initial-value
equations, '

where

(3)

x„[g„;m"']=o,

x„'[g„;m "]= 0,

277 )~
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If Eqs. (I) and (2) hold on every three-dimensional
spacelike cut through a space-time, then such a
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When gravity is quantized by the Dirac method, '
Eqs. (1) and (2) become constraints imposed on
the state functional g,

'
2

(g (R)j ) ag(-, g») 5 5
+g'-)/2 1 0 (/2

(8)

In a closed space, Eqs. (6) and (8) are equivalent
to the statement that S and P are functionals of the
three-geometry only, i.e., they can be regarded,

space-time is Ricci-flat, i.e., it satisfies all ten
vacuum Einstein's equations. If one works in the
language of the Hamilton-Jacobi equation, ' then
Eqs. (1) and (2) translate -via the prescription
m

' —6S/5g»-into four functional differential equa-
tions for Hamilton's principal functional S, namely,

5X„ I, 5X„bv"(z)
bg(;(y) ~ 5v"'(z) bg;;(y)

where m (z) is an abbreviation for 5S/5g»(z).
Multiplying Eq. (9) by EfC„/57("(y) and integrating
over y, we get

(9)

for example, as functionals of the three invariants
of the characteristic polynomial of R'k. This con-
clusion is not correct in open spaces, when one
must also prescribe the "location" of the three-
dimensional slice at infinity. '

We shall prove now that, irrespective of whether
the space is closed or open, the three functional
equations (5) need not be imPosed seParately but
are a consequence of the single equation (5). The
quantum counterpart of this statement is also
true: Eq. (7) implies Eq. (8). The significance
of this result will be briefly discussed after the
proof.

The argument runs as follows (we treat the clas-
sical case first): The fact that the composite func-
tional X„[g,„.; 5S/bg»] vanishes for every g(~
[Eq. (5)] implies that its functional derivatives
also vanish. We have then

y Q~f) y g~kl g g~'tJ y Qg y Qg g

Next, we interchange the labels x and x' and subtract the resulting equation from Eq. (10) to obtain

«"(g) «'()') &)' (&)&Eli(V) ~EIJ()')))): (~))'

(10)

[X., X.]1.(= 5s/s„, =0. (12)

On the other hand, the Poisson bracket [X„X„J
can also be calculated directly, ' which gives

[X„,X„]=(X„'+X„',}5,(x, x ) . (13)

where [, ] denotes the Poisson bracket. Using now
the fact that the second variational derivatives of
a functional commute, Eq. (11) reduces to

1/
5S

)(,bg(, (x) ),
(16)

The momentum constraints in the form (16) are
thus integrability conditions for the Hamilton-
Jacobi equation (5).

The proof of the analogous result in the quantum
theory is even simpler. " One only needs to real-
ize that the equation

(17)
Now, we substitute into Eq. (13) the variational
derivatives 5S/5g„ for the momenta m" and, taking
into account Eq. (12), we get

implies that

(x„x„.-x„.x,)y =0 (18)

x
~

x (15)

for arbitrary $(x). Since g and g, can be adjusted
independently at any point, it follows that

2 6; x, x' + 5x, x' =0.5S 5S

5g(~ x )(g
'

5g(~ x
(14)

Equation (14) means that

and, due to the fact that Eq. (13) holds for commu-
tators as well as for Poisson brackets, it follows
that

(19)

by exactly the same reasoning that led from Eq.
(12) to Eq. (16).

It should be pointed out here that, in the quantum
case, different factor orderings for 3C amount to
different factor orderings for X' on the right-hand



968 V. MONCRIE F AND C. TE ITE LBOIM

side of Eq. (13). It is natural to adopt an ordering
for X which yields

X = -2m
g
-g (2g, s a -. g;a. , ) w

because only then is Eq. (19) equivalent to the
statement (8) that the state functional is invariant
under localized coordinate transformations [a good
ordering for X in this sense is the one given in
Eq. (3)]. Nevertheless, for any consistent choice
of factor ordering [i.e., such a choice that Eq. (18)
does not give rise to a new constraint besides
X'=0] our conclusion remains true: ~ =0 implies
X'P =0. Note also that in spite of the fact that we
have been using the metric representation (i.e.,
treating S and P as functionals of g„), this is by
no means necessary, and the implication X)=0
~X'g =0, or its analog in terms of the Hamilton
functional, holds irrespective of the representation
in which the equations are written.

The implication we have just proved has some
interesting consequences. First of all, it amounts
to a reduction in the number of equations from
4&& ~' equations (5), (6) to 1&& ~' equations (5).
Any solution of the Hamilton-Jacobi equation (5)
solves automatically the momentum constraints
(6). In a closed space, this means that the Hamil-
ton-Jacobi equation implies by itself that the func-
tional S which a priori depends on six metric co-
efficients g, &

is only a functional of three-geome-
try. A similar result holds in the quantum theory:
One can base the whole of quantum geometrody-
namics (modulo factor ordering) on the single To-
monaga-Schwinger -type equation (7), and one never
needs to worry about the additional constraints
(8), because they are satisfied automatically.

Secondly, the result presented in this note should
be further compared with the recent work of Mon-
crief" who has shown that the validity of the Ham-
iltonian constraint at one point x, together with
the'momentum constraints X„' at all points x, im-
plies that the Hamiltonian constraint holds at every
point. This amounts to a reduction from 4 x
equations X, =0, 3C„'=0 to 3&& ~' equations X„'=0
plus a single equation X„-=O.

Moncrief's results depend only on the fact that
X is a scalar density. They continue to hold if,

for example, the intrinsic curvature term in X
given by Eq. (3) is omitted (in which case the
theory is no longer general relativity). On the con-
trary, our result depends much more sensitively
on the detailed structure of the theory. If the in-
trinsic curvature term is dropped, the Poisson
bracket [X„,X„]vanishes identically, and our proof
breaks down. One sees therefore that the condition
X=0~X' = 0 restricts" very severely the form of
X and is precisely satisfied by the X of the general
theory of relativity.

Note added in proof. It can be shown on rather
general grounds that the structure of the commuta-
tors [X,X'], [X,X; ], [X„X,'] is exactly the same
for every parametrized field theory in a Riemann-
ian space-time, irrespective of whether such a
Riemannian space-time is a prescribed background
or is determined by the theory itself as in general
relativity. (By "parametrized" we mean a theory
in which the variables defining the 3-surface on
which the state of the field is given are treated on
the same footing as the field variables themselves. )
This result, anticipated by Dirac, "will be dis-
cussed in detail by one of us (C.T.} in a forthcom-
ing paper. It has the immediate consequence that
the conclusions of the present paper (and also the
related work of Moncrief") are valid for the grav-
itational field in interaction with other fields as
well as for field theories on a prescribed Riemann-
ian background.

One of us (V.M. ) established the classical (Ham-
ilton-Jacobi) theorem after studying its quantum-
mechanical counterpart given by Thomas. " The
other coauthor derived both theorems independent-
ly, unaware also of the related work of Moncrief. "
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We analyze the growth rates of perturbations of the generic dust-filled Bianchi type-I cos-
mology (which exhibits anisotropy but not rotation). Anisotropy induces coupling between
gravitational wave and density modes and can enhance the power-law rate of growth of the
density perturbations. A maximum growth rate for pregalaxy perturbations is t ~3 (where t
is cosmic time), so that no conclusive solution to the galaxy formation problem is found. The
detailed structure of the flow of energy between gravitational wave and density modes and of
the growth of rotational modes (decoupled from other perturbations) is presented. We also
give a detailed discussion of the gauge-invariance properties of these perturbations.

I. INTRODUCTION

Following the pioneering work of Lifshitz' and
Lifshitz and Khalatnikov, ' several authors have
considered the problem of perturbations of iso-
tropic, homogeneous cosmological models. ' ' The
hope has been to find an instability leading to the
gravitational growth of perturbations analogous to
the Jeans instability' for stationary Newtonian sys-
tems. It is now well recognized that no exponential
(in time) growth of the Jeans type can occur in iso-
tropic models, but instead the growth is limited to
a power of the cosmic time t. For instance, in the
"flat" (k=0) dust (pressureless perfect fluid)
Friedmann"0-Robertson" "-Walker" (FRW) mod-
el, the rate of growth of the quantity 5m/w is pro-
portional to t"' (where 5w/w is the relative per-
turbation in the energy density, measured by a

comoving observer).
With the recent renewed interest' " in aniso-

tropic homogeneous cosmologies, it seems a nat-
ural step to consider perturbations in such models.
The generic strongly anisotropic model has the
property that in at least one direction there is no
expansion near the initial singularity. This is true
even though the over-all volume of the universe is
increasing because of expansion in other directions.
This lack of expansion in one direction can be ex-
pected to strongly affect the growth of perturba-
tions. We have found such effects, and find they
result in density growth which can be faster than
in the isotropic case. In some dust models of the
type considered here, 5w/so is proportional to t"
with v arbitrarily close to —,.

A power-law density growth as found here is not
spectacularly different from the isotropic case.


