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along QD»v initially, so that QDS, xn&T =0, but it is
not as convenient to do this.

'4The equatorial orbit for which case sin(2e) =0 is of

no interest because Q&»~xn&& =0 as well as QDs avxn&T
~{g) ~{1)

~ D. C. Wilkins, Ann. Phys. (N.Y.) 61, 277 (1970).
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Time-delay experiments are analyzed within the frame of a curved space-time. Residuals
from Newtonian best fits of relativistic data are used as a measure of the "relativistic effects."
Radial transponder trajectories are considered. If the motion is towards the sun, the relativ-
istic residuals are of the order of 100 m. If the motion is away from the sun, they are at the
10-km level and the fraction due to the second-order curvature of the metric is at the 1-km
level. Those effects are significantly smaller than those calculated from the divergence of the
Newtonian and relativistic predictions after exact fit of the initial measurements.

I. INTRODUCTION

In preceding papers, ' ' time-delay experiments
performed from the earth to a natural or to an
artificial planet have been analyzed within the
frame of a curved space-time. In Refs. 2, 3, and
4, the method used is essentially the following: If
the motion has n constants of integration, it is as-
sumed that an equal number of time-delay mea-
surements are used to determine them, thus pro-
viding a perfect fit of hypothetical data at these
points. Then one calculates the divergence of
Newtonian and relativistic predictions for the other
measurements. These divergences are interpreted
as "relativistic effects. " In some cases, this
method gives results which are highly sensitive to
the particular and arbitrary choice of the measure-
ments used to determine the constants of the mo-
tion. The results can in fact vary by orders of
magnitude.

In the present paper, a best-fit-analysis ap-
proach is followed in an attempt to simulate more
closely the actual experiment. Essentially, one
examines to which extent relativistic effects in the
data could equally be explained within Newtonian
theory by appropriate increments to the constants
of the motion. More precisely a best fit of the rel-
ativistic terms in the relativistic expression for
the time delay is performed with increments to the
classical parameters of the expression. Residuals
from this best fit are "relativistic effects" which
cannot be explained in classical theory within the
limitation of the problem. Such residuals can be
compared with the expected accuracy of the mea-

surements for an estimate of the possibility of
determining the components of the curvature of
the metric and thus test general relativity and
other theories of gravitation.

This approach is applied here to time-delay ex-
periments carried from the earth to artificial
planets moving on radial trajectories towards the
sun or away from it. The results for this simple
model should suggest an upper limit to the order
of magnitude of the relativistic effects to be seen
on quasiradial sections of a "grand tour" trajec-
tory or of a very high eccentricity orbit of compar-
able energy.

For simplicity, it is assumed that the earth is
on a circular orbit and that the artificial planet
trajectory is contained in the ecliptic plane. Clas-
sical perturbations such as the oblateness of the
sun and the gravitational field of other planets are
neglected. Relativistic effects due to the rotation
of the sun (Lense-Thirring effects) are also ne-
glected (they are at the cm level or lower and un-
detectable at the present time). The field of the
sun is assumed to have spherical symmetry and
is described by a generalized metric. Thus rela-
tivity coriections for theories which absorb the
gravitational field in the curvature of space-time
and where test particles travel along geodesics
can be evaluated and compared.

In Sec. II, a solution to first order in GM/rc' is
given for the motion of a test mass along a radial
orbit. Previous results on the propagation of
photons and on circular orbits are also included.
In Sec. III, the Newtonian best fit of relativistic
data and the calculation of relativistic residuals
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II. MOTION ALONG A RADIAL ORBIT

In the present case where spherical symmetry
is assumed, it is convenient to describe the grav-
itational field of the sun by the generalized metric
as introduced by Eddington

y'
c'd7' = 1 —2o. -a +2P ~ ' c'dt'

r y'

1+2y ~ der

with

dv' =dr '+ r'd8'+ r' sin'8dg'

=Qx +6/ +48 (2)

ro= GM/c', o.', P, and y are dimensionless num-
bers. G is the gravitational constant, M is the
mass of the sun, and c is the speed of light. x, 8,
Q and x, y, z are the polar and rectangular coor-
dinates. I, is the time arid 7 the proper time. The
origin is at the center of gravity of the sun and the
orientation of the axis is fixed with respect to the
stars.

The quantities u, p, and y measure the curva-
ture of the space-time. o.'is set to unity so that
Newtonian theory is obtained in the zeroth-order
approximation in ro/r Pand y.are regarded as
quantities to be determined by experiments. Ac-
cording to general relativity, their value is unity.
Their value can be different in other relativistic
theories of gravitation. '

As usual, the relativistic predictions will be
evaluated to first order in (ro/r) only. Thus the
n, P, and y terms of the metric need to be re-
tained only.

The motion of photons and transponders is along
geodesics of the metric given in Eq. (1). If the
motion of the transponders is restricted to be in
the ecliptic (8 = v/2) plane and along a radial line
(Q„=const), the geodesic law of motion takes the
following form .'

TEAv-At=a ~( )(W -W, )+t,

for a bounded orbit (A& 0) and

T~ v'A. 't=+
~
—

( )(W —WO) +to

(3a)

(3b)

are discussed. In Sec. IV, time-delay experiments
to transponders moving towards the sun and away
from it are considered.

O(ro/r), -A is the classical ratio of the potential
energy to the total energy at unit distance from
the origin. The + and —signs refer to a motion
away from and toward the sun. to is the extrapo-
lated time of passage of the transponder at 1 A.U.
The quantities W and 8" are

r~ =1,

Q = 2vt/T~ + $0,

where Q is reckoned from the radial trajectory of
the transponder. The time of travel of the electro-
magnetic signals from the earth to the transponder
is

T = (Ro+ R')/c,

where R is the classical distance

R'=(r' +-I2r csoP)' ',
and R' is the relativistic term

(6a)

(6b)

R + 1—t'co
r(R +cosQ-r) (sc)

III. RESIDUALS IN NEWTONIAN BEST FIT OF

RELATIVISTIC DATA

The experiments considered are illustrated in
Figs. 1(a) and 1(b). Measurements of photon travel
time from the earth to a transponder are made
over a portion AB of the transponder orbit. The
travel time and the timing of the measurements
are made with an atomic time standard or equiv-
alent. ' Also, the measurements are expressed in
units of the first one so that the unknown speed of
light is eliminated.

The three relations involved are thus

(-1-Ap- Up')'t', . , Ap+2
A (I-4U/A')'t2 '

(4a)

+ (1+Ap+Up')'t', (1+Ap+Up')'t'+I)
+

Ap &p

(4b)

where p =1/r and U= -Aro(2+p+2y). From now
on, x and p will refer to the transponder radial co-
ordinate. The Eqs. (3) and (4) differ from the New-
tonian ones through the U and V terms. In addition
to the position of the transponder, the position of
the earth is needed and is written as

for an unbounded orbit (A) 0), where V= 2-2/A
—y/A. . Ts is the period of the earth. The radius
of the (circular) orbit of the earth is chosen as the
unit of length. 8', is the value of 8' for p=1. To

t; =t(Ts, A, p„ to, P, y),

0 =0(~
~~i=~~i(4~ p~

(7a)

(7b)

(7c)
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FIG. 1. Time-delay experiments to a trans
moving toward the sun

o a ransponder
ar e sun (a) and away from it (b),

(8b)

QAik+k+ (10a)

where the unknown x . . . xx„.. . , x4 are the increments
t,', and Qp'. The A's are the partials

A„=BT„/Bxk,

where the index i refers to a a
men . B, is the relativistic component of T
sultin fromg the presence of the quantity V in Eq

n o;, re-

(10b)

where the two first ones are Eqs. (3) and (5). Tan 5. T„is
e i to the first measurement and

is readily calculated from Eq. (6). If E s. 7b
(7c) are combined th' e, e system reduces to

t, = t (T~,A, P„ t I8 y)py (8a)

T =T T 0o p~ p»r t

As shown by Eqs. (8a.) and (8b), the ratios T

A, T~,
our constants of integration

Q p p the re lativistic parameters I3 and

y, and the observables t d t:, an

T„=T &T A, — „!„,t„y„p, y, t„t,). (9)

If the data T are
Newtonian

re re lativistic, an exact f ' t '
th1 W1

ian theory would require th t 'a 1ncrements
t„and Qp to the corresponding first inte-

grals compensate the absence of the t
in q. ( ). This will be written as

IV. RESULTS

Three specific experiments have been consid-
n all cases results are al b flso r1e y com-

pared with results obtained from simple estimates
of the relativistic terms in E . 9
o a1ned from the divergence of relativistic and

to the num
1s as number corresponds

o e number of parameters (T A t
resent

p p of the

p n s1mplified problem plus 1 for th
of light.

or e speed

In the first ex ep riment, the transponder is trav-
elling toward thee sun. Time -delay measurements
are performeded at equally spaced points of its tra-
jectory from 0.51 to 0.01 A.U

from
1 solar radius

rom the surface of the sun). It iun . is assumed that
Thus the position of the earth is =0

at the extrapolated time of assa e

an measurements sequence). The aram
nspon er orbit is given the value -100

which closel corry responds to "dropping" the t
rad1al trajectory with no initial velo-

ity. Consequentl y, Q, the position of the earth
no 1n1 1al veloc-

varies from 18' to 2 '' o 28 during the interval of time
covered by the measurements. In this case, the
relativistic term in Eq. 9 i n-1ncreases as the tran-

il
sponder gets closer to the sun. Th ffe e ect is sim-

1g. ut is -25 times' ar to the one shown in F 2 b
arger in the region of interest (0.15—0.1 A.U. .

pre 1c 1ons following a perfect fit of the
observations made at 0.51 0 4
0.31 A

. 6, 0.41, 0.36, and
. 1 A.U. is shown on Fig. 2 Th e effect is at the
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FIG. 2. Divergence of Newtonian and relativistic pre-
dictions in time-delay experiments to a transponder mov-
ing toward the sun.

FIG. 4. Divergence of Newtonian and relativistic pre-
dictions in time-delay experiments to a transponder mov-
ing away from the sun.
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FIG. 3. Relativistic residuals in a Newtonian fit of
relativistic time-delay measurements to a transponder
moving toward the sun.

FIG. 5. Relativistic residuals in a Newtonian fit of
relativistic time-delay measurements to a transponder
moving away from the sun.
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FIG. 6. Relativistic residuals due to the P term of
the metric in a Newtonian fit of relativistic measure-
ments to a transponder moving away from the sun.

FIG. 7. Relativistic residuals in a Newtonian fit of
relativistic time-delay measurements near superior con-
junction of the transponder.

2-km level and reaches 14 km at 0.01 A.U. This
is still a rather large effect. However, if a best
fit of relativistic data is attempted with Newtonian
theory, the residuals as shown on Fig. 3 are of
the order of 100 m and the maximum residual is
near 0.01 A.U. and is about 300 m, down by a fac-
tor -25 from the divergence effect. In this experi-
ment, very similar results are obtained for the
y component of the relativistic effect. The term
in P in Eq. (9) increases in a fashion similar to
the one shown on Fig. 2. It reaches 44 km at 0.01
A.U. The Newtonian fit of this effect is, however,
good enough to keep the relativistic residuals below
the 1-m level, an -10 reduction factor.

In the second experiment, the transponder is
travelling away from the sun. Time-delay mea-
surements are made at equally spaced points of
its trajectory from 2 A.U. to 30 A.U. (orbit of
Neptune). Again, it is assumed that t, = Q, = 0. It
is also assumed that the transponder energy is
such that it covers the distance to the orbit of
Neptune in -9 yr (A = 25). The general-relativistic
term in Eq. (9) is a smoothly increasing quantity
which reaches 900 km at 30 A.U.' The divergence
of Newtonian theory and general relativity follow-
ing a perfect fit at 2, 4, 6, 8, and 10 A.U. is a

very similar quantity (Fig. 4). If a best fit of rel-
ativistic data is attempted with Newtonian theory,
the residuals as shown on Fig. 5 are at the 5-km
level, down by a factor of -200 from the previous
quantities. As was the case in the previous exper-
iment, similar remarks apply to the relativistic
effects resulting from the parameter y of the
metric. The term in P in Eq. (9) increases
smoothly to reach 25 km at 30 A.U. The Newtonian
fit is not as good as it was in the first experiment
however, and the residuals shown in Fig. 6 are at
the 1-km level.

In the third experiment considered, the transpon-
der is again travelling away from the sun. In order
to test for the "slowing down" of photons grazing
the surface of the sun, time-delay measurements
are made at equally spaced points of its trajectory
between 3.6 and 4.4 A.U. With the assumption
t, = Q, = 0, this corresponds to superior conjunction
of the transponder. Again, A =25. If the relativis-
tic term of Eq. (9) is used as an estimate of the
relativistic effect 15 and 5'before or after supe-
rior conjunction, the results are -14 km and 30
km. The residuals from a Newtonian best fit of
the data shown in Fig. 7 are, however, down to 4
and 5 km at these points. The relativistic term
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in Eq. (9) and the residuals are not significantly
different within 3 of superior conjunction, but
then the corona effect can increase the errors in
the measurements to a significant level.

V. CONCLUSION

Relativistic effects in time-delay experiments
to transponders on radial trajectories in the field
of the sun have been estimated through a Newton-
ian best fit of the relativistic terms in the relativ-
istic expression of the time delay. For transpon-
ders moving toward the sun, the relativistic re-
siduals are of the order of 100 m and so, rather

difficult to detect. -For transponders moving away
from the sun, they are of the order of 5 km and
larger than the errors in the measurements. In
addition, the residuals in this case, due to the
second-order curvature of the metric (P), are of
the order of 1 km and also larger than the errors
in measurements. The residuals due to the in-
crease of the optical path for photons grazing the
surface of the sun are at a 2-km level except very
near superior conjunction (&+3 ). Except for the
last one, these estimates of general relativistic
effects as best-fit residuals are smaller than those
obtained by simple evaluation of relativistic terms
or from the divergence of relativistic and Newton-
ian predictions by orders of magnitude.
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It is shown that if the Hamiltonian constraint of general relativity is imposed as a restric-
tion on the Hamilton principal functional in the classical theory, or on the state functional
in the quantum theory, then the momentum constraints are automatically satisfied. This
result holds both for closed and open spaces and it means that the full content of the theory
is summarized by a single functional equation of the Tomonaga-Schwinger type.

It is well known' ' that the whole message of
general relativity is conveyed by the initial-value
equations, '

where

(3)

x„[g„;m"']=o,

x„'[g„;m "]= 0,

277 )~
~

ij

If Eqs. (I) and (2) hold on every three-dimensional
spacelike cut through a space-time, then such a


