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We carry out a calculation of the "indirect" quadrupole moment effect (given by "averaging"
the de Sitter term, QD&, over a period of the motion) for "distorted" elliptical orbits of
small eccentricity at arbitrary inclination to the earth's equator. Combining this with other
effects enables us to calculate the total gyro precession. We then discuss the question of
what is the optimum orbit for the relativity gyroscope experiment.

I. INTRODUCTION

QE = QT+QDs+0~~+Qq+QDs, (2)

A modern test of general relativity, proposed by
Schiff, ' is the measurement of the precession of
the spin of a gyroscope in orbit about the earth.
This test is the only one thus far proposed which

is likely to measure the off-diagonal Lense-Thir-
ring terms in the metric tensor. In the near future
Everitt and Fairbank" expect to carry out this ex-
periment by means of a satellite containing two
pairs of superconducting gyroscopes in a polar or-
bit around the earth, and they predict' an ultimate
accuracy of 0.001"/yr.

The rate of change of the spin angular momen-
tum, So, of the gyroscope in the gyroscope rest
frame is given by'

d50/dt = QXSD, (1)

where 0 is the angular velocity of precession and

we write 0 -=QE and 0 =- 0» in the Einstein" '
and Brans-Dicke" theories, respectively. We
have

4+3m - - s 3+2
nBD nT +

6 3 (nDs+no +flDs) +4 2 ALT6+ 3(g) 4+2~

(dS,/dt), „=A,„XS, . (4)

In Sec. II of this paper we shall calculate the
quadrupole moment term of order J, in QDs,„ for a
distorted elliptical" orbit (with eccentricity e «1)
inclined to the equator at an arbitrary angle a and
use this result in Sec. IG where we discuss the gy-
roscope precession for arbitrary angle a using all
the terms in 0 given by Ec(. (2). Finally in Sec. IV
we discuss which orbit is the most desirable.

swhere Qy~ QDss 0LT s QQ and QDs are the Thomas,
de Sitter, Lense- Thirring, quadrupole-moment, "
and sun' contributions, respectively, and w is the
dimensionless coupling constant in the Brans-Dicke
theory. By putting the gyroscope in a satellite it is
possible to have 0& essentially zero. ' We shall be
interested in the secular results in which case the
0's are averaged over a period of the motion, in
which case we have



RE LA TIVITY GYROSCOPE EXPERIMENT. . .

II. INDIRECT QUADRUPOLE-MOMENT EFFECT

The Lagrangian for a satellite of mass m in orbit
about the earth of mass M, quadrupole moment J„
and spin angular momentum S~'~ (let n~'~ be a unit
vector in the S ' direction) can be written as

GmM GJ, IM(& &
(r ' F)')

y 2y'

n+~
k

Let us consider a Cartesian coordinate system
such that the x-y plane is inclined at an angle z to
the equatorial plane of the earth (see Fig. 1}and
let i, j, and k be unit vectors in the x, y, and z
directions, respectively. Thus, n is also the an-
gle between the vectors k and n ' such that

n ' = k cosa. + i sinn . (6)

Using the polar coordinates r, 0, and y corre-
sponding to the above Cartesian coordinate system
the Lagrangian of Eq. (5) can be written as

FIG. 1. The unit vectors i, n~, and k are in the plane
of the paper while the unit vector j points into the paper.
Also n( =k cosa +i sine.

g = ,'m(r—'+r'8'+r' sin'8 y') + GmM/r

+ (GZ, mM/2r')(1 —3[sin'o. sin'8 cos'q + cos'n cos' 8 + —,
' sin(2n) sin(2 8) cosy] ) . (7)

The Euler-Lagrange equations from the above Lagrangian, for the variables r, 8, and y, respectively,
are given by

r —r8' —rein'Hp+ GM/r'= (3GJ,-M/2r )(1—3[sin'n sin'Hcos'y+cos'icos'8 + —,
' sin(2o) sin(28) cosy]},

(6)

r'8 +2rr'8 —~r sin(28)jo' = (3GZ~M/2r )[(cos n —sin'u cos y) sin(28) —sin(2a) cos(28) cosy],
r' sinH jo+ 2r' cos8 8j + 2r sin Hrj = (3GJ,M/2r )[sin'o. sinHsin(2y) + sin(2n) cos Hsing] . (10)

&u = (GM/a' )' t (i4)

It is convenient to demand that this is true in gen-
eral and this will in effect constitute a definition
for a. Using Eqs. (11}-(14)in (8)-(10) we obtain
the three simpler equations

2 —2&uaC —3&@ R = -3&v'a(J, /2a')

&&[1 —3 sin'u cos'(gt)], (15)

e+'e =3@'sin(2n)(Z /2a ) cos((ut), (16)

C + 2~R/a = 3&v' sin'a(J', /2a') sin(22t) . (17)

A solution to the above Eqs. (8)-(10) can be written
as

(ii)
(12)

(i3)

where a and &o are constants and R/a, 6, and 4 are
regarded as small quantities whose absolute values
are «1. To lowest order we have Kepler's rela-
tion

Using the general solutions of Eqs. (15}-(17)in
(11)-(13)we obtain

r = a[1a e cos(&ut - 5)]+(J,/2a) cos'o.

—(J,/2a) sin'u cos'(Rt),

8= —,'w+ c, cos(&ut) + c, sin(&ut)

+ (3J,/4am) sin(2n) Rt sin(&ut),

y = &et+ 2e sin(Rt —5) —g

—(J,/Sa') sin'o. sin(2&et),

(18)

(20)

where e, 5, c„c„and f are constants of integra-
tion which, except for 5, must be «1 in absolute
value for our approximations. A,n extra term on
the right-hand side of Eq. (18}of c,a and an extra
term on the right-hand side of Eq. (20) of —~3c,&t
were omitted through the definition of 9 as the
average angular velocity; thus

(21)

where T is the period (defined to be the time taken
for q& to change by 2m). The constant a (or 9}is to
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be regarded as the sixth arbitrary constant along
with e 5 cy c2 and f to be determined by the
initial, conditions of the variables r, 8, y, ~, 8,
and cj. The quantity e ~ 0 is the eccentricity of the
distorted ellipse due to the quadrupole moment J„
i.e., the orbit of Eqs. (18)-(20). Since e' must be
regarded as zero in our approximation, the "un-
distorted" ellipse is a circle with the focus dis-
placed a distance ae from the center of the ellipse
toward the perihelion, i.e., the orbit of Eqs. (18)-
(20) with J, =O.

The instantaneous de Sitter term can be written
as

Q os = (3G M/2 c') (rxv/r'), (22)

30M 1 ~~ »&v
QDSav =

22c NT

which gives the final result

Qns, „=(3GMR/2c'a)

(24)

x/[1+ (1 —3 cos o.)(J2/4a )]k
+ 3 sin(2 o) (J2/8a )(—i + 27j N j ) + c,i + c2jg

(25)

For the initial conditions at t = 0 corresponding
to c, = c, =0, we have 8, -p = -,'w and 8, ,= 0 so that

QDs( g p) will be in the k direction. Except for the
polar or equatorial orbits [in which case sin(2n)
= 0] the plane of the orbit will change, and hence
QDs„will not be in the k direction. If the initial
conditions are such that c, =3(J,/8a') sin(2o. ) then

QDs,„will have no component in the i direction.
It is to be noted that only the component of QDS,„
in the j direction depends on the number of orbits
averaged over. The coordinate system can always
be chosen such that cy c2 0 by orientating the
coordinate system, so that 8= ~m and 8 = 0 at t = 0.
Thus, no matter what orbit the satellite is put into
we can always have our coordinate system such
that cy c2 =0. This seems the most preferable
thing to do as we can then forget about other
choices of the constants c, and c,.

Let us now consider in more detail the limits of
validity of Eqs. (18)—(20) and (25), so that Eq. (25)
will not introduce errors even as much as 0.001"/
yr. If the constants e and P are of the order 5&10 '

which, upon using the solutions for y, 8, and y,
give s

Q s = (3GM/2c')(ky/r+ (3J22/4a') sin(2n)

x(—i sin'(Rt)+ j [2t+ 2 sin(2ut)] }
+ (c,(u/a)i + (c2(u/a)j ) . (23)

The "average" value for QD~ over N orbits is given
by

oi less (note that J,/a' is of the order 10 '); and
if the constants c, and c, are of the order 5&&10 '
x(sin(2o. ) ( or less [note that in Eq. (19) we do not
want the terms involving c, and c, to be of larger
order than the last term of Eq. (19), hence the fac-
tor of ~sin(2n) ( for c, and c,]; and finally if the
time t does not exceed T/ ~sin(2n) ~, i.e., N must
be less than 1/ ~sin(2n) ~, then Eqs. (18)-(20) and
(25) will be of the required accuracy. The worst
possible case occurs when n =-,'m. In this case
Eqs. (18)-(20) and (25) are only valid for one
revolution. If n is near 0 or —2'z, then Eqs. (18)-
(20) and (25) are valid for many revolutions. In
Sec. IV we discuss the case where n is near ~m.

The estimates for the allowed values of e, g, cy,
c„ t, and N are based on the error in Eq. (25) be-
ing of the order of (5xl0 '}'(3GM2/2c'a)
=0.000 175"/yr for a circular orbit 300 miles above
the earth.

III. GYRO ORBIT WITH ARBITRARY INCLINATION

In addition to QDs,„given by Eq. (24), we also
have the following terms' ' which can affect the
precession of the gyroscope by more than 0.005 "/
yr:

Qqr, „=(GS '~/2c'a')[n '~ —3cosn k],
Qo,„=(3GM9/2c'a)(3J, /2a )

x[2(5cos'n- l)k —coso. ni'~],

Qn„„= [3GMou)e/2c'ae(1 —es')] n' ',

(26) .

(27)

(28)

J, = (1082.64~0.08)x10 'R2, (29)

where A is the earth's equatorial radius.
Equation (4) can be put in the form

(dn ' /dt), „=Q,„xn ', (3o)

where n ' is a unit vector in the f, direction. It is
the quantity Q„&&n ' that is used in quoting numeri-
cal values in seconds of arc per year. To this end
it is convenient to calculate Q.,&&n

' for n ' = nD's

and n ' =n~~), where

I) ~ —3 cosQ k(2)
QLTa&

(1 3 2 1/21+3cos Q j
(31)

where Eqs. (26} and (27) hold for the orbit Eqs.
(18)-(20) and the notation is the same as in Sec. II.
Equation (28) is the de Sitter term" for the earth' s
orbit about the sun where Mp 7()~ QE e~, and n
are the mass of the sun, the average angular veloc-
ity of the earth about the sun, the semimajor axis
of the earth's orbit, the eccentricity of the earth' s
orbit, and a unit vector in the direction of the
earth's orbital angular momentum, respectively.
The numerical value for J, is given by"
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(~)
nLy = k olo Dsav ~ (32)

The gyroscope measuring the de Sitter term will
have its spin in the nDs direction so that QL&,„xnDs

=0 and the gyroscope measuring the Lense-Thir-
ring term will have its spin in the nL'T direction"
so that QDs,„xnLT =0. We thus have for the de
Sitter gyro

Q»,„xnan's» =([A»+ —,'(1 —3 cos'a) Ao] sinn j —2A sin(2n) [cosa j + mN(2 cosa i + sina k)]

+ [2c,cosa. j —c,(2 coen i + sino. k)]A») (1+3 eos'n) ' ', (33)

~LTav X DS
~( s) (34)

and for the I ense-Thirring gyro,

Q»,„xn~~~» = —,'Ao sin(2n)(j + 2'

i�)
+A»(c,i —c,j ),

ALT,„xnLT =-A„T sinn j,+ j)

Qo„xn„'T = 2Ao sin(2o. ) j

nD„„xnL, =ADS n xk,(~) s (s)

where

A s
= 3GMR/2 c'a,

A„T = GS ' /2c'a',

A&= (3GM&u/2c'a)(J, /2a'),

An~ = 3GMo (u~/2c'a~(1 —es') .

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

xn~'» =-—,'Ao(1+3cos'o. )
' '(1+cos'n) sinn j,

(35)

s (i)
DSav

=A', (1+3cos'o.) ' '(n "xn '-3coso' n'"xk) '

(36)

QDs xn Ds (A» + AQ) j
~( j)

~LTav

~( j.) 3
~Qav n DS

—
2 AQ j

g xn ' =A n )xn('
DSav n DS DS

and for the Lense-Tf/Iirxing gyro in polar orbit
with c,= c, =0 we have

(51)

(52)

(53)

(54)

mum for o, = —,'m. Thus in this respect the polar or-
bit is preferred.

Next let us consider which orbit gives us the
cleanest separation of the de Sitter effect and the
Lense- Thirring effect. Since the right-hand side
of Eq. (34) is zero, the Lense-Thirring effect does
not contribute to the de Sitter gyro for all angles n.
Since the right-hand side of Eq. (37) is not in gen-
eral zero, the de Sitter effect zvill contribute to
the Lense- Thirring gyro unless the gyro is in a
polar orbit, "for which case sin(2n) =0 and we use
cj = c2 = 0. In addition, for the polar orbit the
right-hand side of Eq. (33) is greatly simplified
and the right-hand side of Eq. (39) is zero. Thus
again the polar orbit is preferred.

For the de Sitter gyro in Polar orbit with c,=c,
=0, we have

A» = 7.0 "/yr,

A „T= 0.0438 "/yr,

(45)

(46)

(47)

(48)

For a circular orbit 300 miles above the earth
we have the following numerical values:

QDs,„xnLY =0,~( 1)

~( y)
ALT,„xnLT = -A„Tj,

~( x)
~Qav nLT 0 j

,„xn' =A +n xk.

(55)

(56)

(57)

(58)

IV. DISCUSSION AND CONCLUSION

The most important terms for the de Sitter gyro
and Lense-Thirring gyro are given by Eqs. (33)
and (38), respectively, as

Q Ds,„xn Ds ~A» (1+3 cos'ot) ' ' sina j,
~( x)

LTav xn „T = -ALT sinn j ~

(49)

(50)

Clearly both terms of Eqs. (49)-(50) will be maxi-

A& = 0.0033"/yr,

Ans = 0.0192"/yr,

which give us an idea of the relative importance of
Sthe terms QDs, ALT, 0Q, and QDs, respectively.

It is to be noted that the terms of Eqs. (53) and
(54) are much less than that of Eq. (51); hence we

zvill get a clean test of the de Sitter effect. On the
other hand the term of Eq. (58) is of the same
order of magnitude as that of Eq. (56), hence we

will not get a very clean test of the Lense- Thirring
effect.

We now ask whether it is possible to have an or-
bit that would give a cleaner test of the Lense-
Thirring effect. The effect of ODs on the Lense-
Thirring gyro can be eliminated by placing the or-
bit of the gyro in the plane of the ecliptic such that
k = n and n = 23.44'. Unfortunately the effects
given in Eqs. (37) and (39) that were eliminated by
using a polar orbit will now contribute to the
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(61)

(62)

and for the I-ense-Thieving gyro with n =-2m+ e and
initial conditions such that c, = c, =0 we have

Ds xn~T = -3mNeA&i(i)

~( g)zTa nI.T--&rzj ~

~( z)
~qavXnLT =0,

s (i) s (s)
~DSavX LT ADS n xk .

(63)

(64)

(65)

(66)

After N orbits the quantity 2vN(3J2/4a') )sin(2o. ) ~

must be &5xl0 ' in order for Eq. (19) to be valid.
In the case we are considering, this means that
3mN(J, /2a') 2c( must be ~5x10 ', which will be
the case if 2&~~ 1/N. If one carries out the ex-
periment in a 300-mile circular orbit for a year
then N= 5580 and ( c

~

~ 10 ' rad = 20" .

Lense- Thirring gyro. If the measurements could
be made during a very small number of orbits (N
small) then these effects would be smaller than
that of Eq. (58) for a polar orbit. As the experi-
ment will be carried out over many revolutions of
the satellite about the earth the number N will be
large and the polar orbit is to be preferred.

The results for n = —,'n+ c where j c
~
«1 will be of

use in the case where the satellite does not go ex-
actly into the preferred polar orbit.

For the de Sitter gyro with a =-,'w+ e and initial
conditions such that cy c2 0, we have

Qn~ xnos =[Ans+2Ao]I' +3wNeAok, (59)

(60)
(y) 3

QqavxnDs =- gAg j

0 x~n' =A n x+n'
DSav nDS DS

We note that if we use the polar orbit Eqs. (51)-
(58), instead of the more exact nonpolar orbit Eqs.
(59)-(66), the inclination of the orbit must not
deviate from polar orbit by more than I" in order
that the magnitude of the right-hand side of Eq.
(63) should not be more than 0.001 "/yr for a 300
mile circular orbit with N= 5580.

In conclusion we wish to point out that in Secs.
III and IV we have chosen the orientation of the

gyros in the n~D's~ and +nz~~ directions [see Eqs. (31)
and (32)] as these seem to be the most appropriate
directions since they are useful in separating the
de Sitter and Lense-Thirring effects and leave the
final results in as simple a form as possible. How-

ever, in actual practice the gyroscopes will be
aimed at stars" whose location may not be exactly
in the nDs and n~T' directions. This should cause
no problem as the de Sitter and Lense-Thirring
effects can still be unambiguously determined by
the two pairs of gyros for all orbit inclinations ex-
cept ones near the equatorial orbit. The general
result for Q,„xn ', where +n' is an arbitrary unit
vector, i.e.,

n ' =a, i+a, j +a, k with a,'+a2'+a, =1,
(67)

can readily be obtained from Eqs. (25)-(28) and

(67) and is what is required for a realistic experi-
ment. The general result is, however, rather
lengthy and no useful purpose is served in writing
it down. In practice it is better to work out the
results when the choice of stars at which the gyros
will be pointed is made.
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Time-delay experiments are analyzed within the frame of a curved space-time. Residuals
from Newtonian best fits of relativistic data are used as a measure of the "relativistic effects."
Radial transponder trajectories are considered. If the motion is towards the sun, the relativ-
istic residuals are of the order of 100 m. If the motion is away from the sun, they are at the
10-km level and the fraction due to the second-order curvature of the metric is at the 1-km
level. Those effects are significantly smaller than those calculated from the divergence of the
Newtonian and relativistic predictions after exact fit of the initial measurements.

I. INTRODUCTION

In preceding papers, ' ' time-delay experiments
performed from the earth to a natural or to an
artificial planet have been analyzed within the
frame of a curved space-time. In Refs. 2, 3, and
4, the method used is essentially the following: If
the motion has n constants of integration, it is as-
sumed that an equal number of time-delay mea-
surements are used to determine them, thus pro-
viding a perfect fit of hypothetical data at these
points. Then one calculates the divergence of
Newtonian and relativistic predictions for the other
measurements. These divergences are interpreted
as "relativistic effects. " In some cases, this
method gives results which are highly sensitive to
the particular and arbitrary choice of the measure-
ments used to determine the constants of the mo-
tion. The results can in fact vary by orders of
magnitude.

In the present paper, a best-fit-analysis ap-
proach is followed in an attempt to simulate more
closely the actual experiment. Essentially, one
examines to which extent relativistic effects in the
data could equally be explained within Newtonian
theory by appropriate increments to the constants
of the motion. More precisely a best fit of the rel-
ativistic terms in the relativistic expression for
the time delay is performed with increments to the
classical parameters of the expression. Residuals
from this best fit are "relativistic effects" which
cannot be explained in classical theory within the
limitation of the problem. Such residuals can be
compared with the expected accuracy of the mea-

surements for an estimate of the possibility of
determining the components of the curvature of
the metric and thus test general relativity and
other theories of gravitation.

This approach is applied here to time-delay ex-
periments carried from the earth to artificial
planets moving on radial trajectories towards the
sun or away from it. The results for this simple
model should suggest an upper limit to the order
of magnitude of the relativistic effects to be seen
on quasiradial sections of a "grand tour" trajec-
tory or of a very high eccentricity orbit of compar-
able energy.

For simplicity, it is assumed that the earth is
on a circular orbit and that the artificial planet
trajectory is contained in the ecliptic plane. Clas-
sical perturbations such as the oblateness of the
sun and the gravitational field of other planets are
neglected. Relativistic effects due to the rotation
of the sun (Lense-Thirring effects) are also ne-
glected (they are at the cm level or lower and un-
detectable at the present time). The field of the
sun is assumed to have spherical symmetry and
is described by a generalized metric. Thus rela-
tivity coriections for theories which absorb the
gravitational field in the curvature of space-time
and where test particles travel along geodesics
can be evaluated and compared.

In Sec. II, a solution to first order in GM/rc' is
given for the motion of a test mass along a radial
orbit. Previous results on the propagation of
photons and on circular orbits are also included.
In Sec. III, the Newtonian best fit of relativistic
data and the calculation of relativistic residuals


