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The stellar energy-loss rates due to the production of neutrino pairs are calculated in
Weinberg's theory of electromagnetic and weak interactions. The ratio of the total rate +p g3
calculated here to the rate calculated in the ordinary theory of weak interactions is 10
where the uncertainty comes entirely from the lack of knowledge of the 5'-meson mass.
The ratio of the experimental rate to the rate calculated in the ordinary theory is 10 ' .
Thus Weinberg's theory gives numbers well within the experimental limits for all values
of the 8"mass.

I. INTRODUCTION plasma neutrino: plasma- v + P, (lc)

pair neutrino: e'+e - v+ P, (la)

photoneutrino: y+e-e+v+ P, (lb)

Weinberg has proposed a theory of leptons ' which
includes both the weak and electromagnetic inter-
actions and is probably renormalizable. "U'n-

fortunately, laboratory observations of differences
between this theory and the usual four-point weak
interaction will be difficult since ordinary P de-
cay is the same in both theories.

Processes which produce neutrino pairs are an
extremely important energy-loss mechanism for
stars in certain density and temperature ranges. "
These processes have been calculated in detail in
the point interaction by various authors. ' " In
particular, Beaudet, Petrosian, and Salpeter"
(BPS) have discussed the combined effect of sev-
eral processes.

In this paper we calculate, in Weinberg's theory,
the energy-loss rates for the three important ways
of producing neutrino pairs,

and compare the results with the results obtained
in the point interaction. In addition, energy-loss
rates are given for two less-important processes
that happen to be particularly easy to calculate:

y+ p-p+v+ P,

y+y~ v+ v .
(2a)

(2b)

The reaction (2a) has been calculated in the ordi-
nary weak-interaction theory by adding a neutral
current, "and the reaction (2b) has been calcu-
lated in the ordinary W-meson theory. '

Each of the processes in (1) and (2) actually in-
volves two reactions which must be added inco-
herently; one where the neutrino pair are electron
neutrinos and another where the neutrinos are
those associated with the muon. In the ordinary
theory processes (1a), (lb), and (1c) cannot pro-
duce muon neutrinos (in lowest order). As a gen-
eral procedure we will calculate the rate for elec-
tron neutrinos in detail. The rate for muon neu-
trinos can then be deduced by inspection.
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II. ENERGY-LOSS RATES pn =n -n =N—
p,e

(4)

We will assume that the star consists of a com-
pletely ionized gas in thermal equilibrium at a
temperature T with a density p. The number den-
sities of the electrons and positrons are given by
Fermi-Dirac distributions

d p 3
(21/)'. exp(E/kT+ p/kT)+1 '

where p. is the chemical potential of an electron
(including the electron mass). The total gas is
neutral; thus the number density of protons is
n -n, . If we neglect the weight of the electron-
positron pairs then the mass density p of the
plasma ls

where N is Avogadro's number and p., is related
to the abundance X, , the nuclear charge g, , and
the atomic weight A,. of the ith atomic species in
the plasma by

Z;X;—'.
p ) A ~

(6)

We shall only need the combination p/i1, .
Equations (3) and (4) provide a connection be-

tween the matter density p/p, „the temperature,
and the chemical potential. This relation is con-
veniently illustrated, for the temperatures and
densities of interest to us, by Fig. 1 of Ref. 12.

For the processes of (1) and (2) we need only
the following part of Weinberg's Hamiltonian'.

K=ieA fW~(2s8W' —s W 8)++W+s,W'-W~"(2s, W s W, ) W s8W']

e(,r+-,A -=g.r r'(1 —y, )$,W'- y,r"-,'(1 -r,)y,W„

„„„(,y (a+by, )(,z„-—,'(g'+g")' '11/ r z(1 y )g z ~(g +g ) p y ~(1 r )( z„.4 a'+S"r"'
(6)

Here g and g' are independent coupling constants
and a and b are the combinations

a=3g —g y

b = r"+S'
(ia)

(Vb)

4Ã
(g2 + g l2)1/2

G g'
Bm~' ' (Bb)

(Bc)

We shall often need the combinations

The usual weak coupling constant G, the electric
charge e, and the masses of the 8' and g particles
are related to g and g' by

C~ is 2.5 if mw is its minimum value, 37.3 QeV,
and decreases to 0.5 if mw becomes large. As is
obvious from (9), in the usual point-interaction
theory C~ and C„are both equal to unity.

The rate of energy loss to neutrino pairs (in
ergs/sec cm') is simply the transition probability,
multiplied by the energy of the neutrino pair and
integrated over the density of states of all the par-
ticles, both initial and final. The density of states
for an initial electron or positron is given by dn,
in (3). Photons in thermal equilibrium have a den-
sity of states

1
dn = ), exp —„—1) d'k,

where ~ is the energy of the photon and where

and

b mw
2mz~ g

(9a)

QP=~k~ +18 (12)

The plasma frequency ~~ acts as a photon mass.
For the neutrinos we have

a mw
2

C~ —1+
2mz g

(9b)
dg' dg
(2~)" " (2~)' ' (13)

From (Be) we see that C„ is always —,', while C„
may be written as

] e' W2

2 4mw~ G

while for an outgoing electron we have

d p Q p,

(21/)3 k T k T (14)
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e (p') v (q')
e(p')

(b)

V(q')

using Lenard's formula

dqdq., 5'(P -q -q')q" q'" = ~l/(»»'+ g~9"),

e(p

FIG. 1. The lowest-order Feynman diagrams for the
process e + e ~ v, + t, . The symbols in parentheses
are the momenta of the particles.

A. Pair Annihilation

we have"

1 1 I' d'q d'q'
(2 )'BZZ'J 2 ' 2 "
G2

, ((C„2+CA2)[m'+3m2p ~ p'+2(p p')']
The lowest-order diagrams for the process

e'+e -v, + P, are given in Fig. 1. The R'-ex-
change graph contributes a matrix element

+3(C„2-CA2)[m'+ m'p p']), (18)

, u„(q)y "(1—y, )u, (p) v, (p')y. (1 -y, )v, (q'),
8mw

(15a)

while the g-exchange graph gives

16
', u, (q)y "(1 y, )v,-(q')v, (p')y (a+by, )u, (p)16m'

(15b)

where E and E' are the energies of the electron
and positron. This reproduces the point-interac-
tion cross section when Cv =C~=1.

The rate of energy loss is given by

4 " d'p d'p'9-( ),„„,,„„(&+&)

(19)

Now, following Ref. 12, let us define A. and v as

Making a Fierz transformatio nand u'sing (9), we
have the total matrix element

kT p,v=-
m ' kT' (20)

2 .u, (q)y "(1 y, )v. (—q')
S

where m is the electron mass, and define the func-
tions G„'(X, v) as

x v( p) y(C —C y )u, (p) (16)
Qn+1 (+2 y-2)l/2

G'(Z v) =-X2+2" dxn xiv+ 1
(21)

Squaring M, summing and averaging over the
spins, and integrating over the final momenta by

The rate of energy loss (19) can now be written
in terms of the integrals (21):

v A K 1G1/2. Gl/2G1 Gl G -1/2 Gl/2GO 0 1/2 G -1/2 1]] (22)

We should note that, from (3) and (4), the den-
sity can be written as

&—=—2YO -G0].p vP

~e
(23)

When v» 1, G„»G„' and G, -p/u, . We will use
this in the following calculations.

The integrals (21) cannot be done analytically
for all A. and v. Therefore we cannot find an ana-
lytic expression for Q which holds for all tem-
peratures and densities. However, since our pri-
mary purpose is to compare Weinberg's theory
with the ordinary point-interaction theory, we
shall content ourselves with evaluating (22) in var-
ious limiting regions of v and A. .

~ )1/2
G+

~

g2/2 -1/Xe -v
2 j

In this region

(24)

G- =G- = —
~

X3/'e-"'ev
n 0 (25)

Then

G Cv 9 k -2m/ar
4 er m

(26)

This nonrelativistic, nondegenerate case holds

Itegl on I. A « 1, v « 1/A. .
As long as A. «1, G„' is approximately equal to

G,', where
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(roughly) for densities p/!L, &10'g/cm' and tem-
peratures between 3&&10' 'K and 3&10' 'K, with
higher densities requiring higher temperatures.

Region II. )(.«1, I/A. «v«2/A. .
G„' is given by (24), while G„=G, with G, » G,'.

Using (23) we have

p kT 3/2

Q
— G2C 2m6+ — e m~k T e -(Vk T (2'I)u w2 V

e

for densities greater than 10' g/cm'.
Regs'on V. ~»1, »».
Here G„»G„', so that we may use (23) with

G+ =)(.2"+2(2n+ 2)!e-',

G„= (A, v)"Gq .3
2n+3

To highest power in A, v we have

(32b)

G = (A. v)'"G3
2n+3 0' (28)

Now

G' 2)( 3/2 2

Q (C 2 ~ C 2) ) 6 -mlkT -plkT
nm 202 F+ A me e

(29)

Qf course the chemical potential can be expressed
as the Fermi energy. This relativistic and degen-
erate region holds for densities greater than 10'
g/cm' and temperatures greater than 6x10"K,
with the upper temperature limit given by A. «1.

Region IV . ~» 1, v && 1.
In this region we may ignore the chemical poten-

tial. To highest order in A,

This nonrelativistic, mildly degenerate formula
holds for temperatures T & 10"Kand densities be-
tween 10» g/cm' and 10' g/cm'.

Region III. . A, «1, 1«gv.
Again G„' is given by (24), and G„»G'. To high

est power in A. v

4 G2 p
2 PT 4

p
Q = ——(C '+C ')m6 — —K—e P'kT. (33)v 5 e

This degenerate relativistic region is restricted
to densities greater than 10' g/cm', with a tem-
perature of 10"'K at the lowest density extending
to a range of 10"'K to 10"'K at a density of 10"
g/cm'.

Thus we see that the ratio of the energy-loss
rate as calculated here in Weinberg's theory to
the energy-loss rate as calculated by BPS and
others in the point-interaction theory is Cv' for
regions I and II and is —,

' (C~2+ C„') for regions III,
IV, and V.

Because of the conservation of muon number the
process e'+e -v„+v„can only go by the diagram
in Fig. 1(b). Thus the matrix element for the pro-
duction of muon neutrinos is given by (15b) alone.
We can easily see that this has the effect of re-
placing Cv and C~ in the rates for e'+e - v, + v,
by Cv-1 and -C„, respectively. Since the rate
of energy loss obviously depends on both process-
es, the ratio of the total energy-loss rate as cal-
culated here to the old total energy-loss rate is

~ ( 11~+&
G„=A. "+ (2n+2)! Q'

S=l

Then

kT
Q,„=63.9 —,(CT'+ C„')m'

(30)

(31)

2Cv 2Cv+1

for regions I and II and

—,'[2CT' —2C + 1+2CA']

This relativistic nondegenerate case only holds
for regions III, IV, and V. We will discuss these
ratios in Sec. III.

B. Photoproduction

Photoproduction of neutrino pairs, y+e -e + v, +P„ is thought to be important for low densities, p/i), ,
&10' g/cm', and relatively low temperatures, T &4x10"K. If we neglect terms of order p/m~ in the ma-
trix element, where p is the electron momentum, then we may neglect the diagrams where the photon is
connected to the W meson. The other diagrams are shown in Fig. 2. The W-exchange diagrams give

e(p)
e(p')

u(q')
'

e(p)

u(q)

U(q')

e(p')
e(p)

e( p')

U(q)

~(q')

(p)

e(p) ~ ~(q)
v(q')

FIG. 2. The lowest-order diagrams for the photoproduction process y+ e ~ e + v, + P, .
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M~ =—,u, (q)y"(1 —y, )(p+ p'-m, ) 'gu, (p)u, (p')y„(1 —y, )v,-(q')
8mw'

0 u, (p')]t(f(' g--m, ) 'y"(1 —yk)vo(q')u, (q)y (1 —yk)u, (p), (34)

where the momenta are defined in Fig. 2 and e~ is the photon polarization. The graphs with Z exchange
contribute a matrix element equal to

.u. (p')y "(u+ &y.) (/+P -m. ) Vu. (p)u, (q)y. (1 y,—)v-, (q')
16m

+ 0 u. (p')d(y' N -m.-) 'y (u+~yk)u, (p)u. (q)y (1 —y5)v;(q').16m,

These two contributions can be combined by a Fierz transformation to read

M =—,u, (p')y "(C» —C„y,);gu, (p) u, (q)y (1 -y, )v0(q')
ieg', „P'+)[[+m,

8m' ~ 2p 'k+0

(36)

, u (p')]8, ', y"(C» C„y,)u (p)u (q)y„(1 y, )v (q'), (36)

where we have used (9) and, to include plasma effects, have set k' = &u0'.

The next steps are obvious, although long and tedious, and we will not give the details. In order to com-
pare easily with the point-interaction theory we shall follow BPS closely. We square (36), sum and aver-
age over the electron and neutrino spins, and integrate over the neutrino momenta, again using (17).
Finally we must sum over the polarization of the photon. We can choose e['= (0, e) so that in the rest frame
of the initial electron

(e.p) =0,

Z(e P')'=Ip'I'- (37

Making a Lorentz transformation to the laboratory frame whose velocity is P/Z relative to the electron' s
rest frame, we have

g(e p)'=p(e p)(e P') =0,

g(e p')'= . . .Ip(2p k+~0')(2P'k -0p0')(m'-p'p)
0

+ m'(k (p+k-p'))'--'0p '(m'+p p')(p+k-p')']

The final result for the matrix element is

(38)

dg'dg'I=, „(21')'6'(p -q -q')g g IMI'

2G 2e2
(C '+C„')I4p'+2py(p'+m')(2 p)'+kpyrd, 'p'[p' 2m' —k p+-,'ry, ']+-,'-m, '(8 —y )'p (p —m)'

+[r'p'(p' — )+pr '(pm'+rrp)I rd2 ~ ~, [2(pr) '(m' pp')+m'(2 p)' — yr-, 'p'(m'+p'p)[I1

0

2Q2e2
+ (C„' —C„')m'Ipy'yr, 'P'+68!ryP +48yp'ry, ' —,'pp'y(rk P)'

P=p+k -p',

+, , ', [2(py) '(m' p' p)+m'(k p)'=,'rd'p'(m -+p'p)]I,
0

p '=k'p+ —0p,', y '=k p'- —'&u

(39)

This reduces to the result of BPS when C~ =C„=I. The energy-loss rate for electrons is now given by

*2d* k2dk 1 ~d
q I

2 P(e(E-(2)lkT+ 1)-2 (e(r)lkT 1)-l, de P
I
1 (e(E'-[2)lkT+ 1)-2]N + 08 @2)I

(21[') „0 E „0 (4) ~ 2 ~ 8 (40)
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There is a corresponding rate for positrons.
In general these integrals must be done numer-

ically. A method for doing the final five-dimen-
sional integral is given in Ref. 11. We, however,
will be content with evaluating (40) in two regions
where it can be done analytically, namely, for
nonrelativistic and extreme relativistic electrons.
Our result for the nonrelativistic case, where
photoproduction is thought to be important, must
be used with caution since Ref. 11 demonstrated
that relativistic effects become important at sur-
prisingly low temperatures. (The total cross sec-
tion for nondegenerate electrons can be completely
evaluated analytically since it does not involve the
integrals over the distribution factors. It is given
in the Appendix. )

For extremely relativistic electrons the coef-
ficient of C~' —C„' is unimportant compared to the
coefficient of C~ +C~ . The result, therefore, is
simply —,

' (C~'+ C„') times the usual result. When

we add the rate for the emission of muon neutrinos
the tota/ rate is

—,
' [2C~2 —2Cv+ 1+2C„2]

times the usual rate. The usual energy-loss rate
in this region is given in BPS, where it is shown
to be much less than the rate for the plasma neu-
trino process (1c).

For nonrelativistic electrons kT«m and, for
densities below 10' g/cm', &u, skT. Thus we may
drop the photon mass terms in (39) and further
evaluate (39) in the center-of-mass system. Since
the densities are relatively low we may drop the
Fermi distribution factor of the final electron rel-
ative to the 1 in the integrand of (40).

The integral of (39) over the momentum of the
final electron is

(41)

where ~ is the c.m. energy of the photon. Now,
with the help of (4), we have the rate

C. Plasma Neutrino

The plasma neutrino process, y- v+v, is al-
lowed if the electron gas has a dielectric constant
e(~, k) which is less than unity. Then the relation

~'e(~, k) =$~', (44)

with

e(~, k) -=1 —~~'/~', (45)

implies that the photon behaves as if it had a rest
mass equal to the plasma frequency [as defined by
(45)], &o~.

This process has been calculated in ordinary
weak-interaction theory by calculating the graph
of Fig. 3 (a), where for the electron lines we use
the electron Green's function in a sea of particles.
The matrix element of the photon is given by

Z/2

(OiA" (0)i y(k)) =c" —(v e')
8QP

(46)

for the transverse part of the photon, where e~ is
the polarization vector and e' is the transverse
part of the dielectric constant. For longitudinal
photons

&OI&"(0)I ~(k)) = &
g~ l I/2

k2
Bco

(47)

where k' is the square of the four-vector.
In our theory we wish to calculate the diagrams

in Figs. 3(b) and 3(c). However, if we neglect
terms of order p'/m ', where p is the momentum
of the electron in the closed loop of Fig. 3(b),
then because of Fig. 3(c) we are just calculating
Fig. 3(a) with a modified coupling constant. Since
the transition rate due to the axial-vector current
is much smaller than the rate due to the vector
current, the modification is simply to multiply the
usual rate by C~'+ (C~- I)'. This is the sum of
the rates for the two kinds of neutrinos.

For the usual rate we will use the expressions
in BPS. The energy-loss rate for transverse pho-
tons is

eG' AT 8

Q =
~ 7!g(8)[C„+5C~ ]N m—

(42)
(a) (b)

~6[2C„' —2C~+ 1+10C„'].

We will discuss (43) in Sec. III.

(43)

where n = (137) ' and g is the Riemann g function.
The ratio of (42) to the usual nonrelativistic non-

degenerate rate is ~8[C~'+5C„']. After we add the
rate for muon neutrinos the ratio of the total rates
1s

(c)

FIG. 3. (a) The lowest-order diagram for the decay of
a plasmon in the ordinary theory of weak interactions.
(b), (c) The lowest-order diagrams for plasmon decay
in Weinberg's theory.
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with

G'[C,' (C„1)'1»» m9y8g9

kT
kT' m '

(48)

(49)

G„' are the integrals defined by (21).
In the region y» 1 (where the plasma process is

expected to dominate) Q r is given by

G [C» +(C» 1)1 9 6y9 -j' 3/2T= 48r4N ™yAe y 2

where &, is a frequency given by

4em2

(51)

The energy-loss rate for longitudinal photons is

(52)

where &, is given by

4nnP + + +
1 3 [ -1/2 -I/2 -3/2 -3/2 G —5/2 G -5/21 (53)

and a is the combination

3 col'
a-=1+ —~

~

.
5 (do)

(54)

the ordinary S'-meson theory and are gauge-in-
variant by themselves. The second three graphs,
which involve a Z exchange, are zero. To see this
we simply note that

Again in the limit y»1
(t;, +k, )"u„(q,)y„(1 —y,)u„(q,) = 0, (57)

G'I C»'+ (C.—1)'1 9 9y9/$, 3/2 'f -3/2

(55)

D. Photoproduction from Protons

2[(C» —1)'+5C„'] ~m

2C~' -2C~+ 1+10C~ m~

which is always of the order of (m, jm~)'= 3X 10 '.
(56)

E. Photon-Photon Scattering

The lowest-order diagrams for two free photons
to produce neutrinos, y+y- v +v, are given in
Fig. 4. The first three graphs are the same as in

Photoproduction of neutrino pairs from protons,
y+p- p+ v+ v, is not expected to be an important
energy-loss mechanism. Nevertheless, we in-
clude it here because the result may be immedi-
ately read off from the result of photoproduction
from electrons if we assume the proton couples to
the Z saith the same coupling constants as the elec-
t~on. The relevant graphs are just those with a g
exchange, as in Fig. 2. Therefore the matrix ele-
ment is the same as (36) with the electron mass
replaced by the proton mass and C~ and C„re-
placed by C~ —1 and -C„. The protons are always
nonrelativistic and we can read off the rate from
(4&).

The ratio of the total proton rate (including both

types of neutrinos) to the total electron rate [as
given by (43)1 is

where k, and k, are the momenta of the two pho-
tons and k, +k, =q, +q, . But it is impossible to
construct a tensor for the closed-loop part of the
diagrams which is simultaneously symmetric
under interchange of the photons, is gauge-in-
variant, and is not proportional to (0, +k, ) .

The cross section and the rate of energy loss
are therefore the same as in the ordinary 8'-me-
son theory.

III. RESULTS AND CONCLUSIONS

We have recalculated, in Weinberg's theory, the
rate of energy loss in an electron gas due to the
production of neutrino pairs. In particular we
have considered the three processes which are
thought to be dominant: pair annihilation (1a),

e
I

(~W
I

e

y ~WNht ——W

W~~e
7 4vwvW

W

&'~ W
Z

Iy~~ W

Vl

W

FIG. 4. The lowest-order diagrams for y+ y v+ v.
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R 7—

meson masses.
If we let R stand for the sum of the ratios in

Fig. 5 then the experimental situation has been
summarized by Stothers '6 as

100&2

In this theory we find
+Q, S3

Z =10'-o.lo

(58)

(59)

l I I I I I I I I I

55 40 45 50 55 60 65 70 75 80 85 90
m (GeV)

FIG. 5. The ratios of the energy-loss rates as calcu-
lated here to the energy-loss rates calculated in the
ordinary theory vs the mass of the W meson. 8 (Pair;
I, II) is the ratio for the pair annihilation in the regions
I and II discussed in the text. All three lines approach
8= —,

' as m@ approaches ~.

photoproduction (1b), and plasmon decay (1c).
Although in each case the equations cannot be com-
pletely evaluated analytically for all temperatures
and densities, we have evaluated them for special
ranges of temperatures and densities. Within
these special ranges the changes in the rates corn-
pared to energy-loss rates previously calculated
in the point-interaction theory (or ordinary W-
meson theory) are substantial. The ratios of the
rates calculated here to the old rates are shown
in Fig. 5. If the mass of the W meson is near its
minimum value (37.3 Geg) some of the rates are
as much as a factor of S.50 larger. If the W-
meson mass is very large all the rates are half
their old values. Weinberg's theory decreases
the importance of the photoproduction process
relative to the other two processes for all W-

where the uncertainty is due to the unknown mass
of the W meson. Since the limits in (59) are well
within the present experimental limits we cannot
put any bounds on the 8'-meson mass. Further,
whether these changes in the rates are enough to
be seen by observing the relative numbers of cer-
tain types of stars and thereby determining their
lifetimes will depend on the precise value of that
mass. If m~ is greater than 60 GeV the change in
the rate is less than a factor of 2 and would re-
quire a very accurate stellar model. Current re-
sults from the laboratory experiments on the scat-
tering P, +e-P, +e indicate that m~ is greater
than 60 GeV."" On the other hand, if m~ is near
its minimum value the large change in the plasma
process should be observable in the number of
white dwarf s."
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APPENDIX: TOTAL CROSS SECTION

FOR PHOTOPRODUCTION

If the electrons are nondegenerate the total cross
section for photoproduction of electron neutrinos,
(1b), can be calculated analytically for all photon
energies. It is given by

e'G'm
» 1 16 4 20 2 4 5 1 16 25 1v= (C '+C ')

192m x[x+(x2+1)~ 2] 3 3 3 2 x2 3 3 x
—x4+ —x'+ ————,+ —x +4x ——— (x +1)~~'ln(x+ (x' y 1)'I'}

VO 4 11, 25 40, 5 1—x'+ —x' ——+ —x'+3x ———(x'+ 1)'"
9 9 3 9 2x

g 2Q2'm2+, (C~2 —C„'), ,I, -4x~ —11 —5~ —4x+ — (x2+I)'~min(x+ (x'+1)'~')
96m' ~ " x x+ (x'+1 "' x' x

2 4 iV 2 3 23 1
+ —x'+ —x'+ 5+-- x'+ —x+ 5 — (x'+ 1)"'

3 3 3 3 x (A1)

where x = ~/m and &u is the photon energy in the
c.m. system.

Figure 6 shows the ratio of (A1) to the total

cross section in the usual theory, as given by
(Al) with C„=C„=1.

In the extreme relativistic (E. R.) region (A1)
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oT

P. I
gives

e G pFP C„'+C„')x2(ln2x —I). (A2)

2 In the nonrelativistic . R. r
gives

' is ic . R.) region, x«I, (Al)

)
e'G'nP

0-~ [C„'+5C„']x . (As)

W

. 6. The ratio of the total cro
production of v

o a cross section for h t-
v, v~ as calculated here o

production cross t'
ere to the total phot-

ss section calculated in
0 0-

ion theory vs the h t
in the point-interac-

units of electron mass).
p oonener in . . in

on mass) . mz, is the lV-meson mass.

The crross section for the photo ropoopo o of
is again given by A1

C l db C
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