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We show that, within the context of frame-dependent cutoff quantum field theory, the
slowest possible asymptotic decrease, for —t large, of the effective Sachs electromagnetic
form factors is O(t ), where t is the invariant momentum transfer squared. The»garment
is model-independent and exact; it requires but a single analyticity assumption.

In a previous paper, ' a new method was intro-
duced for studying high-energy behavior within
the context of frame-dependent cutoff quantum
field theory, and it was shown that this method
implies asymptotic constancy of hadron total cross
sections, as an "upper bound, " and the Pomeran-
chuk theorem. In the present work, we use this
method to find the slowest possible asymptotic
decrease of the effective Sachs electromagnetic
form factors. We shall assume that the reader is
acquainted with the first four sections of Ref. 1.

It should be pointed out that this work is done
within the context of "stochastic" quantum field
theory —a frame-dependent cutoff field theory
which is free of ultraviolet divergences and, in-
deed, generally less "singular" than is local field
theory. As explained in Ref. 1, we do not expect
that our method is applicable to local field theory.

We use the graph shown in Fig. 1 to treat elec-
tron-proton scattering; note that it contains the
complete electron vertex instead of the usual low-
est-order electron vertex. We define the proton
dynamical form factors by the standard canonical
form'

(+(P'), j"(0)@(P))= 2, &(P')(r"&, +«".q'&, )~(P),

q-=P'-P, (1)

and write the dynamical Sachs form factors as

G~=I, + 2MI'2,

G =E + I'I'

where M is the proton mass, and t=—-q'. From
the graph in Fig. 1 we obtain, using the modified
Feynman rules of stochastic field theory, ' the
Rosenbluth formula with one important change:
Now the form factors occurring in that formula
are not the dynamical ones G~ ~ but rather the
effective form factors

(G@,~ )cff (2)

Z„, =- Q (e(P'), j(,(0)4'(P))(4'(P), j,(0)4(P')),
spms

where C(P) is a one-proton state with momentum

P, and the sum is over the initial and final proton
spins, Then straightforward calculation yields

where I", is the dynamical electron form factor,
and g is the universal kinematical form factor of
the stochastic theory. 4 Thus, it is the effective
form factors (G~ „),«which are obtained from the
standard analyses of experimental data. In par-
ticular, it is well known that (G„),« falls off like
I, ' for large -t.

We take the measuring frame 2 to be one in
which P =0; then the matrix element in Eq. (1) is
the one which is actually measured in laboratory
electron-proton scattering experiments. We shall
work in laboratory coordinates in which n" (2)
=(0, 1). Then the dynamical G~ „are functions
of -q'=—t and -n P'=—M —t/2M.

Let

4M'- t 4M' —I;-t, P,+, (P„'P, +P„P,') —(P„+P„)(P,+P„'))G„''
(2 )'(t-4M') 4M' "' 2M'

+ (P~ +Pq)(P, +P,')G~~
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From Eq. (3) above we find that

4M'- t
2(2z)'M

(4)

(5)

FIG. 1. ep scattering via single-photon exchange.

Qn the other hand, from the reduction formal-
ism

(@(P'),j„(0)@(P))=(2 „„,P, )
I„,

I„= ' d xe' 'E (x)

E (x) =—8(x)u(P')(4„[j&(0),J (-x)]@(P)),
where J is the proton source current and 40 is the
vacuum. Let

f„,(k) = f„((), t», f„(()=-f,(-(),

f„($)=—

) dxF„(x, g+P' ~ x),

where I" is the unit vector in the direction of P ',
and assume that f„,($) admit power-series ex-
pansions which converge in the interval $ = [0, ~).
Then from Eq. (7) of Ref. 1, for large -t we have

-t
2(2v)6M (2Gu + Gz ),

where i and j are summed only over the values 1,
2, 3. Equations (4) and (5) imply that the slowest
asymptotic decrease allowed for the dynamical
form factors G» is asymptotic constancy.

The dynamical electron form factors are treated
the same way, except that the incoming particle is
contracted out instead of the outgoing one, and the
kinematics is different. Qne notes that, for E» M,

I
P'I =M/(1- cos8„„), -t=2ME,

where E is the lab energy of the incoming electron.
Thus, if we stay within any fixed angular region
8„b~ 8;„&0, we find that

I
P

I
=&

I

&'
I
=«1 e

= O(M)] as E or -t -~. It follows that the slowest
asymptotic decrease allowed for E,' as -t tends
to infinity, with O„b- 0;„, is asymptotic con-
stancy.

Therefore, from Eq. (2), the slowest asymptot-
ic decrease allowed for the effective form factors
is

=d d
=d(m fp(0+) d(m f~(

where the asterisk (*) denotes complex conjugate.
Carrying out the spin sum,

SP1IlS
2M

with C„, = constants. From Eq. (3) of Ref. 1,

Ig(P')I'-4M'/2a g't'

where M is the proton mass and A, = 10 '~ cm is
the universal "fundamental length. " So

To get an upper bound on the asymptotic behavior,
we must assume that the leading terms C„' are
nonzero. This implies

1 2M ~ (0) (p)Q

(2~)'I~(P )I'
SPIIlS

(G.,.).„-I~I~(~)I',
where K is a constant. But from Eq. (3) of Ref. 1,

lz(~)l'-[2~&'(q')„J '

and since (q')„b= t[(t/4M') —1], we obtain the
slowest possible asymptotic decrease of the ef-
fective form factors

(G, „)„,-O(t-').

It is interesting that, both in the above result
and in Ref. 1, the slowest asymptotic decrease
allowed by this theory seems to be realized in
nature. In the present case one can of course
assert this only for G„: The asymptotic behav-
ior of G~ is not yet known. Qur theory predicts
that when G~ is measured at very large t, it too
will be found to drop off like t '. Finally, it
should be noted that the same analysis as the
above applies also to electron-electron scattering.
Thus, the present theory predicts that at ex'"eme-
ly high energies ee elastic scattering should
closely resemble eP elastic scattering.
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In the stochastic theory, there are some additional
terms in Eq. (1). They are, however, O(A), where X
= %0 ~4 cm is the universal "fundamental length. " We
therefore feel justified in neglecting these terms.
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303 (1963); R. L. Ingraham, Renormalization Theory of
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4in this case the factor (g(q)(2 comes from the photon

propagator. For the barest sketch of the role of this
kinematical form factor in the theory, see Ref. 1.

For the necessary modifications to the usual Lehmann-
Symanzik-Zimmerxnann rules, see Ref. 1. There is also a
term involving an equal-time commutator, which can be
shown to be asymptotically negligible compared with the
displayed term.
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Sum rules for inclusive reactions, which are the analogs of superconvergence relations
for two-body reactions, are discussed. A local-saturation approximation to one of these
sum rules yields (d&/dt)~& ~0~++ = 2(do/dt)~-& ~0„, which is in good agreement with ex-
periment.

It has recently been shown"' that one may write sum rules in the missing-mass variable of inclusive
reactions, which are the analogs of finite-energy sum rules for two-body reactions. The zeroth-moment
sum rule takes the form'

J, dtdM' „„dtdM'

(1 y y T ) N~k&o)( ($)(e(f) ~«( )~~s(t)t &&( )&fi( )
7~ TJ7$

o'~(o) + 1 —o. ;(f) —u, (&)
'

Here, as in Ref. 2, s=(p, +p,)', t=(p, —p,)', and
M is the missing mass; the P's are the ordinary
Regge, and g,.z the triple-Regge, couplings in the
configuration shown in Fig. 1; $,(f) =(T, +e ""~ ' )/
sinwo, (t), and r, =+1 is the Regge signature. The
inclusive cross sections in (1) are to be evaluated
with s large and (approximately) fixed, and with
t small and fixed.

It is the purpose of this note to suggest that it
might be particularly interesting to look at those
special cases of this type of sum rule in which the
terms on the right-hand side either are entirely
absent or are negligible. In these cases, we would
have sum rules relating integrals over the (fairly
low) missing-mass spectrum at each fixed f, which
would not involve any triple (or even ordinary)
Regge parameters. These sum rules could en-
able us, for example, to predict the size of cer-
tain inclusive cross sections, once certain others
had been measured. Below, we illustrate with a

few examples how such sum rules may be ob-
tained, and also attempt to assess the utility of
these sum rules by saturating them with experi-
mental values for the low-I' spectrum, in cases
for which these data are available.

One way to construct finite-mass sum rules in
which no Regge parameters appear is to take
linear combinations of sum rules of the type of
Eq. (1) for different reactions, in such a way that
all of the ugly Regge terms on the right-hand side
would cancel. This is equivalent to constructing
an amplitude with exotic quantum numbers in the
bb channel, and then writing a superconvergence
relation for that amplitude. The inclusive cross
section for ab- cx can be written, in the Regge
region, as

dtdM'dtdM s, ,
(2)


