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We argue that the result of a recent comparison of single-particle spectra at accelerator and
cosmic-ray energies is evidence for clustering effects in individual events rather than for a
breakdown of the hadronic scaling, as originally suggested. It is pointed out that clustering on

rapidity plots corresponding to individual events results, as a kinematic reflection, from the
small inelasticity of the through-going particles. A simple model of inclusive spectra (sug-
gested by multiperipheralism and gas-liquid analogy), with kinematic clustering built into it
from the outset, is proposed.

In a recent issue of the Physical Aevieu Letters,
von Lindern et al. ' compare 28-GeV bubble-cham-
ber data on pp collisions with cosmic-ray inter-
actions observed at E„„~10' GeV in nuclear emul-
sions. The principal purpose of their work is to

test whether single-particle spectra approach
finite, energy-independent limits, as they should
do according to the hadronic scaling hypothesis. ~' '
The conclusion of the paper is that at primary en-
ergies as high as 104 Qe& the scaling limit is very
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where y~ is the rapidity of the jth secondary and

far from being reached (e.g. , the expected plateau
in the central region of the one-particle rapidity
distribution is apparently absent). If this were
true the usefulness of the scaling hypothesis could
legitimately be questioned. Since, otherwise, this
hypothesis has much appeal, it is important to in-
quire whether a different interpretation can be
given to the startling result of von Lindern et al.
(and also whether some biases are not at the ori-
gin of their conclusion). In fact, it is easy to crit-
icize an emulsion cosmic-ray experiment, but
we shall not repeat the standard objections, cer-
tainly well known to the authors of the above-
mentioned paper. We believe that the result of
von Lindern et al. may have deeper roots than just
the obvious biases associated with emulsion ex-
periments at high energies. Indeed, we shall ar-
gue that this result can be regarded as an evidence
for an interesting physical phenomenon (clustering)
without necessarily contradicting the scaling hy-
pothesis.

Let us remark that the present emphasis on the
one- or two-particle inclusive spectra leaves
aside the very important question: What do the
individual events look like? To avoid misunder-
standing let us stress that we are not interested
here in the comparison of the inclusive spectra
with their exclusive components. We would like
rather to emphasize the importance of parameters
describing events as a sekole and of the inclusive
spectra of these parameters. For definiteness,
we focus our attention on the rapidity distributions.
With regard to the question of the structure of in-
dividual events the, following two alternative cases
can be distinguished:

(i) The structure of individual rapidity plots is
not very different from the average situation (as
described by the one-particle spectrum).

(ii) Particles have a tendency to cluster' on rap-
idity plots representing individual events, the po-
sition and size of the cluster(s) varying from one
event to another.

Notice that if the case (ii) is true, large fluctua-
tions of the position and size of the cluster(s) from
one event to another can easily result in a uni-
form average rapidity distribution, in agreement
with Feynman's scaling hypothesis. '

One can give a simple argument to show that (ii)
should be preferred to (i) if one wants to avoid a
contradiction between scaling and cosmic-ray data.
In fact, the distribution of the dispersion o of in-
dividual rapidity plots, defined by

(2)

is obviously sensitive to clustering. Although cos-
mic-ray data yield angular rather than rapidity
distributions, the approximate equivalence be-
tween the lab rapidity y„„and the log„tan0„„vari-
ab1e'

log, tan0„„= og, o
—y„~, O„„co (3)

( logip tan 8»&)» = —
logy p (5)

If (i) were true, nucleon-nucleon collision pro-
ducts would be distributed approximately symmet-
rically in the center-of-mass frame and one would
have

y*= vs/2m. (6)

The value of (o) at a given energy could thus be
obtained, averaging over events characterized by
the corresponding value of ( log, p tang»~)» (at high-
est energies the energy of the collision is usually
unknown). The parameter (o) calculated in this
manner' increases slowly with ~(log, ptan8»„)» ~,
without bypassing 0.8, although ~( log»tan6»~)„~
rises above 2:

(v) ~ 0.8.
This figure for ( o) appears rather surprisingly

small when (i) and scaling are postulated. ' In-
deed, assuming uniform rapidity distribution with-
in an interval of length L one easily finds

( o) = I,/2W3 . (8)

Now, if L is approximately equal to the length of
the available rapidity interval (or, using Feyn-
man's gas-1iquid analogy, to the space between
the "walls" within which the gas is contained), i.e.,
if I, = log»(s/m'), one expects to have

(o) = 1 to 1.5,

for primary energies ranging from 10' to 10' QeV.
The discrepancy between (I) and (9) is not aston-
ishing, however, if (ii) is true. Clustering re-

permits one to use these data to get information on
the structure of rapidity plots at ultrahigh ener-
gies. From the transformation properties of y
one easily deduces that the average lab rapidity in
one event is given by

yj Q loglp (2r*)

where y* is the Lorentz factor for the transforma-
tion from the lab frame to the frame where the
event is forward-backward-symmetric (in practice,
this symmetry can only be approximate, of course).
Using (3) one can rewrite (4) as (Castagnoli's equa-
tion )
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duces the effective length of individual rapidity
plots (if one forgets the leading particles which
are close to the "walls" ); also the collective mo-
tion of other-than-leading particles makes
(log„tan6, )„apoor estimate of the primary en-
ergy (see later).

It seems that the apparent inconsistency with
scaling, reported by von Lindern et al. is closely
related to the otherwise observed smallness of
(o) [the dispersion of the compound log»tan6 plot
presented in Ref. 1 is, as far as one can see, com-
patible with (7)]. One is thus led to inquire whether
again the clustering effects cannot be regarded as
being responsible for the result.

Yon Lindern et al. claim that individual events
are symmetric in the center-of-mass frame and
use Castagnoli's technique [Eq. (5) with y* given
by Eq. (6)] to determine the primary energy. It
seems to us that this claim does not rest on a
very solid ground. The check of Castagnoli's'
technique at about 30 GeV, quoted in Ref. 1, is
not conclusive. This technique was found accept-
able for events with the number of charged sec-
ondaries ~4 only, that is, equal or higher than
the average. The fluctuations of (log»tan6„b), „
are suppressed for purely kinematic reasons at
relatively low energies, where there is not enough

energy left for production to allow a group of sec-
ondaries to have rather large values for both the
effective mass (multiplicity) and the kinetic ener-
gy of coll.ective motion in the center-of-mass sys-
tem. At cosmic-ray energies the presence of
strongly asymmetric events has repeatedly been
reported. " In fact, we feel that a reliable esti-
mation of the importance of asymmetries in in-
dividual cosmic-ray interactions can hardly be
given at present, even using the so-called un-
biased samples, because of measurement errors,
poor statistics, uncertainties about the elemen-
tary nature of the interaction and other typical
diseases of cosmic-ray experiments. On the
other hand, assuming symmetric emission in

c.m. system is particularly dangerous when one
attempts to test scaling. In the presence of im-
portant clustering [case (ii)] scaling requires
strong fluctuations of y* around its average value
and (log»tan6„b), „(or equivalently y„„) is expect-
ed to be a poor estimate of the primary energy.
It is thus important to realize that the histogram
obtained by adding plots with a given y„b but un-
known primary energy is different from the histo-
gram one gets when plots corresponding to a fixed
collision energy but fluctuating y„„are added (es-
pecially if one recalls what the spectrum of en-
ergy of the cosmic radiation is).

In other words, see suspect that the histogram
Presented by eon Linden et al. does not rePxe-
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sent Jd'q(Edo/d~q), the quantity which is expected
to scale. The possible bias is visualized in Fig. 1:
In order to get the inclusive one-particle spec-
trum fd'q(Edg/d'q) one should add plots (a) and

(b) at energy E, and plots (c) and (d) at energy E,.
The use of Castagnoli's technique implies adding
(a)+ (c) and (b)+ (d). The nature of the deforma-
tion of the one-particle spectrum introduced in
this manner is quite obvious.

At this point of our discussion, the breakdown
of scaling and clustering in individual events ap-
pear as two more or less alternative interpreta-
tions of the result of Ref. 1 and of the smallness
of (o) (of course, one can have clustering and no
scaling; we are just discussing the simplest pic-
ture of what is happening). One can argue, how-
ever, that over-all scaling but with clustering in
individual events is more likely to be a realistic
picture.

First, if the genuine one-particle rapidity (or
log»tan6) distribution were nearly Gaussian (as
is the spectrum presented in Fig. 2 of Ref. I) a
nontrivial dynamical mechanism would have to
be postulated to account for the relatively abun-
dant appearance at these energies of the so-called
"two-center" (or "two-fireball" ) events. ' On the
other hand, it was pointed out several years ago
by Czyzewski and one of us" that the frequent
appearance of the two-fireball events can be con-
sidered as a rather straightforward consequence
of scaling. The fact that the two-fireball events
begin to show up above 10 GeV, that is, exactly
at energies where a plateau in the log«tan0 dis-
tributions is expected to set in, is perhaps not a
pure coincidence.

Second, the kinematic reflection of the existence
of the leading particles provides a simple mech-
anism for clustering. This has already been dis-
cussed by Berger and one of us" in a slightly dif-
ferent context. Denoting by x,. =2q, ~/v s the Feyn-
man variables of the leading particles and assum-
ing that the latter are nonwee, one easily obtains
the following expressions for the effective mass

FIG. 1. The bias introduced by the use of Castagnoli's
technique to estimate the primary energy, in the presence
of important clustering effects, and its influence on the
one-particle spectrum obtained: instead of adding (a) + (b)
and (c) +(d) (corresponding to the same energy E& and

E2, respectively) one rather adds (a) + (c) and (b) + (d).
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squared s' and the average rapidity of other-than-
leading particles,

s' = s(1 —x,)(1+x,),

y „b= Iog, o(v s /m) + —,
'

log, olo &+X,

(10)

Notice that the deviation of y„„from its over-all
average value (y„b) [=logM(vs/m) for identical
incident particles] is a measure of the velocity of
the collective motion of other-than-leading par-
ticles with respect to the c.m. system (this follows
directly from the transformation properties of the
rapidity variable). The observed weak dependence
of the leading particle differential cross sections
on x,. (provided x,. is not too small) indicates large
fluctuations of both s' and y„„ if super-long-range
correlation between leading particles at ultrahigh
energies is absent:

6Pg
dx, Cx, = const dx, Cx,

Xl X2

tions is possible, of course, although it does not
fit with the current models of multiparticle pro-
duction). Incidentally, let us mention that assum-
ing Regge-pole saturation of Mueller's optical
formula" one gets an energy-independent two-par-
ticle correlation length. "

The long-range correlations associated with
clustering effects, and especially with the kine-
matic clustering, presumably correspond in
Mueller's theorem language to Regge cuts. We
think that instead of eventually attempting fits
with Regge cuts, etc. , as people did for the two-
body scattering, it is more interesting, as far as
inclusive phenomenology is concerned, to try to
understand the clustering effects. The inclusive
spectra relative to clusters should be studied, and
in particular those describing the cluster of other-
than-leading particles.

To be more precise, let us define besides the
conventional one-particle inclusive spectrum (P,.
are the momenta of the incident particles)

~—ds'd(y„„- ( y„,)) . (11)
1 f qPaP2 =

d3( )
Fd(7

0'ln
(12)

When s' is sufficiently smaller than s, the other-
than-leading particles are confined, on the rapid-
ity plot, to an interval smaller than the a Priori
available space. When the multiplicity is not too
small'4 significant accumulations of the density of
points in individual rapidity plots are expected.
Using the gas-liquid analogy one would say that
the fluctuations of the positions of particles close
to the "walls" determine the collective motion of
other particles within the container. The impor-
tant point to realize is that there are (almost)
always particles close to the "walls, " namely, the
leading particles.

The size on the rapidity plot of a cluster of
other-than-leading particles is determined by the
value of Ms'/(multiplicity). If in the rest frame
of the cluster the average momentum of a second-
ary particle is comparable to the average trans-
verse momentum (q) =(qr) (the three-dimension-
al regime of Ref. 13), points on the rapidity plot
are distributed normally with dispersion 0.4.
on the other hand (q)»(qr) (the one-dimensional
regime of Ref. 13), the density within the cluster
becomes roughly uniform and its size is propor-
tional to log(s'/(q )'). Hence the kinematic cluster-
ing effect produces correlations in the rapidity
space with characteristic length presumably in-
creasing asymptotically like logs (cf. Ref. 13). It
is interesting that recent analysis of the moments
of multiplicity distributions suggests the existence
of long-range correlations. " The kinematic clus-
tering effect could easily be the needed correla-
tion (the presence of long-range dynamic correla-

f(ql q'q "P,P,) =f(q, P, -q', P, -q") (13)

and neglecting correlations between leading par-
ticles, one obtains the following integral equa-
tion" (we consider the case of identical spinless
particle scattering, for simplicity):

f(qPiP. ) =Q I g(qP, P2)
j= 1

+ (dq')(dq")h, (q'P, P,)

xI (q "P P.)f(q, P —q, P. q"), (14)

the "conditional probability" f(q~ q'q"P, P,) (also
normalized to the number of particles) that a non-
leading particle has momentum q when the leading
particles momenta are q' and q". The challenging
questions which, we believe, can be at least par-
tially tested with data accumulated on the existing
Data Summary Tapes, are: What does the distribu-
tion of f(q~ q'q") look like? Does it depend on the
total energy vs or only on the effective mass vs'?
How does f(q~ q'q") compare to f(q) measured at
(total c.m. energy) =vs' '?

As far as the last question is concerned, let us
remark that the multiperipheral model and the
gas-liquid analogy suggest that f(q~ q'q") and f(q)
at (total c.m. energy) =Ms' look quite similar.
This statement can be a starting point for a sim-
ple model of inclusive spectra, with the kinemat-
ic clustering effect built in it from the outset. In

fact, assuming
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where h&(qP, P,) are defined analogously to (12) but
for leading particles" (and are invariantly nor-
malized to unity). The kinematic sum rule"

J (dq)q„f (qual P2) =Pi„+ f 2„

is identically satisfied by the solution of Eq. (14),
as it should be. Furthermore if hz(q), considered
as input functions, scale asymptotically so does
f(q). Equation (13) can be called the recursion
conjecture since it permits one to express the in-

elusive spectrum at a given energy by the corre-
sponding spectra at all lower energies. Equation
(14) is expected to hold (if at all) at not-too-small
energies. It can be used to study the evolution
with energy of the rapidity plots, which are ini-
tially (at lower energies) approximately Gaussian.
However, a more detailed discussion of this point
is outside the scope of this paper.

We are indebted to Professor R. P. Feynman
for reading the manuscript of this paper.
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