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It is assumed that the chiral-symmetry-breaking Hamiltonian density transforms as part
of the (8, 8) representation of SU(3) (3SU(3). We then derive a spectral-function sum rule for
the model and make use of SU(3) assumptions to determine the symmetry-breaking parameter
z. We find z = -0.565, in agreement with previous evaluations which made use of different
techniques. The analogy to the (3, 3)6 (3, 3) model of SU(3) SU(3) -symmetry breaking is
stressed. Other values of z for which the (8, 8) model exhibits distinct qualitative features
are also discussed. We conclude by presenting the soft-pion calculation of the K)3 form
factors in the (8, 8) model.

I. INTRODUCTION

There has recently been interest in the possibili-
ty that the chiral-symmetry-breaking Hamiltonian
H' is part of the (8, 8) representation of SU(3)

S SU(3).' ' We shall not discuss here the (differ-
ent) motivations of the authors of those references
to abandon the (3, 3)$ (3, 3) Gell-Mann —Oakes-
Renner (GMOR, Refs. 6 and 7) scheme. We mere
ly state that there are some apparent experimental
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difficulties of that model4' and thus the study of
more complicated schemes is certainly of interest.

If one abandons the (3, 3)6 (3, 3) model the next
simplest possibility is the assumption that II trans-
forms entirely as part of the (8, 8) representation
of SU(3}8SU(3). Therefore, this alternative
should be thoroughly investigated. Some steps in
this direction have already been undertaken. ' '

We assume in the present paper that II' belongs
to the (8, 8) representation of SU(3) 8 SU(3). It is
then our first task in Sec. III to derive a spectral-
function sum rule (SFSR) for such a model. In this
way we make explicit that this particular SFSR
(which was first derived by the authors in Ref. 2

under more restrictive assumptions) holds in any
(8, 8)-symmetry-breaking scheme. We then first
make use of this SFSR to express the vacuum ex-
pectation value (VEV) of H' in terms of the VEV of
the 0 terms. This is of interest' "for theories of
scale symmetry breaking with a c-number 5.

In Sec. IV we employ this SFSR and in addition
make use of SU(3) arguments in order to deter-
mine the value of the symmetry-breaking parame-
ter z of the (8, 8) model. It is a remarkable fact
that the value of z so obtained, namely

1 2(m~/m, )'+ I
4 (m„/m „)' —1

= -0.565,

is the same as that found in Hefs. 1 and 5 making
use of different assumptions.

For instructive purposes we always emphasize
the analogy to the (3, 3)8 (3, 3) model by first car-
rying out our calculations in that well-known
scheme. Our discussion in that case partly over-
laps that of Refs. 12 and 13. However, we feel
that some of the points in Sec. IV that concern the
GMOR model are presently of particular interest
since the assumptions of GMOR are influenced by
the possible contributions of e poles to the matrix
elements of the scalar densities g,. between pseudo-
scalar-meson states. ' " We, on the other hand,
only make use of assumptions which are apparent-
ly not influenced by the e contribution. As our
main result in this case, SU(3) for (Q ~B "2„"~P8)
yields (by use of a spectral-function sum rule for
the vacuum expectation value of the o terms"'" ")
tuo possible values of the symmetry-breaking pa-
rameter c of that model, namely c= -1.25 and
c =0.05. As is well known, the latter value implies
a str'ong breaking of SU(3) for (Q ~v „~Pq). Vice
versa, SU(3) for (Q ~v ~Pz) yields c= -1.25 and
c =0.15, the latter value implying a strong break-
ing of SU(3) for (Q~a~~„~P8) From SU(3) sy. mme-
try for both (Q ~»A„" ~PG) and (Q ~v ~PB) one of
course immediately obtains c = -1.25, together

with the Gell-Mann-Okubo mass formula for the q.
However, let us stress once again that our main
interest in this paper lies in the (8, 8) model.

In current-algebra models it is sometimes as-
sumed that the pion 0 terms are isoscalar, a hy-
pothesis which might be tested in nm scattering.
However, nothing conclusive about them is yet
known. If it would turn out that the pion terms
have a considerable isospin-two part then, of
course, the (3, 3)6 (3, 3) model would be ruled out.
It is also interesting to ask the converse question
within our context: Would the absence of an iso-
spin-two part of the pion o term necessarily rule
out the (8, 8) model? The first part of Sec. V is
devoted to a study of this question. Namely, for
z = -1 it is seen (Appendix B) that the pion g terms
are isoscalar. This value is not too far from the
value z = -0.565, obtained in Sec. IV from SU(3)
assumptions. It is, however, seen (Sec. V) that
the SU(3) assumptions of Sec. IV are strongly vio-
lated for z = -1. Thus, isoscalar pion o terms at
an operator level together with the approximate
validity of our SU(3) assumptions in Sec. IV would
exclude the (8, 8) model.

Furthermore, we comment in Sec. V on the ques-
tion (frequently asked and criticized in the litera-
ture) of whether the Hamiltonian density can be in-
variant under Kuo transformations. We shall see
that if in the (8, 8) model one requires invariance
under such transformations one is led to z = —,

' and,
therefore, to a very large violation of SU(3). It is
thus concluded that in the (8, 8) scheme the Hamil-
tonian density cannot be (neither exactly nor ap-
proximately) invariant under Kuo transformations.

We conclude by investigating in Sec. VI the K,3

form factors (see Ref. 17 for a review of the ex-
perimental situation) under the SU(3) assumptions
in Eq. (4.17) and recover the well-known Callan-
Treiman relation. We then present an argument
as to why this relation should in general be ex-
pected to be valid if both the vacuum and the pseu-
doscalar meson states are approximately SU(3)
symmetric.

In the K„calculations of Sec. VI a particular dif-
ference between the (3, 3)8 (3, 3) and the (8, 8) mod-
el will become apparent. Namely, in the (8, 8)
model the commutators between the axial charges
Q„' and the vector current divergences are not
proportional to linear combinations of current di-
vergences. On the other hand, in the (3, 3) $ (3, 3)
model this proportionality holds for all values of
the symmetry-breaking parameter.

4I. DEFINING EQUATIONS FOR THE MODEL

For the convenience of the reader we present in
this section the defining equations of the (8, 8) rep-
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resentation, essentially following Ref. 1. The (8, 8)
has 64 operators, which we call S B with n, P= 1,
. . . , 8, transforming as

[Q"" (.)]= g [f"""( ) f." ' (.)]
(2.1a)

T„(x)= e-(x)

=T„(x)+T (x) -VEV,

with

a&3
T,', (x) = ~ Q S, (x) +

2~5 g d, „8$,"8(x) .
n=1 n, B=1

(2.5a)

under the SU(3) charges Q", a,nd as
8

[Q„,S 'y(x)] = ig [f y'S "(x)—f""S'y(x)]

(2.1b)

under the axial SU(3)S SU(3) charges Q„. Defining
symmetric and antisymmetric combinations of the
SnB by

(2.5b)

In Eg. (2.5), T~ is invariant under SU(3) SU(3)
and T,', is [as seen from (2.5b)] a scalar (assum-
ing, of course, that S,"8 is). It will be convenient
to define a quantity z by

(2.6)

and

SnB SnB+SBn
S (2.2a)

The current divergences may then be obtained
from the above by use of the relation

SnB SnB S Bn
a (2.2b) & "Z„'(x)= [iT,',(x), Q'(x, )], (2.7)

we note that these transform as

[Q",$»(x)]=ig [f"y'SB'(x)+f «S,'y(x)], (2.3a)

where a= 1, . . . , 16 and J& denotes the vector and
axial-vector currents. Since the explicit form of
these divergences is sometimes useful, we have
listed them in Appendix A.

and

[Qa $8y( )] —ig [fay6$86 fn86$y6( )] (2.3d)

Assuming that Sn B and Sn B have definite parities
we see that the parity of S, B is opposite to that of
S, B. Analogously, we first see that the operators
an and bn defined by

[Q„say(x)]=zg [f y~s~~(x)+ f ~~sy (x)] (2 3b)
5=1

8

[Q",S.'y(x)] = i p [I"y'S,"(x)—f"8'syt'(x)], (2.3c)

III. SUM RULES FOR SPECTRAL FUNCTIONS

For the (3, 3)$ (3, 3) model the vacuum expecta-
tion values of the o terms [Q', &"P„]have been
thoroughly discussed in Refs. 12 and 13. As has
first been pointed out in Ref. 12, a relation involv-
ing only the VEV of the 0 terms follows in. that
model. That relation reads

3o„(8)+o„(3)= 4[os(4) +o„(4)]. (3.1)

[See Eq. (3.5) for the definition of the o's. ] In addi-
tion one has" "

8

a„= g d, ,S,'y
B,y=1

(2.4a) ov(4) =— o„(3)+ o„(4)
3c 1 . 2

(3.2)

8

t =Zfsys"
B,y=a

(2.4b)

transform as octets under SU(3). For such octets
(as well as for singlets), the meaning of definite
behavior under charge conjugation is well defined. "
The commutation relations then imply that the C
parities of a and b are the same. In order that
the Hamiltonian has a part transforming as the
eighth component of an octet, C must be positive.
In order that the singlet can also be present, the
parity of S, B must be positive. Thus also the a' s
have positive parity. The most general SU(3)
S SU(3)-symmetry-breaking Hamiltonian con-
structed out of the (8, 8) representation may then
be written as

It should be noticed that (3.1) does not depend on
the value of the symmetry-breaking parameter c.
As has already been pointed out in Ref. 2, in the
(8, 8) model there is just one relation between the
VEV of the o terms. It reads

o„(4)= — o„(3)+ (3 —4z)ov(4)
3(1 —2z)

1+6z -4z'
4(1 ~ 2gm)

(3.3)

The main difference between (3.1) and (3.3) is
that (3.3) [in analogy to (3.2)] depends on the sym-
metry-breaking parameter z of the model. It is
one of the purposes of this section to show that
Eq. (3.3) holds in any (8, 8)-symmetry-breaking
scheme and does not depend on the further assump-
tions made in Ref. 2.
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(n (S."z(x) ~n) = 6'S(n) (3.4)

In order to derive Eq. (3.3) we first have to ex-
press the VEV of the S, 8 in terms of the VEV of
the o terms. The resulting expressions also de-
serve some interest by themselves since, e.g. ,
the VEV of Too may be expressed in terms of
them [Eqs. (3.13) below] W. e start by defining

formulas

2 2

a~(4)= '
2

K

2 2

a„(8)='"., a, (4)=
K

(3.10)

and

(3 5)

and

S(1)=S(2) =S(3)

S(4) =S(5) =S(6)=S(7)

(3.6a)

(3.6b)

It is then very easy to obtain Eq. (3.5) together
with the further properties

a.(1)= a.(2) = a„(3),
a (4) = a (5) = a (6) =a„(7),
a, (1)=a, (2) =a' (3) =a (8) =0,

and

(3.7a)

(3.7b)

(3.7c)

-i(n ~[Q~(xo), & "Jp8(x)] ~n) = 5"Bag(a. ) .

Equation (3.4) follows from SU(2), S I' invariance,
which also yields

where we have neglected (following GMOR) qq' mix-
ing. In the above, the f, are. defined by (with Pz
denoting the pseudoscalar mesons)

(3.11)

One might think that the positivity of the o~(o.)
alone via Eq. (3.9) restricts the possible values of
z. This is, however, not the case.

We conclude this section by expressing the VEV
of the SU(3) S SU(3)-symmetry-breaking Ha, mil-
tonian in terms of the oz(n). This is of interest
in the context of broken scale symmetry due to the
following reason: If 5 (for further reference and
details the reader should consult Refs. 11 and 14)
is a c number, then the commutator between the
dilatation charge Q~ and T„" is given by (H' = T,',)—

a, (4) =a, (5) =a, (6) =a, (7) (3.7d) [Q (0), T„"(0)]=+il(l -4)H'(0) . (3.12)

s(3) = —
12 1 [a„(8)—3a„(3)],

&5

1 v5
(4)=H 3(1 2, )

„(8),

(3.8a)

(3.8b)

Since the commutators in Eq. (3.5) are linear
forms in the S, 8 we see that this equation provides
us with an expression for the a~(o.) in terms of the
S(n) (The exp.licit forms may be read off in Ap-
pendix B.) Noticing that we have four independent
a~(o. ) and only three independent S(o.), we will
have [solving for the S(n) in terms of the az(a. )]
three expressions for the S(n) and a relation be-
tween the a ~(n)

These are

As in the (3, 3)8 (3, 3) model, one may now take the
VEV of this relation and express (H')0 in terms of
the a~(n). Using Eqs. (3.10) and saturating
([QD, T"„(0)]),by the e contribution a relation be-
tween G, (defined by (0 ~T"„~e)= G, ) and the f" is ob-
tained (involving also l and z). Similar analysis
applies for the well-known (3, 3)8 (3, 3) scheme.
In this way the result of Ref. 10 (obtained there by
using an equivalent Ward identity) for the (3, 3)
6 (3, 3) model is generalized to the (8, 8). Pre-
cisely our technique was employed in Ref. 19 in
order to analyze the commutator [Qa(0), a(0)]
=ila(0) which is the same as Eq. (3.12) for SU(2)
I3 SU(2) with a defined by

S(8)= 3 . 8
4(l+z) a.(3)+3a (4)

5+ 14@

12(1+z)(1—2z) " (3.8c)

a(0) = P [Q„",»~„"(0)]

and H' belonging to the (—'„—,') representation In the.
present case of (8, 8) symmetry breaking the VEV
of H' expressed in terms of the a~(o.) may be writ-
ten as

a„(4)= — a„(3)+(3—4z)a (4)
3(1-2z)

- 1+6@—4@2

4(1+z)(1 —2z) (3 9)

We want to note at this point that saturation of the
0 terms by the appropriate particles leads to the

—3z 4(1 -z)
(H'), =

4(1 )
a„(3) —

3 a~(4)

z (7 —2z)
12(1+z)(l —2z) "

or equivalently [using (3.9)] as

(3.13a)
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4z'+ 3z —4 4 1 -z
4(1+z)(3-4z) " 3 3-4z "

-8z'+6z'+z -4
+ . o„(8) .12(1+z)(1—2z)(3 —4z)

(3.13b)

For the purposes of broken scale symmetry [as de-
scribed after Eq. (3.12)] the form in (3.13b) seems
more convenient. The above analysis for the (8, 8)
model is given elsewhere by Genz, Handschig, and
Katz."

IV. DETERMINATION OF z
FROM SU(3) ARGUMENTS

We wish to make use in this section of SU(3) argu-
ments to determine the symmetry-breaking param-
eter z in the (8, 8) model. In order to clarify our
discussion we first present the similar analysis for
the well-known (3, 3)8 (3, 3) scheme. In this case
our methods are analogous to those of Ref. 13 and
we differ mainly in the point of view. Our argu-
ments lead to the well-known result of GMOR, i.e. ,
c= -1.25. However, we differ from them in that we
do not make any SU(3) or smoothness assumptions
for the matrix element (P„~u8~P ). [We denote the
scalar and pseudoscalar densities of the (3, 3)
8 (3, 3) model by u„and v„, respectively. ] We rath-
er directly assume that either of the matrix ele-
ments (Q ~»A„~PS) or (Q ~v„~p8) is SU(3)-symmet-
ric. Any one of these assumptions first yields two
possible values of c. In either of these cases the
solutions are c= -1.25 and c =0. For both values
it follows that v (4) =0, i.e. , the vacuum is approxi-
mately SU(3)-symmetric. However, we argue that
the solutions c =0 are unlikely in the real world
since they yield a laxpe amount of SU(3) breaking in

(Q(v ~P8) or (Q~S "A„"~P ), 8respectively. " We are
thus left with c = -1.25 as the physical solution to
either of these SU(3) assumptions.

Our method to determine c for the (3, 3)$ (3, 3)
model consists in eliminating o~(4) from Eqs. (3.1)
and (3.2). As discussed above this yields as one of
its consequences SU(3) invariance for the vacuum,
i.e., o~(4) =0. On the other hand, for (8, 8) we only
have one SFSR. Thus we will for this case further
assume that the vacuum is approximately SU(3)-
invariant in order to eliminate o (4). In this way
the value z = —0.565 is obtained for the (8, 8) model.
This is in agreement with the result obtained in
Ref. 5 by generalizing the GMOR arguments to the
(8, 8) model and assuming in addition that (Q ~S,"B~P )
=sf 8&. Furthermore, this value of z was also
found in Ref. 1 at a Lagrangian level.

We would like to stress at this point that our as-
sumptions are apparently not influenced by the pos-
sible contribution of e poles to the three-point func-
tion [for both the (3, 3)$ (3, 3) and the (8, 8) model].

(Q Iv„ Ip 8) = s 5 (4.1)

Using the definition in Eq. (3.11) it follows immedi-
ately from the above [and from the well-known ex-
pressions for the axial current divergences in the
(3, 3)$ (3, 3) model] that

(4.2)

m
(4.3)

In the above we have defined

and

Y —fF
m4 f' (4.4)

m f7l 7r

(4.5)

Note that according to our definition one has ex-
perimentally that

v'Y~ = 1.28,

i.e., v Yz is near to its SU(3) value

(4 5)

(4.7)

We next proceed by eliminating o~(4) from Eqs.
(3.1) and (3.2). The result is a quadratic equation
in c which involves (after saturating) Y„and Y„.
It reads" (assuming the Gell-Mann —Okubo mass
formula)

g m

+&2 11-83'
( )

—3Y„( ) c

+4 -1+4Y~ —3Y„" =0.

(4.8)

If we next assume SU(3) symmetry for
(Q ~s&A„~P8) we have Yz = Y„=1 and thus, upon
solving for c in (4.8) it follows that

-1.25
0.05

(4.9)

This may be of some value since the assumptions
of GMOR have been recently challenged on the
basis of such possible pole contributions. ""

We next first turn our attention to the (3, 3)
6 (3, 3) model and proceed to obtain consequences
of the assumption that the wave function renormali-
zation constants of the pseudoscalar densities g
obey SU(3) symmetry in the form (+ =0, . . . , 8,
P=1, . . . , 8)
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The solutions of the above equations are

-1.25
0.15

(4.10)

(4.11)

Our conclusions now follow from (4.2), (4.3), (4.9),
and (4.11). First of all, the assumption I'»=1 to-
gether with (4.2) numerically implies c= -1.25.
From Y„=1 we then obtain the Gell-Mann —Okubo
mass formula. Thus, c= -1.25 in the solutions
(4.9) and (4.11) [obtained there from either Y» = F„
= 1 or (4.1)] is in agreement with SU(3) symmetry
for both (n lv„lP&) and (n l»ApP8). For the other
value of c in (4.9) (i.e. , c=0.05) it immediately fol-
lows from Eqs. (4.2) and (4.3) that SU(3) symme-
try as written in Eq. (4.1) is badly violated. In
fact, this value of c and YK = Y„=1 approximately
yields

and

m, '
&nlv lA& m

(nlv, l») m„'
(n lv „17}) m „

(4.12)

(4.13)

On the other hand, the value c =0.15 in (4.11) badly
violates SU(3) symmetry for (n ls "A„"lP&) With.
this value of c we approximately obtain

(4.14)

On the other hand, if we instead assume Eq. (4.1)
we may eliminate Y» and F„ from (4.8) by making
use of Eqs. (4.2) and (4.3) [which are consequences
of (4.1)]. In this fashion another quadratic equa-
tion for c is obtained. It reads

2 4( )*.2(

.a~a a.a( )* 2( )'.
+2 1-4 " +3 =0.

&nls,"8IP&)=rf" &. (4.17)

(The preceding assumption has also been made in
Ref. 5.) Using again the definition in (3.11) we im-
mediately have, in analogy to (4.2) and (4.3),

and

'14@ 1
mE 2 2z+1

(I,)' 2z —1

(4.18)

(4.19)

1+6' -4z2
'4(1 . ~)"") (4.20}

Thus, since ov(4} cannot be eliminated as in the

(3, 3)8 (3, 3) model, we assume in addition approxi-
mate SU(3) invariance of the vacuum, i.e. ,

Q,"ln&=0. (4.21)

First of all, (4.21) has the obvious solution of ap-
proximate SU(3) symmetry for the Hamiltonian
(z '=0). Excluding this solution for the moment
we then obtain from (4.20) and (4.21) the (saturated)
sum rule" (assuming the Gell-Mann —Okubo mass
formula)

2

2(2 —az)'+4(1+z)(2 —azla
(

4 mK+(1+6z —4z') Y„— —— =0."-3 m. 3

(4.22)

For z '=0 the relations (4.18) and (4.19) once
again imply that either (4.17) is badly violated or
that I'» = (m, /m»)' and I'„= (m, /m „)4. Thus, as
before, the solution with physical masses and z '
= 0 is unlikely. Next, assuming (4.17), (4.21), and
z '=0, we may combine Eqs. (4.18), (4.19), and
(4.22} in order to obtain a cubic relation for z
which reads

In contrast to (3.1) and (3.2) we have only one spec-
tral-function sum rule for the a terms in the case
of (8, 8). It reads

o (4) = o„(4)+ (r„(3)
3(1-2z)

(4.15)

Finally, we return to Eq. (3.2) and note that for
this value of c (as well as for c =0) it follows that

o~(4) =0. (4.16)

After having illustrated our method in the well-
known case of (3, 3}$(3, 3)-symmetry breaking we
next proceed to the (8, 8). The SU(3) assumption
analogous to (4.1) now reads

16z3 -6 +7 K —1

+ 4z2 —12 K — K

+z 24 K —22 K +7

+12 +4 —1 =0.

(4.23)
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The solutions of Eq. (4.23) are

1 2(m»/m, )'+ I
4 (m»/m, )' —1

(4.24)

arguments which lead to z =-0.565. For a discus-
sion of the implications of this result and compari-
son with GMOR we refer the reader to the begin-
ning of this section.

+ (+2 + F2)1/2
z

2a

with

a=4 ' -6 +19

E +9 E

(4.25)

(4.28)

V. COMMENTS ON PION 0 TERMS AND THE KUO

TRANSFORMATION IN THE (8, 8) MODEL

The pion 0 terms are isoscalar at an operator
level in the (8, 8) model if and only if (Appendix 8)

(5.1)

On the other hand, recall that the SU(3) assump-
tions of Sec. IV led us to

and z = -0.565 . (5.2)

K 3 K +3 E'

Numerically, we have

z, = -0.565,

z = -0.49,

and

z =0.51.

(4.27)

(4.28)

(4.29)

(4.30)

The values for z in Eqs. (5.1) and (5.2) differ by
about 40%%uo. Depending on the point of view this
difference might or might not'a p~o~ be consid-
ered acceptable.

We next analyze in more detail the value in Eq.
(5.1) and show that the value» = -1 in fact implies
strong violation of SU(3) symmetry.

To see this we first combine (5.1) with (3.3) (as-
suming only that the o terms are finite) and obtain
[noticing that (3.3) has a pole at » =-1]

Out of these, only z, appears to be physical.
Namely, making use of (4.18) and (4.19) it yields
Y~= Y„=1. On the other hand, for z and z, one
gets Y~ = 121 and Y~ = 4 x 10 ' =0, respectively.
Thus these two solutions are ruled out. Incidental-
ly, note also that as m, -0, z, =z =-z, =-—,'.

In analogy to the (3, 3)S (3, 3) case we next use
the facts derived above to obtain the value z
= -0.565 from various assumptions. Combining
SU(3) for (0 ~S"8~P ) and ~Q) and assuming, say,
0.01 & YE &100, we have the desired result. Sec-
ondly we may also assume Y~ =1 together with
(4.17) and obtain Eq. (1.1) from (4.18). Further-
more Y„=1 once again yields the Gell-Mann-
Okubo mass formula. If one uses the physical val-
ue of Y» in (4.18) one obtains

z = -0.55 (4.31)

(together with QI'„=1.29). The reader should how-
ever notice that this solution yields a negative v (4)
[Eq. (3.9)] and is therefore excluded. Finally, in
case of SU(3) for the vacuum, » ' 4 0, and Y» = F„
= 1 we may use (4.22) in order to obtain the solu-
tions» = —', or Eq. (4.24) (i.e. »= -0.565). The so-
lution z = —, yields Y~- Y„-0.01 if combined with
(4.18) and (4.19), showing that for this value (4.17)
[from which (4.18) and (4.19) were derived] is bad-
ly broken. Qfe conclude again that this solution is
less likely so that (4.21) together with I'» = F„=1
implies z = -0.565.

In summary, we have presented above three

3v„(3)= o„(8)

which when saturated yields

(5.3)

(5.4)

F„=9( ) (5.5)

Furthermore, from (4.18) [another direct conse-
quence of (4.17)] one obtains for» = -1 that

25 m li'
4 m )

(5.8)

in strong violation of the experimental value for
I'». We therefore conclude that SU(3) symmetry as
written in Eq. (4.17) is badly violated if the pion o

terms are isoscalar at an operator level in the
(8, 8) model.

We conclude this section by discussing the value

j.z Q j (5.7)

since only for this value of z the apparent paradox
discovered by Kuo

' is not present in the (8, .8)
model. The pole ate =—,

' appears in Eqs. (3.8)
and (3.9) only in the form v„(8)(1—2») ' and thus
Eq. (5.4) implies

This result already implies a large violation of
SU(3). Furthermore, it also implies that (4.17) is
strongly violated since (4.19) [which is directly ob-
tained from (4.17)] leads for z =-1 to
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o„'(8) =0, (5.8) in order to see that this equivalence means

with the obvious consequence f„'/m„4=0 or, if
finite, m„'=0. Thus, in contrast to the (3, 3)
6 (3, 3) case, a large amount of SU(3) breaking is
present in the (8, 8) model if the Hamiltonian is in-
variant under Kuo transformations.

VI. DISCUSSION OF E)3 DECAYS

IN THE (8, 8) MODEL

We start by writing the K» matrix element as

&»'(q)l » v»„(0)IK'(p)&

[f,(q', t)(m, '-m»') —tf (q', t)]

(6.1)

with t = (p —q)'. Reducing out the pion and per-
forming the limit q„-0 one arrives in the stan-
dard fashion at

~ &Ill[q„', »v" (o)]IIf'(p)&

=-—[f,(o, m»2)(m, '-m»')-m»'f (O, m ')].
2

(6 2)

As is also well known, if one instead starts from
the matrix element

&~'(q)l v„(o)IA'(p)&

one arrives by the same technique at the Callan-
Treiman relation, which reads

tyl 2
-i " «IÃ, v„(0)]IK'(p)&

I
[f,(0, m»') +f (0, m»')] p„.

2

(6.3)

&nl [q», »A„'(0)]lac(q)& = o.

In the (3, 3 )8 (3, 3) model each of the terms in Eq.
(6.4) is proportional to

(6.5)

s~[q„"(0),V„"(O)]o.sjA»

for all values of c. In contrast, this is never the
case in the (8, 8) scheme. However, for» =+1 the
matrix elements of the commutators in Eq. (6.4)
may be solely expressed in terms of

&nl»[q„'(0), vp (0)]lK'& o. &0l s"A"lK'&.

&nl s."lx'& = i &nls,"lz'&

Thus, only for this value of z can the soft-pion
prediction for the K» form factors be completely
worked out in the (8, 8) model without making any
additional assumptions. It is worthwhile to em-
phasize at this point that Eq. (6.5) at most holds
for certain values of the symmetry-breaking pa-
rameter. These, however, are expected to be ap-
proximately the same as those discussed in Sec.
lv [i.e., c=-v2 for the (3, 3)e(3, 3) model, and
g= -0.565 for the (8, 8) case]. In order to see this
we note that by making use of the SU(3) assump-
tions of that section [i.e., Q~ lQ& =0, SU(3) for
pseudoscalar-meson states, and &0 lv„ lPB& = s5„q
or &QlS SlP ) =rf„8 J the left-hand side of Eq.
(6.5) becomes essentially proportional to m, ' and

may then be neglected. Thus, Eqs. (6.2) and (6.3)
lead to physically different results only if there is
a strong breaking of SU(3). This is, of course,
well known for the (3, 3)8 (3, 3) model and will be
seen explicitly later on in this section for the (8, 8)
chiral- symmetry-breaking model.

We next proceed to calculate the matrix element
in Eq. (6.2) in the (8, 8) model. We start by noting
that from SU(2)i Y invariance it follows that,
e.g.,

[Comparing (6.2) and (6.3) we neglect the explicit
rn, ' in the right-hand side of Eq. (6.2).]

In the (3, 3)$(3, 3) model Eqs. (6.2) and (6.3) are
equivalent'" if and only if c= —&2. More gen-
erally, one may use the relation

and

= &nl s". lz'& = -i&nl s". lz'&

= &al s", lz'& =i&nl s,"lz'&

&Ill s". IK'& = i&nl s". IA'&.

(6 .6)

(6.7)

[@A'(0) s"v„(0)]-(@F(0)s'Ap(0)] =8'[Q (0) V (o)]

(6.4)

The commutator of interest to us may be computed
using the formulas of Sec. II and Appendix A. The
result is

[q'„, » V'„-i» V'] = ,'a(-')"'(3~3(-S"—S"-iS"—+iS")+iS"+ S"+ v 3 (S". + iS.")].
For comparison we also note that (using again Appendix A)

s"[Q~, V„—iV„'] = ,' (8"A~ -i »A—„'—)

(6.8)
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Using Eqs. (6.6) and (6.7) we have therefore

2(Qi[Q„', &"V„-is"V'„]iK+) = ——,'B(—,')' '(5@3 (Q[$',7iK') —(Qi S"iK'))

and

(Qi s2A'„ i92A, „'[K')= — [v 3 (1+4m)(Qi S."iK')+ (3 —4»)(QiS,"iK')).

(6.10)

(6.11)

As discussed after Eq. (6.4), further assumptions
are generally necessary in order to express the
matrix element in Eq. (6.10) in terms of the ex-
pression in (6.11). However, it is amusing to note
that there is a value of z, i.e., z =1, for which
these two matrix elements do become proportional.
Therefore, only in this case can the K» calculation
be carried out without ma, king any additional as-
sumptions. Thus, although this value of g would

imply a large amount of SU(3) symmetry breaking
it is nevertheless interesting to also present our
results in this case. We next proceed to discuss
this value of z (i.e., z =1) and note that Eq. (6.11)
then becomes

(Qi [q„', »y'„- i» V~)|K') =-,'(Qi 82&4- i»A5 iK')

,'V2 f». -

2

1 — ' f,(O, m»')+ f (O, m»') =-ltY»
4

I K

(6.19)

Using the physical value of z [Eq. (1.1)]we then
essentially obtain the Callan-Treiman relation.
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APPENDIX A

Thus we obtain in the (8, 8) model with z =1

(6.12) In this appendix we want to list the expressions
one obtains for the current divergences. Defining
7; a, p, and ~by

1 — ",0~ mK + O~mK (Al)

(6.13)

The above is to be compared with the usual Callan-
Treiman relation which in our notation reads

0' =—'- —+
2 8 B

m 2

f,(0, m„')+ f (O, m»') =
3/m3

(6.14)
(A3)

The reader should notice that Eq. (6.13) is identi-
cal to the Callan-Treiman relation except for the

sign. Thus it leads to

and

B&3 3 5 "'~
4 8 B (A4)

x, =-0.18. (6.15) we have

A. =-0.024+0.02,

in contrast to the Callan-Treiman value of

(6.16)

This is to be compared with the experimental
value" of

8"V&—-0 for a=1, 2, 3, and 8,

s2 y4 1 B(3)1/2[ ~3 ($17+ $26+ $35) + $58]

s 2 y' =-.' B(-')'/2[W3($16 —$'"+ $'4) —$"]

(A5)

(A6)

A.o =+0.02. (6.17) s 2 y6 B(3)1/2[~3 ( $15i $ 24+ $ 37) + $ 78] (A7}
In order to compute the right-hand side of Eq.

(6.10) for the physical value of z we assume SU(3)
[as in Eq. (4.17)] in the form

(QiS".'iZ, &
=rf » (6.18)

This formula implies that, using (6.2), (6.10),
(6.11), and the definitions of f» and f, ,

sjl V7 1 B(3)1/2[~3 ($14+ $ 25 S 36) $68]

S 2+1 p$23 + O($47 $56)

S jlA2 p$13+ o($46+ $57)

S 2~3 p$12 + o($45 S67)

(A8)

(A9)

(A10)

(A11)
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( 8 8 —$35)+«
p a a g a ~

»A' = ~($" 8-"+ 8") «—$48a a a a

0 "A.' = T(-8"+ 8"+ $37)+ «8»

(A12)

(A13)

(A14)

and

0 PA7 7 ($14+ $25 $36) «$68

0 pA8 = 0V 3 (S45+ 8 67)

(A15)

(A16)

APPENDIX 8

In this appendix we wish to list those 0 terms which have been used in this paper. These are the diagonal
ones, i.e., [Q', »7'„] and in addition the off-diagonal ones for SU(2)C3 SU(2). Even though these o terms
could be written in a mote compact notation we find the completely explicit form given here much more
instructive. One has (with 7, o, p, and «as defined in Appendix A)

and

[q4 sP@4] [q5 011y5] 3 fi(3 )lf2 [1~3($ 11 + $22+ $33 $66 $77 $88) ~ $38]

[Q6 011@'6] [Q7 08@'7] i 1 fl (3 )1/2[1 ~3($11+ $22+ $33 $44 $55 $88) $68]

[Q'„, »A'] =i[-p(S,"+S", ) --,'o'(S,' +S,"+S',6+S,")],
[ql 08A2] [q2 08Al] ip$12

[ql euA3] =[Q3 svA1] =ip$13

[Q„, &&A'] =i[-p($"+ S ') ——,'0'(S +8"+$' +8")],

[Q~ '"A'„) =[K '"A1) =ipS"

[q' »A'] =i[-p(S"+8")--'v($ +S"+ S"+S")]

[Q S 4 ) = =,i[r (8" + 8"+ S + 8' + 8")+ (r + W3 «)8"+ &3 «S '+ (&3 7 + «)8 ']

[Q'„, &„A&]= ——2'2[T(S,"+8,"+8,'+ S, +S,")+(T+W3 «)S,' +v3 «S", + (v3 7+«)S", ],

[q'„, »A'„] = --2'i[T($,"+S,"iS,"+$4'+S,")+(7+03 «)S,"+PS «8,"—(~3 7+«)$4'],

[Q'„, »A'„) = --,'i[7 (S,"+S,"+S", +S", +S,")+ (7. +73 «)8,"+&3 «8,"—(73 7+«)S,"],

[q'„, 08A8] = -i ,' o($. + 8"+ 8"+ 8"-).

(B1)

(B2)

(B3)

(B4)

(B5)

(B6)

(B7)

(B8)

(BO)

(B10)

(B11)

(B12)

(B13)
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