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The dual-parton model of Kraemmer, Nielsen, and Susskind is reviewed and applied to
high-energy production processes. Most, but not all, of the predictions are not new and
have been given by many practitioners of the multiperipheral and parton models. What is new
is a unified presentation of these predictions in terms of the fragmentation of the hadronic
string into segments, each retaining the properties it had before collision. The method is
applied to transverse-momentum distributions and correlations and to charge distributions
of secondary hadrons.

I. PARTONS AND FRAGMENTATION

Several years ago it was suggested that a particu-
larly clear description of hadrons moving near the
speed of light might be possible because of a Gali-
lean subgroup of the Poincare group. ' This sub-
group guarantees that the description of a system
from the infinite-momentum frame is entirely non-
relativistic with respect to motions in the two-di-
mensional plane perpendicular to the direction of
large momentum. In particular it was argued that
any many-particle description of hadrons would

only make sense in this frame. Subsequently,
Feynman has shown that a great many features of
strong interactions can be understood within the
framework of a many "parton" picture at infinite
momentum. '

In this paper I will explore the relationship be-
tween what goes on inside a free hadron on the one
hand and what goes on during and after a high-en-
ergy collision on the other. We shall follow Ref. 1
and assume that a high-energy hadron is a collec-
tion of constituents, each with a 3 component of
momentum k& and a transverse momentum K. The
total momentum of the hadron is (p, P). Follow-
ing Ref. 1 we describe the longitudinal motion by
defining a longitudinal fraction g. We arbitrarily
choose some very large momentum, either some
momentum in the problem or else just some num-
ber, L, with which to compare g momenta. The
longitudinal fraction of any system with 8 momen-
tum k is

q=kq/I .

The longitudinal fraction of the hadron is

and it is composed of the longitudinal fractions of
the constituent partons.

Each parton is thus described by a triplet con-
sisting of its longitudinal fraction and its trans-

verse momentum (7), K). In terms of these vari-
ables the relativistic phase space is

dgdK

71

Now it is characteristic of high-energy collision
products that while their transverse momentum is
strongly bounded below a few hundred MeV the
longitudinal distribution of secondaries roughly
follows phase space, meaning that for g-0 the
number of secondaries in the interval dq goes as
(q) '. In view of this, Feynman has suggested that
the partons themselves are similarly distributed.
We shall follow Feynman's suggestion and assume
the parton density in g space behaves like

dN T

dn n

at or near q = 0.
If we consider the action of a boost along the 5

axis it is readily seen that K is left unchanged and

g is rescaled:

g-e g, (4)

where & is the hyperbolic angle of the boost. Qne
way to characterize the Feynman distribution is to
say that in the region near q = 0 (where the partons
are called "wee" by Feynman) the distribution is
unchanged by boosting. From this it follows that
by looking at the wee-parton sea it is not possible
to distinguish hadrons of different momentum
along the p axis. This universality of the wee-
parton sea is the single most important feature of
the Feynman distribution, accounting not only for
the properties of multiparticle final states but al-
so for the constancy of high-energy cross sections.

It is very convenient to introduce a variable
called rapidity in terms of which boosts act as
translations and in which the wee-parton density
is uniform. Equations (3) and (4) show that the re-
quired variable is
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y = In'.
A second assumption which will be used involves

the nature of the interactions between partons. We
shall picture each parton as occupying a position
on the q or y axis and we will furthermore assume
a degree of locality of the interactions in this
space. Specifically, we suppose that the interac-
tions between partons extend only over a finite dis-
tance in rapidity so that a hadron can be consid-
ered to be a one-dimensional string whose parts
interact only with neighboring parts. The one-
dimensional axis used to label partons or stririg
locations can be taken to be q, r, or any function
of 'g.

To complete the description of the system's mo-
tion we introduce transverse degrees of freedom
either in position or momentum space. The trans-
verse location of partons with a given fraction q
will be called X(q) and the transverse momentum
K(q). The Hamiltonian of this system in the infin-
ite-momentum frame is to be identified with
(mass)' as in Ref. l and is expected to have a part
which can be described as attractive potential en-
ergy between partons of neighboring rapidity and
a part describing the "nonrelativistic" kinetic en-
ergies of the partons. In Sec. II we will illustrate
this viewpoint with the specific dual-parton model.

Consider next the collision of two such hadrons
at large energy. Qne hadron called the right mov-
er has a positive momentum p~ along the 5 axis
and the other, the left mover, has momentum -pr, .
Let us represent particle 1, the right mover, as a
segment of the g axis extending from where the
wee partons reside to ps/L where L is the arbi-
trarily chosen momentum scale. Similarly parti-
cle 2, the left mover, is a segment of the g axis
extending from 0 to p~/L. -

Now according to Feynman the dynamics of such
a collision initially affects only those partons in a
bounded momentum interval. Let us call the char-
acteristic size of the interval K. Then the partons
which actually are affected by the collision are
those in the interval

Lydia= Lq —-dgL.d7/

'll

Thus near the wee end the length of a fragment dg
is directly measured by the longitudinal fraction
of the fragment.

To obtain an idea about the pattern of fragmenta-
tion we shall rely on a symmetry argument.

We have already stated that the wee-parton sea
is expected to be universal so that hadrons of dif-
ferent momentum cannot be distinguished by the
properties of the low-q distribution. Therefore
we expect that the pattern of fragmentation near
g =0 wil1. be independent of the momentum P~, say.
Now since a longitudinal boost is simply a rescal-
ing of the g axis, it follows that the fragmentation
near the g = 0 end should not know about the length
of the g axis and should be scale invariant under a

(o)
p L

L
PR

L

the perturbed ends would act as a source of pho-
nons or waves which would propagate back and
forth on the string indefinitely. In this approxima-
tion each subsystem is described as a superposi-
tion of narrow resonances which make up the spec-
trum of a harmonic string. This, however, is not
correct. We know that the actual collision products
are not two excited stable states but rather a col-
lection of secondary hadrons. Accordingly, we
will assume that the excitation energy is quickly
dissipated by the mechanism of fragmentation of
the strings into segments near the wee ends. The
process is depicted schematically in Fig. 1 where
we show the evolution of the process as two initial-
ly free strings, a collision which quickly excites
the wee ends and a final fragmented state.

The longitudinal momentum of a fragment of
length dq near tQe end g = 0 is given by the sum of
longitudinal momenta carried by partons in that
interval. This in turn is

Thus after collision we see a system of two
strings each being perturbed, the perturbed sec-
tion extending over an interval from ( q~ =0 to (q~
=K/L Now, if we choos. e our scale L to be of or
der PR or PI. then as P~ and P~ tend to infinity the
perturbed segment becomes smaller and smaller,
tending ultimately to a point at the g =0 wee-parton
point. The remainder of the partons are initially
unaffected by the impulsive collision.

Now what becomes of the two systems after colli-
sion? If they were both ideal harmonic strings,

(b)
-PL

L
PR

L

(c} -P, O

L

FIG. 1. The collision process of two high-energy
hadrons depicted schematically as the evolution of the
process of (a) two initially free strings, (b) a collision
which quickly excited the wee ends, and (c) a final frag-
mented state.
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rescaling of g. This requires the mean number of
fragments per unit q, dN/dq, to be scale-invari-
ant, which in turn means dN/dq-1/q. Another
way to say the same thing is that the mean number
of partons on a fragment just after collision is the
same for all fragments of low g.

Our third main assumption involves the way the
conserved quantities are carried by the partons
and what happens when fragmentation occurs. We
will assume that the transverse momentum,
charge, isospin, hypercharge, and baryon number
are carried by the partons in such a way that oper-
ator-valued densities p,. (q) or p, (x) exist in the q
or rapidity space. By definition

p, (q)dq = p, (~)d~,

and each equals the amount of the ith conserved
quantity carried by partons in the interval dg. We
also expect to be able to define currents g,.(q) so
that local conservation can be defined on the g axis.

Furthermore, we will assume that when fragmen-
tation occurs the individual segments carry the
same value of the conserved quantities that they
had just before collision. This means that the col-
lision is so impulsive and the fragmentation so
quick that the charges do not have time to redis-
tribute themselves before fragmentation sets in.

The power of these assumptions lies in the fact
that they directly relate the current and momentum
distributions within a single free hadron to the cor-
responding distributions in a high-energy collision.
This allows us to relate different models of parti-
cles structure directly to predictions of multiparti-
cle phenomena.

II. DUAL-PARTON MODEL

The dual-parton model' represents a hadron as a
string of partons parametrized by a parameter 0
running from 8= 0 to 0= n. The density of partons
is assumed to fluctuate about a mean given by

dN 1
dg sing

It is also assumed that the momentum density
P„(8) (p, = 1, 2, 3, 4) is given by

P„(8)= —+ P„„„,P

where P/m is the total hadron momentum divided
by the width of the strip and Pq„„represents fluctu-
ations which are mathematically describable by
normal modes. If we allow P to increase to ~
along the s axis and divide P„(8) by P~ to define
the g density we get

We have analyzed the size of Pf,„„and have found

that this part of P&(8) does not grow with increas-
ing P& so that in the infinite-momentum limit
Zq/a 8= 1/n.

The g of a parton at position 0 may be estimated
by dividing the total q in an interval ~8 by the num-
ber of partons in that interval. The result is that
partons at 6I carry an g given by

q(8) - sing. (10)

and the potential energy we take to be

Thus the g axis and 8 interval are really the same.
A slight difference occurs because 0 is not quite
defined by q. For each q there are two positions
on the string, but near the ends 6)= 0 and g= n there
is a one to one correspondence between g and g.
Since we will be interested in the fragmentation
near one end, say 8= 0, the wee partons at the
other end are not too important and we may identi-
fy g with Q.

Since the string density near the ends varies as
(sin8) ' the density in q space also tends to the
Feynman form dq/g.

The remaining degrees of freedom describing a
parton at point 0 are its two-dimensional trans-
verse position X,.(8) and various discrete quantities.

We shall assume that each parton couples to its
nearest neighbor in g or g space with attractive
forces which for small separations are approxi-
mately harmonic-oscillator wells. Probably a
more realistic idea is to think of X,.(8) as the
coarse-grained average of positions of several par-
tons in an interval of rapidity of undetermined size
R and the force as an effective attraction between
such clusters.

The interval Q represents a limitation on our
program since the averages of quantities such as
charge and momentum densities are only defined
for intervals larger than Q . It is only useful to
conceive of a hadronic reaction as the fragmenta-
tion of two strings if the available rapidity axis is
many times longer than 5r. This in turn means
lns )5r where s is the incident center-of-mass
Mandelstam variable.

Recalling the fundamental analogy between rela-
tivistic infinite momentum mechanics and two-
dimensional Galilean mechanics we identify the en-
ergy as the mass squared of the entire system and
consider a many-particle Hamiltonian with kinetic
and potential energies. The kinetic energy of a
parton is

Kt
K 2 ~

y

7ll

&n & Poult
49 r P

(X, -X,.„)'
(12)
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where g is a coupling parameter. Equation (12) is
chosen because it represents an attraction with a
smooth behavior near the origin which is expected
to be the right thing for the interaction of two clust-
ers. The factors of 1/q in both Eqs. (11) and (12)
are present in order to give the infinite momentum
Hamiltonian correct boost properties along the 3

axis. We can understand these factors as a conse-
quence of time dilation. If two pairs have longi-
tudinal momentum in ratio q, /q2 then the motion of
the faster pair is time dilated relative to the slow-
er pair by the same factor. Thus all things being
equal, the energy contained in the fa,ster pair
should be smaller by the inverse power.

If we now identify q- sin8 and take the limit of a
continuous string, the energy is

(13)

where gX/&T is the "nonrelativistic" velocity and
is related to the momentum in the transverse
plane. The time z is the usual infinite-momentum
dilated time

P~(8) =
2

+[a'(1)+a (l)jul coslg.
1

l
(17)

The momentum carried by a segment from 0, to
0, is

„02

J
P~ d8.

The integration will wipe out those contributions
to Eq. (17) from modes with wavelength smaller
than 0, —82 so that a rough approximation is

'=~el e2~ '
vl (a'+a )cosl8

A fragment with small longitudinal fraction g is ex-
pected to originate from a point g= gc and have
length 68= q, where c is an experimentally deter-
minable number having to do with the density of
secondaries in rapidity space. To compute the mo-
mentum on such a fragment consider first the mo-
mentum density defined to be canonically conjugate
to X(8). For the transverse components, P' van-
ishes so that the fluctuating normal modes give the
whole answer

X,(8, r) = X,.' (0) +P,'™'T

~max
a'(l)e' "—a (l)e '"

l=1
cosl g. (15)

The normal modes describing the point 0 range
from a zero-frequency mode describing the linear
center-of-mass motion, X' .(0) +P' r, to a normal
mode l,„(8). The maximum normal mode' l,„(8)
is chosen to reflect that fact that in a region of the
0 axis where the spacing of partons is ~0 the short-
est wavelength which can propagate has wave-
length ~8. This means

l .„(8)- . (16)

(14)

conjugate to M'.
Equation (2) will be recognized as the Hamilto-

nian for a nonrelativistic harmonic string. Ac-
cordingly, we ean deal with it using a conventional
normal-mode decomposition~:

7t/q

qQ (a'+a )cosl 8,
7T

(18)

where 8= —,'(8, + 8,). This is the momentum on the
segment corresponding to the secondary fragment
of longitudinal fraction g. Squaring, taking the ex-
pectation value, and using an average estimate of
—,
' for (cosl 8)' gives'

2 7f/q

(P ') = —,p l(coslg)'-0. 25.
1 =].

The estimate is independent of g as long as q is
small.

Since for a harmonic system the ground-state
probability distribution is Gaussian for any coordi-
nate or momentum, we conclude that the trans-
verse-momentum correlation function. Define P(g)
must be approximately

e "&2

Equations (13)-(16) then define the motion of the
parton string in the transverse plane and Eq. (10)
prescribes the longitudinal motion.

III. APPLICATION TO TRANSVERSE-MOMENTUM

SPECTRUM

Let us consider the average transverse momen-
tum of a secondary string fragment by identifying
it with the fluctuation of transverse momentum on
the corresponding string segment before collision. '

The scale of momentum is of course 1 GeV, or,
more precisely, the inverse slope of Regge trajec-
tories. This conclusion is probably only sensitive
to the postulated stringlike nature of the hadron
and to the approximation of round potential wells,
i.e., harmonic oscillators.

A similar computation can be done for the trans-
verse momentum correlation function. Define P(7l)
to be the transverse momentum of a fragment with
fraction g. The correlation function measures the
degree of coupling and correlation between frag-
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ments at different points on the string. We define
the correlation to be

&(nl n2) =(p.(ni) p.(n2». (20)

Using the normal-mode expansion of P~ we find
that the correlation function for small q, and g2 be-
haves like

The factor dl)/1) is just the number of partons in
the interval, e(q) is their average charge, and

s(q, b) is their density .Obviously, e( )7)/q= p(1)}.
Now in a harmonic system the distribution of any

coordinate is always Gaussian, so that we w01 as-
sume s(1), b) is of the normalized form

e -s2/f(q)

~( )- 1 1
ql& 12 1112

( + )2 ( )2

or in rapidity space

~1 ~2e eE(r„r2)-
(1 + e&1 &2)2 (] e"1 +2)2

(21)

(22)

where f(l)) is the mean square distance of partons
at q from the center of mass. The result is

P(q) 2
o(b}= o'(1), b)dq= e ' '~'"'dq

~ f (1))

From Eqs. (20) and (21) we see that E is a sym-
metric function of r, and r2 and depends only on

r1 r2'
Qf course, the result should only be believed for

r, -r, larger than the coarse grain averaging sizes
which define limitations on the string model. Speci-
fically, we believe that the correlation is a sym-
metric function of r, -r, which asymptotically be-
haves like'

+(q') =
J p(1)) exp[='q'f (r/)] dr/. (25)

Now f(1)) is the expectation value of the squared
distance of partons at q to the center of mass.
Using Eq. (14}and

1
sing

The Fourier transform of this is clearly given by

E(r„r2)- -e (23) we readily compute that f(1))- -41nl), so that Eq.
(24) becomes

IV. CURRENTS OF CHARGES

—e(1))s(1),b) = o(ll, b)dl).
dn

(24)

So far we have considered the distribution of mo-
mentum in a hadron and in a collision process.
Similar methods will now be applied to the study of
the charge distribution. For definiteness, consid-
er the electric charge which we assume to be dis-
tributed with a density p(1)). By definition p(1))dl) is
the total charge carried by partons in the interval
dq centered around q.

Our method will be to relate p(q) to the electro-
magnetic form factor' so as to establish a connec-
tion between the form factor and the distribution of
charge among secondary fragments.

If we consider a fast-moving hadron moving along
the p axis with an infinite momentum and localized
at a transverse position which we take to be the
origin of the transverse plane, then an observer
looking down the p axis will see a charge distribu-
tion &r(b) where b is the distance from the origin.
The form factor of the hadron is the Fourier trans-
form of o(b).

Let us consider the contribution to o(b) from par-
tons in the interval dg centered at g. The average
charge of partons in this interval is defined as e(1)).
We shall assume that the distribution of such par-
tons in the transverse plane is governed by a densi-
ty s(q, b) The contributi. on to v is then

~1
p(n)n' dn.

"0
With the form of Eq. (25) for f(q') we can try to

ask what different assumptions about E(q2) mean
for p(q) and vice versa. For example, if p(1)) is
constant then the integral is

(26)

+(q') =,2- 1

The pole, characteristic of a vector meson of m2
= 1, is generated by the region of integration very
near g =0. The real electromagnetic form factor
has poles at the position of the p-meson and u-
meson which for simplicity we take to be m' = —,'.
This can be accomplished by allowing p(q) to be-
have as g

"' near q=0. Since in the interval ~q
there will be aq/1) secondary fragments, the mean
charge of a secondary fragment in a high-energy
collision is predicted' to behave like g"' as g-0.

This correlation between the way the charge dis-
tribution penetrates into the wee-parton sea and
the spectrum of mesons which couple to that charge
is in our opinion very general and should be experi-
mentally tested.

Although the wee-parton sea is expected to be
electrically neutral on the average, the quantity of
charge in a bin ~r very deep into the wee-parton
sea will fluctuate. The fluctuations are of interest
because they give insight into the dynamical laws
governing the charge distribution. Since the same
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dynamical laws are responsible for the spectrum
of particles we expect some relations between the
charge, SU(3), and baryon-current fluctuations and
the spectrum of particles.

Specifically we will consider the quantity of
charge found in a bin of width Ay centered around
rapidity y as y - -~. The translation invariance o'f
the rapidity axis due to longitudinal boost invari-
ance should guarantee that, very far from the end-
point of the y axis, the properties of the charge
fluctuations are independent of y. However, the
properties may well depend on the bin size ~y. We
shall therefore consider the average of the square
of the total electric charge found in the interval
ar Th. is quantity, called (Q'(b, r)), is directly mea-
surable in very-high-energy production experiments
in which the wee-parton tail has sufficient length to
include several smearing lengths 5y.

Consider first a model in which the rapidity axis
is populated randomly with an equal number of posi-
tive and negative charges. In such a. completely
statistical model the average squared charge will
grow linearly with the number of partons so that

pulls the opposite charges toward it and repels the
like charges. Let us consider one of the ends near
0=0 where we can assign each parton a rapidity
lng. The positive charges shift an amount 5'y and

the negative charges an amount 5 y. The net
charge at position y then becomes

We shall assume that the charges shift just enough
to cancel the extra "valence" charges at the end

leaving a charge density near the end given by

p(r) = e &~~

which is equivalent to q
'~2 = p(q).

Now let us consider a point y deep in the wee-
parton sea and the charge contained in a bin 2ay
centered at that point. The total charge is

and the mean square charge is

as by increases.
Now if the population is random we expect the

mean charge of a hadron to be of order vn, where
n is the number of partons. Another way to say
this is that a random population is consistent only
when the energy required to change the charge by
an amount of order Wn is very small. Therefore,
such a model would lead to the unphysical result of
a spectrum of very-high-charge hadrons almost
degenerate with the ground-state hadrons.

Let us consider the more physical possibility that
high charges are not formed or more exactly that
exotic states are strongly suppressed. A conveni-
ent picture which we have previously discussed is
that the matter contained between the two ends g=0
and 8= vis neutral (e'xactly) and that at each end a
quark resides. The quantum numbers would then
certainly be nonexotic. That this theory is unten-
able follows from our previous arguments which
demonstrate that the charge must be smeared with
a (sin8) "' density across the 8 axis.

Let us, however, suppose that the hadronic
string is composed of qq pairs, each neutral, and
an extra quark and antiquark at each end. Let us
further suppose that the string is polarizable so
that the existence of a charge at an end slightly

Now invoking the uniformity of the rapidity axis
we set the first two terms equal to (5(-~))'. The
last term represents a correlation between points
separated by rapidity 2b,y. If the chain is a near-
neighbor coupled system we can suppose that the
correlation goes to zero as Ay grows so that

where 5 is independent of y.
Thus we are led to predict that [Q(a)j' is inde-

pendent of ~ for large b, as well as being indepen-
dent of the position of A.

The main point we wish to emphasize is the close
connection between statistical properties of the mo-
ments of p and the spectrum of hadrons. Since the
difference between hadronic states involves the
charge and quantum-number distributions, mea-
surements of the moments of p(r) directly probe
the dynamics which define the spectrum of hadrons.
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The significance of two low-energy theorems relating x 2y, y 3m, and 2y 37t is stated.
The processes 7r'+ (Z, A) (Z,A) + 7r'+ vr, e+e e+e 37(., and e+e 3x are discussed as
experiments providing a check on these theorems. Some rate estimates are given.

I. INTRODUCTION

Recently, Adler et al. ,
' Terentiev, ' and others"

derived two low-energy theorems relating w -2y,
y-3w, and 2y -3m. Let the general amplitudes
(not necessarily on shell) for n'-3y and y- v+m z'
be denoted by

M(y(k, )+y(k, )-w')=i
( e,e3k, k3 )

XE3(k,3, k3', (k, + k, )3),

M(y(k)-v'(q, )+n'(q, )+n (q ))

=(-i)(eq, q q, (E"((q,+q,}', (q, +q )',

q, ', q ', q, ', (q. + q + q.)'),

where we have introduced the notation

~
abed )

-=e„„,~a~ b"c'd~ .

We define the "coupling constants" E' =—E (0, 0, 0)
and F3 =E3 (0, 0;0, 0, 0, 0). Then the first low-
energy theorem states that

s~ 33 ~3f -2

where f, is the usual m» coupling constant. Ex-
perimentally, Jl3 and E" are not accessible.
Only an approximate version of Eq. (3), namely,

eZ"(s t m ' m ' m ' W')=Z'(0 0 m ')f -'

(3')

with s, t, 8" at most of the order of a few m, ', can
be tested experimentally. That Eg. (3') is a good
approximation of Eq. (3) is the content of the hy-
pothesis of the partial conservation of the axial-
vector current (PCAC).

The second theorem states that the amplitudes
for y+y 3' and for y+y m'm m'maybe com. -
puted up to second order in momenta in terms of
F', F'~, and a parameter specifying the isospin
structure of the chiral symmetry-breaking inter-
action (Fig. 1).

The purpose of this paper is to stress the unique
theoretical significance of Eg. (3) and (3') and to
discuss. some of the points that one. encounters in
planning experiments to measure y-3m and 2y 3m'.

A number of technical details are relegated to
three appendixes.

II. THEORETICAL SIGNIFICANCE

The theorem in Eq. (3) and (3') follows from (a)
gauge invariance, (b) Gell-Mann's current algebra
and PCAC, and (c) that the electromagnetic cur-
rent commutes with the neutral axial cha~ge at
equal times. Now it is well known that a naive
application of (a), (b), and (c) leads to the errone-.
ous conclusion ' ' that m-2y and y Sm are sup-


