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We consider the coincidence electroproduction process l +p l'+p'+ anything. With the mo-
mentum transfer between p and p' held fixed, a single trajectory in the pp' channel dominates
as the laboratory energy of the virtual photon becomes large. (It is known that the onset of
single-trajectory dominance may be ascertained by observing the azimuthal angular distribu-
tion of the detected hadron. ) In the region of large virtual photon mass and missing mass (with
their ratio fixed) the process may be picturesquely described as "deep-inelastic scattering of
a lepton on a Reggeon target. " We implement the assumed Regge behavior in the language of
van Hove. The scaling behavior of the various structure functions is then determined by the.
"canonical" light-cone commutator (taken between spin- J states), if certain smoothness as-
sumptions are granted. Relations of the Callan-Gross type are also derived. 'The experi-
mental features corresponding to our results are relatively easy to observe. The kinematics
of coincidence electroproduction (with a polarized beam) is discussed in some detail.

I. INTRODUCTION

A great deal of effort' is being devoted to high-
energy electroproduction experiments in which a
single hadron is detected in coincidence with the
outgoing lepton (Fig. 1), i.e.,

l +p l + hadron+ anything.

Such knowledge about the hadronic final states
should be indispensable in our attempts to under-
stand the surprising results of the SLAC single-
arm experiments

e+p —e+ anything. (1.2)

A number of authors. ' have constructed dynamical
models to describe process (1.1).

In the one-photon-exchange approximation the
dependences on two of the six variables in the
cross section for (unpolarized) reaction (1.1) are
explicitly given by lepton quantum electrodynamic s,
thus allowing a simple decomposition in terms of
four invariants. These four structure functions
are functions of the four remaining dynamical vari-
ables. This rich kinematical content provides us
with the opportunity of considering a variety of new
asymptotic limits. In this paper we will discuss
the possibility of relating, in a certain kinematic
domain, the cross section of (1.1) to that of a pro-
cess which may be termed picturesquely as "in-
elastic lepton-Reggeon scattering. " Namely, in
the limit of high energy with momentum transfer
between the target proton (p) and detected hadron

(p') fixed, the electron may be viewed as scatter-
ing inelastically off the Reggeon which is expected
to dominate in the PP' channel (Fig. 2). The Regge
limit for this process was first discussed by Pais
and Treiman. '

The structure functions of the Reggeon measured
in this way are related to the absorptive amplitudes
of forward Compton scattering on a Reggeon "tar-
get" (Fig. 2). We shall then speculate on the pos-
sible scaling properties of these novel quantities
in the deep-inelastic limit. Rather than appealing
to specific dynamical models, we operate on the
assumption that all relevant functions are as ana-
lytic and smoothly behaved as possible. What this
means precisely will be spelled out in detail in the
course of our discussion. Briefly we assume that
it is meaningful to visualize the Reggeon as a su-
perposition of the effects of exchanging a series of
particles of increasing spin (in the manner of van
Hove' ). Thus we consider simply inelastic electron
scattering off targets of spin J. To describe the
deep-inelastic region we rely on the structure of
the light-cone commutator' as given by the quark
(and the formal quark-gluon') model. Proceeding
thusly, we are able to predict the scaling behavior
of the various structure functions [see Eq. (4.9)
below]. Furthermore, the tensor structure of the
light-cone commutator leads to two interesting re-
lations between the various structure functions
[see Eqs. (4.11) and (4.12) below]. These relations
are of the same type as the Callan-Gross relations. '
(The second of the two relations is, however, less
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credible. It is correct if the structure of light-
cone expansion may be extracted from a free-quark
model up to and including the "twist-four' terms. )

One may in principle use process (1.1}to reach
the deep-inelastic structure functions of the pion
(when the detected hadron is a. nucleon) in much
the same way that the pion elastic form factor has
been inferred by using the virtual pions of the nu-
cleon as targets in the pion electroproduction ex-
periments. ' This topic has been the subject of a
recent article by Sullivan. ' But, as to be expected,
the practical difficulties in such an extrapolation
procedure would be overwhelming. The experimen-
tal demand by the process considered here will be
less extravagant, since we are only interested in
the scaling behavior of the leading Regge trajectory
and no experimental extrapolation in the momen-
tum transfer variable is required.

In this paper we will focus our attention on the
case when the recoil proton (slow in the laboratory
frame) is detected so that the leading trajectory
would be Pomeranchukon. At least for the imme-
diate future we expect the statistics to be high
enough for our purposes only in this case. To im-
prove statistics one may also integrate the data
over v (lab energy of the virtual photon) without
losing much interesting information as long as v

is large enough for diffractive scattering to domi-
nate. (We shall see that the question of whether
diffraction indeed dominates may be settled fairly
unambiguously with the availability of polarized
beams. }

In Sec. II the kinematics of the problem is re-
viewed and relevant structure functions defined.
In Sec. III the "ordinary" Regge limit is taken. We
would like to emphasize that the amount of Regge
theory used here is minimal. Only certain qualita-
tive features, i.e, , dominance by crossed-channel
exchanges in the high-energy limit, are needed for
the subsequent discussion. It is hoped that features
eventually extracted may well be more general than
the specific details of the Regge-pole model. The
deep-inelastic limit is then taken in Sec. IV. Re-
sults for the scaling structure functions are ob-

tained. Finally a discussion of our results is
presented in Sec. V. An appendix contains some
of the kinematical details.

II. KINEMATICS

q=k -O', P=P+P', 6 =P -P'. (2-1)

The six variables needed for describing the pro-
cess (1.1) are chosen to be

q', q ~ I', q b, , b.'.
In the laboratory frame

(2.2)

C+ C
cosg =

(
2 q~) ~)2, (2.3)

krak' qxp'
lqxp l

(2.4)

where c (c') and v are energies of the initial (final)
lepton and the virtual photon, respectively, and
Q' = -q'.

In the one-photon-exchange approximation (Fig.
1) the explicit form of the leptonic vertex fixes the
dependences on |) and P, The remaining four vari-
ables in (2.2) are needed to describe the hadronic
"black box":

y„+P-hadron+ anything, (2.5)

with corresponding helicity amplitude [for virtual
photon y„ in a given polarization state a (=+, 0, -)j,

z"(n, p; q, p) = e'„'& (out)n, p l
z'(0)

l p) . (2.6)

Let k, O', P and P' be, respectively, the momen-
ta of the initial and final electrons (muons), and
the target proton and the observed final hadron
(Fig. 1). We shall consistently ignore the lepton
mass and let m and m' be the masses of P and P'.
The unobserved hadronic complex has momentum
n=k+ P—O'-P' and invariant mass M„= un' .

We introduce the following combinations:

FIG. 1. Coincidence electroproduction (1.1) in the
one-photon-exchange approximation.

This task of factorizing off the known dependence
of the amplitude may be effected most transpar-
ently in the brick-wall frame and by using the so-
called O(2, 1) formalism. "" (Of course, other
methods" are just as equal to the tasks. ) In the
Appendix this procedure is given in some detail.

Since the muon beam at the National Accelerator
Laboratory comes to us polarized without cost we
write down the cross section of process (1.1) for
an initial lepton beam with longitudinal polariza-
tion p'.
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«(p)
d'p'dvdQ'

with

2 2 1/2 «(p)
dpdb, 'dM„'dvdQ'

(H + xH ' —x cos2$ H+ —2[2x(x+ 1)]'~'cosQ ReH'o+ p2[x(1 —x)]'"sing ImH+'],
' 2m' 1

4w e'Q' 1 —x
(2. 'I)

cosh'g —1 1X= 2 2 2cosh /+1
1 2 @ +,~ t 2(~e)

The helieity structure functions (H"j are related to the amplitude in Eq. (2.6) by

H"=(2~)'Q 6(P+q-P'-n)J"Z'"*, (2.8)

and they are functions of the last four variables in (2.2).
The fact that the azimuthal angular distribution has the characteristic form c, + c, cosP+ c,cos2$+ c, sing

in the one-photon-exchange approximation was emphasized by Pais and Treiman, "and should be exploited
as a check on the purity of the data. We note that the ImH term (with its s'in/ dependence) is unique. to a
polarized beam. This remark will be important in Sec. III when we discuss the Regge limit.

The advantage of defining the structure functions as products of helicity amplitudes is that they lead to
expressions for angular and spin correlations in the form of a simple matrix product" "and that positivi-
ty conditions, when expressed in terms of them, become obvious (see Appendix). However, for certain
theoretical discussions, as in the case of light-cone analysis of scaling (Sec. III), it is often more conve-
nient to use structure functions defined by the invariant decomposition of matrix elements of current prod-
ucts:

W„„=(2m)'p 5(p+ q —p' —n)((out)n, p'I&„(0) Ip& & (out)n, p'IZ, (0)
I

p&*
n

= W~g~~+ W2h~b~+ W3P~P~+ W4 2(npP„+ 6~ P~) + W5 2i(6~P„—A~P~) + ~ ~ ~, (2.9)

where the neglected terms are proportional to q„or q„. All the invariant structure functions fW, j are real.
Their relations to (H"] may be deduced simply by noting H" = c„'W"'e,' and they are given in the Ap-
pendix.

III. THE REGGE LIMIT

For some fixed missing mass the process (2.5)
may be viewed conveniently as a two-body-to-two-
body reaction. We shall assume that the usual
Regge picture is applicable here.

Thus in the kinematic region of very large ener-
gy with Q' and the invariant mass of the unob-
served hadrons held finite and with momentum
transfer between target and the observed hadron
also held finite, i.e.,

asymptotic behavior of the helicity amplitudes
(2.6) is specified by the trajectory functions o.;(b,')
in the form of

J"(q P, q a, g, a')=QP"(u, , Q', a', q a)

x(1~ ~« ~~'~)(q ~ P)"'~~2~ .

(3.2)

q P&&Q ) q (3.1)

we assume that our process is dominated by Beg-
geon exchanges in the PP' channel (Fig. 2). The
quantum numbers of the exchanged trajectories
are, of course, determined by those of the ob-
served hadron. The formalism developed below
should apply to all possible types of detected had-
rons.

The standard Regge theory informs us that the
FIG. 2. Reggeon exchanges in the pp' channel of

(2.5)
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To leading order in (q P) all helicity amplitudes
have a common phase determined by the leading
trajectory function o. (&'), and, consequently, all
helicity form factors become real in this limit.

H' (q. P,q b., Q, A') =II' (n, Q', b, 2, q ~ Z)(q ~ P)'"l~ l,

(3.3)

with

for all a and b. For the differential cross-section
spectrum (2.7) this implies that the coefficient of
(the so-called quasi-T-violating) sing term should
vanish to the leading order in energy. Hence, by
observing the azimuthal angle distribution (inte-
grated over the remaining kinematical variables
if desired) of the detected hadron, one may be as-
sured that a single trajectory is indeed dominating.
This test of single trajectory dominance was first
pointed out by Pais and Treiman' who emphasized
that this feature of Regge theory may have more
general validity than the details of the Regge-pole
model.

Once one has ascertained that a single trajecto-
ry is dominating, one is invited to consider the
differential cross section as the absorptive part
of the forward Compton amplitudes of virtual pho-
ton scattering on a Reggeon (Fig. 3). It is this
novel object that we will focus on in Sec. IV.

IV. DEEP-INELASTIC REGGE LIMIT

We shall examine the Q' and q ~ b, dependences
of this Reggeon Compton amplitude —always with
b, ' fixed (and small), regarding it as the (mass)'
of the target Reggeon. We are especially inter-
ested in the possible scaling properties these
structure functions may exhibit in the deep-inelas-
tic limit, defined as

Q, q &-~ with, fixed.2 q ~ 6
(4 1)

G(J)(s)D(J)(s' ")W(J; J')"'
fn, n')

xD(J') "~ &G(J )( ) . (4.2)

G(J)(„) represents the coupling of a spin-J' field to
the initial and detected hadrons P and P',

G(J)( ) =g(J b, ')P P P +.
D(J)(„8) represents the propagator of the ex-
changed spin- J particle,

(4 3)

D(J)(, g)=[&' ~(J)'] 'Q, s,g ... "g„„,+au.

permutations on o, and p+ ~ ~ ~ ].
(4.4)

(The terms not explicitly displayed contribute to
terms of lower order in v. ) W(J; J')t" is the

(n, n')

Namely, we are interested in the subdomain of
Regge limit (3.1) in which the virtual photon mass
and the missing hadronic mass also grow very
large (but, of course, still small compared to v).
We shall refer to this limit as the deep-inelastic
Regge limit.

As was mentioned, the operating assumption
which empowers us to make nontrivial statements
about this deep-inelastic Regge domain is that all
relevant functions behave as smoothly as possible.
We now explain what we mean by describing our
analysis. We visualize the Reggeon, in the man-
ner of van Hove, as a sum of t-channel exchanges
of increasing mass and spin" (see Fig. 2). By
invoking the "canonical" light-cone commutator
we determine the behavior of the electroproduction
structure functions on spin-J targets in the deep-
inelastic domain. We hope that the general scaling
behavior thus deduced persists after summing the
series.

In this way we are led to consider the following
sum" for W"" of Eq. (2.9) [see Fig. 4]:

P P

pl pl

FIG. 3. Forward (absorptive) Compton amplitude on
a Reggeon target as related to the cross section of pro-
cess (1.1) in the Regge limit (3.1).

FIG. 4. Spin- J and —J' exchange contribution to cross
section of (1.1).
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virtual Compton amplitude. When the spin-J and
spin-J' particles are on-shell, it is defined by

W""(J,J') = sf( )W(J J')"'

=Z«, I
J"(0)

I &

&&(n~J'(0) ~~', ~,.&5'(q+~ n), -
(4.5)

q, p J+J'
q'~W2= CJ J .~ I', J,J',

J, J'

q P
q ~ hg, CJ J,

~ p J'+J -y

q aw, = c.J. F, J,J',

(4.8)

where eJ" denotes the polarization tensor for a
particle of spin J'. Here i)'=M(J)' and 6"=M(J')'.
Eventually we must continue back to the point of
4 =4' with 4' negative and small, of course. It is
part of our assumption that all such continuations
are valid, at least for our purposes. (See discus-
sion in Sec. V.)

The standard argument that light cone dominates
in the limit of Q'- ~ and Q'/q ~ 4 fixed can now be
applied to the amplitude in Eq. (4.5). We use the
formal light-cone commutator extracted from the
quark model, ' "viz. ,

where F,(J;J') are functions of ~„=Q'/2q ~ 6 and
~' only.

We assume that the indicated scaling behavior
remains valid after the Sommerfeld-Watson trans-
formation. Translated into H's our result states
that

Hoo= F,+ (F,+F,+F,)
2 QPg

[J„(x),J.(0)l ~ I (g»g, .+g„,g„.—g„„g„.) V'(O, x)

-ie„,y, A'(0, x)]a)'[e(x,)6(x')],

(4.6)

2n

q ~ 4H = ——,'42/2
2

q

gq QH P

(4 9)

where V'(0, x) and A'(0, x) are the vector and axial-
vector bilocal operators. Clearly A' contributes
only to W, and hence can be ignored for our pur-
poses. We write down the matrix element of V',

(2)„~,( V'(O, x)
~
~, ~„&

+2gJ, J'[&J Xn XnJCJ& Xnl Xnl

+ 2I2g pic [Eg cgr g(&)(&i)x ' ' ' x]a gran) fn')

+(2),—S')+ ~ ~ . (4 7)

q, p J+J'
W, = Q C~ ~. F,(J;J'),

(ln the I2 term the notation means that all the in-
dices of eJ are dotted into the indices of eJ with the
remaining indices dotted with x's. ) The terms not
explicitly displayed do not contribute to leading or-
der in our limit. The bilocal form factors j, g,
and h are functions of x 4, x ~ 6', 6', b ",and 4 ~ 4'.
Following the standard procedure of first taking the
Fourier transform of the functions and substituting
Eqs. (4.3) to (4.7) into Eq. (4.2) we obtain after a
Straightforward, albeit tedious, calculation the fol-
lowing asymptotic expression for the structure
functions:

with F, =F,(n, u&„, 6') and ()2= n(2), '). Referring to
Eq. (2.7) we see that in the deep-inelastic Regge
limit the differential cross section (a.) becomes in-
dependent of azimuthal angle g, (b} when multiplied

by (1 —x) becomes linear in x. These two charac-
teristic features should be relatively easy to ob-
serve.

It may be noted that the manner in which q ~ P ap-
pears in the combination (q P/q 4) is familiar to
workers of the triple-Regge region. "

The scaling functions I'& may be expressed in
terms of (the Fourier transforms of) the bilocal
functions appea, ring in Eq. (4.7),

F,(J; J') =C(-1) ' -'[f(' )((d )+g('. 2)((o )]

F2«J') = -C(-1}"'[~sf~"~"(~a}

+(J+J'}f~"~' "((dn)],

(. . .) (4.10)
F,(J, J') = C(—1) ' (J+J' —1)g~ ~. ((dn),

F,(J, J') =C(-1) ' [(J+J'}f~ ~
' ((u22)'

—~22' Z' (~22)
(J+J'- y)

—(J+J' —1}g~"~""(~n}l,

where the superscript on f ~"z denotes the nth de-
rivatives with respect to ~22. (For the special case
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of J'= J'=0 we set g ' =g ' =f, ', =0 and f,',
= h, , ) The fact that only two of the many bilocal
functions in Eq. (4.7) contribute to the scaling func-
tions F& leads to two nontrivial relations among the
E s, one of which is in fact independent of J and J'
and does not involve differentiation with respect to

We simply assume that the Sommerfeld-Wat-
son summation merely amounts to replacing (J+Z')
by 2o.(4'). Thus we obtain two relations:

2coRF, +F2+F3+F4 =0, (4.11)

P
( .g)~p«»-la-oI

qA

We suppose" that the leading trajectory is the
Pomeranchukon o~. In that case F,((da) -

&ua
' and

F. . .( (d)a-(d„' as ea-0. From our experience
with single-arm electroproduction we may expect
the rel.evant range to be 0 ~ vR ~ 0.3. In this range
of ~a, the relation in Eq. (4.12) becomes simply
that E4-0, which in turn implies that H and 8"
are related in this region.

V. DISCUSSION

Our analysis involves extrapolations through
large distances. However, we are not interested
in any detailed aspects of our van Hove analysis
but only in the general behavior of the various
structure functions. It may be reasonable to as-
sume that our results have more general validity
than the details of the analysis. To begin with,
predicted scaling properties are such that, when
Eq. (4.9) is substituted into the general relations
among the helicity and invariant structure func-
tions [Eq. (A21) (or, rather, its inverse)], no ex-
tra constraints result. This is certainly not true

(u„,'+4m ' +(2a —() d
' —4nF, ) =0.d F3 dE3 dF4

@JR d(dR

(4.12)

They are consequences of the tensor structure of
the light-cone commutator Eq. (4.6) and supposed
to be true for a finite range of small ~'.

The relation in Eq. (4.11) has a comfortable phys-
ical interpretation: It merely corresponds to the
statement that H" scales to zero in the deep-inelas-
tic Regge limit. This has the observable conse-
quence that the differential cross section in Eq.
(2.7) becomes independent of x when multiplied by

(1 —x).
The relation in Eq. (4.12) is more obscure. In

the region of small ~R, however, it may simplify
somewhat. This corresponds to the so-called tri-
ple-Regge region q.»&q»& Q' where H" be-
haves like"

in general. " [In this sense, with some experience
derived from works in the triple-Regge asymptot-
ics, one could have "guessed" our result Eq. (4.9)
from the relations in Eq. (A21).] Furthermore, our
assumption is certainly valid if the conjecture of
Ellis' concerning the light-cone structure of multi-
local operators turns out to be correct. In fact this
stronger assumption would lead to similar scaling
behavior in a wider kinematic range" (i.e., the
restriction of q P» q &, Q' may be removed)

Of the two relations in Eq. (4.11) and (4.12} we

expect that the first one is more credible. It
comes from a relation independent of J and does
not involve differentiation with respect to cuR. We
note that it is compatible with Eq. (4.9) and posi-
tivity conditions (Appendix). Another argument for
its validity comes from the so-called inclusive
sum rules. " They relate an integral of the coin-
cidence cross sections over d'P' to the single-arm
cross sections, The zeroth-moment sum rule
reads (Appendix)

(v'+ Q')' 'n(Q', v)H"(Q', v)

m'&
= —'g dM dA'H' '

v M' 6
(5.1)

where (ab) = (++}or (00). n(Q', v) denotes the multi-
plicity of the detected hadron. The inclusive "sum
rule, "being merely a statement on combinatorics,
is devoid of any dynamical content. However, they
do constrain various scaling behaviors (although
in an essentially trivial manner). Strictly speak-
ing, our result that H '(Q', v, M„', 6') = 0 in the lim-
it v»M„', Q' and Q' growing large with Q'/M„' and

fixed does not follow immediately from positivi-
ty and the Callan-Gross relation, which states that
H"(Q', v) =0 as Q'- ~ with Q'/v fixed. In practice,
however, H"(Q', v) is known to be small every-
where in the Q'- v plane. In particula, r, the assump-
tion that H o(Q', v) - 0 as v- ~ with Q' fixed has
been introduced" in the literature. In that case the
validity of Eq. (4.11) will not be surprising.

The relation in Eq. (4.12) is on a rather different
footing. While Eq. (4.11) expresses the fact that
the leading scaling component in H 0 is zero, Eq.
(4.12) involves the nonleading (q b, )H' and

(q &)-,'H" terms. As it turns out, "these functions
are sensitive to "twist-four" operators' in a light-
cone expansion. Consequently, whereas Eq. (4.12)
is certainly true in a free-quark model, it is not
likely that it can be maintained in, say, the quark-
gluon model. In this way this curious relation pro-
vides us with a test of the light-cone expansion up
to twist-four as seen in a free quark model. Exper-
imentally this, of course, requires the more dif-
ficult measurements of H' and 8"in the deep-
inelastic limit.
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APPENDIX

4 =m +m' 2ngE'

M„=&' —Q'+ 2 v(m —E') + 2(E"—m ")'~'
(A3)

kxk' kxp'
lkxk'I lkxp'I

(A5)

we have

x[(c —E cosg) cosH' —E'' sing sing' cosp&]

(A4)

The expressions for p and p in the laboratory
frame are already given in Eqs. (2.3) and (2.4).
We note in particular that the azimuthal angle p
used in the paper is not the conventional laboratory
azimuthal angle pl, ." Comparing Eq. (2.4) to

cosp =[6 sing cosg + (e —6 cosg) siI18 cosgl] ' [(E —6 cosg) sill 8 + 6 sill 8(cos 8 + sill 8 slI1 Ql)

+ 2e'(e —e' cos 8) sing cos 8' sing'

COSTI�]

"' . (AS)

(b) Brick Iuall fxa-me and the O(2, 1) formalism.
The process depicted in Fig. 1 is given as

T„. I, e'u(k—-'x')y„u(kx) , ((ou—t)n,p'lz"(0) lp),

(A7)

A. and A.
' being the leptonic helicity labels. Ne

shall evaluate it in the brick-wall (BW) frame de-
fined by

q" = 1tQ' (0, 0, 0, 1) . (AS)

An arbitrary configuration in this BW frame is
then described by the two parameters of the Lo-
rentz transformations, which leaves q" invariant
as in Eq. (AS). Explicitly, they consist of a boost
along the x axis by the hyperbolic angle g, followed
by a rotation around the z axis by an angle Q (Fig.
6).

These operations are defined with respect to a
sPecial BW frame in which k", = —,'vQ'(1, 0, 0, 1).

Therefore, when expanded on the basis

e~'~ =(0, +1, —i, 0)/v 2, e '@ =(1,0, 0, 0), (A&)

The leptonic vertex in a general B% frame, in
which k" = —,'~Q2 (cosh(, sinhg COSTI, sinhg sing, 1),
may be obtained easily from Eq. (A10) and the
O(2, 1) transformation properties of (c~'I"].:

o (0, P)~''O(g P)=D' (g p)» " (A11)

with

the leptonic vertex in this special frame is a func-
tion of Q' alone:

II(k, 'X')y" u(k, X) = v'2Q' (2X)[5, „+„rc""

(A1o)

hadron plane

~ ~$
I

X

FIG. 5. Kinematics in the laboratory frame, z axis
being defined by the incoming beam k.

FIG. 6. Kinematics in the BW frame with q and p ly-
ing on z axis. (x-y plane is the "brick-wall. ") Q is the
azimuthal angle contained by the leptonic plane (k, k')
and the x -z hadronic plane (p, p') .
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e '~ —,'(1+cosh()

;& sinhge-'

sinh)j)

cosh(
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We are thus led immediately to a simple factorized
form" for the scattering amplitude Eq. (A7),

sinh2([cosg Re(H" —H ')
2

—sin)))) Im(H" +H ')]

—sinh'${cos2)))) ReH' —sin2$ ImH' ),

Ib = cosh/(H" —H )

—)) 2 sinhg[cosQRe(H" +H ')

—sin)))) Im(H" —H ')] . (A16)

So far the discussion is completely general. The
above decomposition of intensity distribution with
respect to the "trivial" variables g and P should be
valid for the general electroproduction process in
which an arbitrary number of hadrons are detected.
(In that case P may be defined as the azimuthal
angle of the final lepton with respect to some had-
ronic plane. ) For process (1.1), in which only one
hadron is detected in the final state, not all helic-
ity form factors are independent. Parity invari-
ance [i.e., viewing process (2.5) as a two-body to

&), ~=—2j'~", ~(Q'}D.b()j))4)J'"(Q')q»e»&'})
(A13)

where the only nonzero leptonic vertices are
j,~,

' », = -j,» „,=(2Q')' '. This expression for
T),. z and Eq. (A12) show that the azimuthal angle

P plays a physically interesting role. We are in-
structed to consider the leptons as the source of a
virtual photon of various polarization, and the am-
plitudes corresponding to the various polarizations
differ only by appropriate powers of e'@.

(c) Intensity distribution. For a longitudinally
polarized (p) lepton beam the intensity distribution
may be written as

«(p) - l(I+a) I &„., i,2I'+ '2(I —p) I T,~. , -i(2I'

= I„+PIb . (A14)

Using Eqs. (A13} and (A12) and the definition for
H" in (2.8) we have

I,= —', (1+cosh'g}(H" + H ) + sinh'P H"

two-body reaction] leads to H"=(-1)' 'H ' '. In
this way we obtain the final expression in Eq. (2.7).

(d) Inclusive sum rules. The formalism devel-
oped in the last section can be readily applied to
the single-arm process (1.2). Clearly the cross
section is independent of P and only H" and
H"( H ) survive. They are, apart from a sim-
ple factor, just the familiar scalar and transverse
cross sections:

v, (v, Q')=2m'a{2, )H '(v, q'),

a„(v, ))')=2m'a( 2™ .)H (v, q').
(A17)

where (a, b) =(0, 0) or (+, +). n(v, Q') is the multi-
plicity of the detected hadron.

(e) Positivity conditions. For any complex four-
vector g" we have the condition q" 8'&,q'* ~ 0. In
terms of {H"j,

&0,
~ IH'-I o-o,

H (H —K+ ) ~ 2
I

H+

(A19)

(f) Cross section of single-pion electroproduc
tion. Our helicity structure functions (H' ) are es-
sentially the cross sections of Hand often used in
works on single-pion electroproduction. ' Explic-
itly,

++H = ccrc~,

H"= co L& (A20)

+0 1ReH = -2co

with

4
(2m v —Q')(v'+ Q')"'5(M„' —p, ,') .

These structure functions are related to our H"'s
of the process (1.1) by the so-called "inclusive
sum rules"":

(v'+ Q')"'n(v, Q'}H"(v, Q')

rn 1
) dM 2dI 2Hab{ Q2 +2 M 2)

(A18)
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(g) Helicity and invariant structure functions.
The fH") of Eq. (2.8) are related to (W;J of Eq.
(2.9) as where

H '=H = —W, +2A'(W, +W, —W4),

H' = H ' = -2 A (W, + W, —W4),

H = S', +B'lV2+C lV, +BC%4,

ReH" = ReH" = -ReH ' = -ReH'
(A21)

with

q ~ Pq ~ 4 Ã PN. 4
Pf 2

NANP
(~2)1/2 t (H2)1/2

ImH' = -ImH" = -ImH = ImH

P ~ q
N~ =Pp —

2 q~ .
q

(A22)

*Work supported in part by the U. S.Atomic Energy
Commission under Contract Number AT(11-1)-3505.

f Research sponsored by the Air Force Office of Sci-
entific Research, Office of Aerospace Research, U. S.
Air Force, under AFOSR 70-1866A.

For example, K. Berkelman, in Proceedings of the
International Symposium on Electron and Photon Inter-
actions at High Energies, 1971, edited by N. B. Mistry
(Cornell Univ. Press, Ithaca, ¹ Y., 1972).

For example, J. D. Bjorken, Ref. 1; S. Drell and

T.-M. Yan, Phys. Rev. Letters 24, 855 (1970); Y. Frish-
man, V. Rittenberg, H. R. Rubinstein, and S. Yankielo-
wicz, ibid. 26, 798 (1971); J. Ellis, Phys. Letters 35B,
537 (1971); J. D. Stack, Phys. Rev. Letters 28, 57
(1972).

3A. Pais and S.B.Treiman, phys. Rev. D 1, 907
(1970).

4L. van Hove, Phys. Letters 24B, 183 (1967).
'H. Fritzsch and M. Gell-Mann (unpublished); R. Brandt

and G. Preparata, Nucl. Phys. B27, 547 (1971); H. Leut-
wyler and J. Stern, Nucl. Phys. B20, 77 (1970); R. Jac-
kiw, R. Van Royen, and G. B.West, Phys. Rev. D 2, 2473
(1970).

6D. J. Gross and S.B.Treiman, Phys. Rev. D 4, 1059
(1971); also, J. M. Cornwall and R. Jackiw, ibid. 4, 367
(1971),

~C. G. Callan and D. J. Gross, Phys. Rev. Letters 22,
156 (1969).

W. R. Frazer, Phys. Rev. 115, 1763 (1959).
~J. D. Sullivan, Phys. Rev. D 5, 1732 (1972).
A. Pais, Phys. Rev. D 1, 1349 (1970).

' I. J. Muzinich, L. -L. Wang, and J. -M. Wang, Phys.
Rev. D 2, 1985 (1970).

T. P. Cheng and W.-K. Tung, Phys. Rev. D 3, 733
(1971).

3See, for example, A. Pais and S.B.Treiman, Ref. 3.
~4A. Pais and S. B.Treiman, in Problems of Theoreti-

cal Physics (Nauka, Moscow, 1969), p. 257.
~5As was mentioned, the intention is to apply our analy-

sis to the case in which one detects the recoil proton.
Some readers may be discomforted by the thought of
visualizing the Pomeranchukon in the van Hove manner.
Indeed, it is generally believed that no particle lies on
the Pomeranchukon trajectory and that diffraction scat-
tering is generated by the shadow of inelastic processes.
Nevertheless, there are mounting evidences tR. Carlitz,

M. B.Green, and A. Zee, Phys. Rev. Letters 26, 1515
(1971); Phys. Rev. D 4, 3439 (1971)] supporting the
hypothesis that the Pomeranchukon communicates with
hadrons through the f and f ' trajectories; if that is true,
our analysis may be justifiably applied.

~6The summation should only run over even (odd) J and
J' if the trajectory under consideration has even (odd)
signature. We absorb the appropriate signature factor
1+e'~' into G(J).

~VThe light-cone commutator in Eq. (4.6) may be
rendered manifestly gauge-invariant by adding nonlead-
ing terms as discussed by Gross and Treiman (Ref. 6).

~ See, for example, H. D. I. Abarbanel, G. F. Chew,

M. L. Goldberger, and L. M. Saunders, Phys. Rev.
Letters 26, 937 (1971).

~~We assume that the Toiler quantum number of the
Pomeranchukon M =0. Some evidence for this comes
from yp 7tX. H. D. I. Abarbanel and D. J.Gross,
Phys. Rev. Letters 26, 732 (1971); Phys. Rev. D 5, 699
(1972).

The possibility that the so-called triple-Pomeranchuk-
on vertex vanishes (at A =0) has been raised, Ref. 19.

For example, the naive argument that H, being of
the same dimensionality, should scale similarly (see,
for instance, Frishman et al., Ref. 2) will lead to two
constraints among the structure functions, We note that
coefficients in Eq. (A19) have the following limit (3.1):

( P2) i/2 P q Q/~Q2 Q ~q P /~Q2 ~

O. Nachtmann (private conversation).
T. T. Chou and C. N. Yang, Phys. Rev. Letters 25,

1072 (1970); also, C. E. DeTar, D. Z. Freedman, and

G. Veneziano, Phys. Rev. D 4, 906 (1971).
For example, R. Jackiw, R„, Van Royen, and Q. B.

West, Phys. Rev. D 2, 2473 (1970); A. Zee, ibid. 3,
2432 (1971).

T. P. Cheng and A. Zee, Phys. Rev. D (to be published),
where a more detailed discussion of this point will be
presented, in particular for the case of deep-inelastic
scattering on a spin-one target.

In the literature the structure functions as defined by
Drell and Yan (Ref. 2) are often used. We note that in
defining g& 2 these authors have averaged over ~t)~ (hold-
ing v, Q, &, M„ fixed) instead of over the "trivial"
variable P. Consquently, the relation between ~& &

and
the structure functions used in this paper is rather com-
plicated.


