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Finite-energy sum rules in Compton and deep-inelastic scattering are analyzed at q =0 and
-q2=~ on the basis of a Regge-pole model including cuts. It is found that the sum rules can
be satisfied without the use of real fixed poles. Good fits are obtained to the data for the deep-
inelastic structure functions in the Regge region, and to the data for the high-energy total and
differential cross sections.

I. INTRODUCTION

One of the interesting features of brompton scat-
tering of real or virtual photons on protons is that
if one assumes simple Regge-pole dominance at
high energies, the finite-energy sum rules which
one writes down are not satisfied by the experimen-
tal data. This situation is clear for real photons,
and there is strong evidence for the failure of
simple Regge-pole dominance for virtual photons
in the scale-invariance (deep-inelastic) region.
The standard interpretation of this fact is that
there exists a fixed pole at an angular momentum
value J =0 in the full Compton amplitude. " Such

real poles are forbidden by unitarity in strong-
interaction processes, but may occur (to first or-
der in the electromagnetic coupling constant o.) in
electromagnetic interactions involving hadrons.
A J =0 fixed pole contributes an asymptotic be-
havior (energy) ' to the real part of the amplitude;
it does not contribute to the total cross section,
but does contribute to the differential cross section.

The purpose of this paper is to propose an alter-
native mechanism for satisfying the finite-energy
sum rules, namely a cut in the .angular momentum
plane. '4 This cut may be fixed or moving. The
advantage of this approach is that the mechanism
for producing a cut is familiar in strong-interac-
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tion physics, whereas the dynamical origin of a
fixed pole is obscure. Numerically, of course,
the two possibilities cannot yet be distinguished,
as the precision of the experimental data is not
sufficiently good. Unlike a fixed pole, however, a
cut contributes to the absorptive part of the ampli-
tude, i.e., the total cross section, so in principle
the distinction can be made.

In Sec. II, we derive the appropriate finite-ener-
gy sum rules (FESR) from analyticity in the energy
variable, and show how one can, with the appro-
priate assumptions, obtain the local form of the
Bloom-Gilman sum rule. ' It is pointed out that
this sum rule is not a necessary consequence of
analyticity and scale invariance. We further dis-
cuss the possibility of fixed poles at J= 0 and at
J= 1. In Sec. III, we exhibit a Regge-pole-plus-cut
model for Compton scattering of virtual and real
photons. We constrain the model to satisfy the
FESR's, both for real photons and in the deep-
inelastic region. We then apply the model and fit
the total y-P cross section, the inelastic structure
functions in the Regge region, and the differential
cross section for Compton scattering up to t=-1.3
(GeV/c)'. Although these results apply specifically
to proton Compton scattering, the extension to
neutrons and pions is straightforward. In Sec. IV,
we end the paper with concluding remarks.

1 ~ 1 P q P q—T)), ——
M2 P2- 2 q)) P„- 2 q„T2(v, q )

q q

—g&„- 2 T&v q (2 4)

2MW, (v, q2) = u&[vW2(v, q')],
where

(2.5)

W, (v, q') = —ImT, (v, q')2-1

and ~ =2Mv/(-q') is the scaling variable intro-
duced by Bjorken. ' W, and W, are the structure
functions for deep-inelastic electroproductien.
We may extend' (2.5) to T, and T,:

2MT, (v, q2) =ufvT (v, q')].

The amplitude T; is an even function of .v (cross-
ing symmetry):

In this work, we shall be concerned with the am-
plitudes vT, and T, . We shall write down FESR's
for v T, particularly; the treatment for T, is simi-
lar. In fact, under the assumption that the matrix
elements for transverse and longitudinal photons
are equal, the imaginary parts of T, and of vT,
are simply related'.

T, (v, q') = T, (-v, q') . (2.'l)

II. FINITE-ENERGY SUM RULES

A. Kinematics

Consider elastic scattering of a photon of four-
momentum q off a proton of four-momentum P.,
with P' = M'. The barycentric energy squared is

For fixed q' it is cut in the v plane from
v = (p,'+ 2M)u, - q ')/2M to v =+~:along the positive
real axis, and from v=-(pP+.2M', —q')/2M to v

= -~ along the negative real axis; p is the yion
mass. It has poles (the nucleon poles) at v=aq2/
2M.

s = (P+ q)' = M2+ q'+ 2Mv, (2.1)
B. Asymptotic Behavior

f =(q'- q)'=(P'-P)', (2.2)

where q' and P' are the photon and proton final
four-momenta, respectively. Following the nota-
tion of our earlier work, ' the forward Compton
amplitude (averaged over nucleon spins) is given
by

T(I, C ) =4IIII (
—)II*I Tj „, (2.3)

where E~ is the proton energy and e, and ~, are the
polarization vectors of the incoming and outgoing
photons, respectively. The tensor T*„„canbe ex-
panded in terms of two invariant amplitudes,

where v=q ~ P/M is the laboratory energy (also
denoted by E) of the photon. The momentum trans-
fer squared is

It was shown in our prev'io)us wo)rk' that T, :(and
v T,) can be described in terms:of a Sommerfeld-
Watson representation of the:t-Ichannel process
y+y -N+N continued from the region t)4M',
q')0 to the region t&0, q'&0 with v physical.
We now define the Aegge ~egion as the region in
the (v, q') plane where v & 2 GeV and ~ & 6 (for
q'(0). That this is a, reasonable definition can be
seen from the success of Hegge-pole fits to the
structure function vW, (v, q'). ' In this region, we
may express vT, as

v T,(v, q', t)

=g@(q2, t)v"~ " '$;(t)I'(u, (0))

+A ' tv
V'~+Icei -2

( V)nc(t) -2

ln~v+ f (q2}
+ ln'(-v)+ f(q')

(2.8)
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The first term is a standard Regge-pole expan-
sion. The index i runs over the t-channel Regge
poles; o.;(t) is the Regge trajectory; t;(t} is the
signature factor, and I'(n, (0)}is a convenient nor-
malization factor. For proton Compton scattering,
Regge poles of even signature only are allowed
(i.e., the Pomeranchukon, the P', and the A, ), so
that

1+e-i';o)
$;t=

sinn o.;(t) I'(o.;(t))' (2.9)

The T' function cancels the pole which would other-
wise occur at n, (t}=0. A, (q', t} is the Regge resi-
due.

The second term is a cut, of the usual form; it
is real, analytic, and crossing-symmetric. The cut
trajectory is o.,(t). The function f(q') has been in-
serted so as to give the correct limiting behavior
as q2-0, and also the scale-invariance limit, as
we shall discuss below. This q2. dependence is not
the most general we could have chosen, but it
serves to illustrate the point. For simplicity, in
what follows, we shall choose the power to which
the logarithm has been raised (5) to be unity. ' We
do not attempt to derive the cut from iterated
Regge poles,

The structure function vR"2 is thus

(2.10)

where

o.; = o.;(0) and a, = o.,(0).

Experimentally in the limit v large, ~ fixed, the function vW, (v, q ) tends to a nontrivial scale-invariant
limit'

lim vW, (v, q') =E,(&u) e0.
ij ~~;(ufiXed

This implies that

(2.11)

(2.12)

where A; and A, are constants. Thus, in the scale-invariance limit, we have

(2.13)

Since the Regge region (&u & 6) does not include the nucleon poles (which occur at &u = +1), we have

vW, -O(q') as q'-0
for fixed v~ 2 GeV. This implies that

A,.(q', 0) ~ a,q',
q2 ~p

A,(q', 0) ~ a,q',

(2.14)

where the a,- are constants. Furthermore, if we wish the cut to contribute to the total yP cross section for
real photons, we require

lim f(q') =f„
q2 ~p

where f, is a finite constant.

(2.15a.)
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C. Derivation of FESR

%e shaO now ferrite down the appropriate sum rules for vT, . Let q' be fixed. and nonzero. Cauchy's
theorem reads

v T,(v, q')dv = 2a i+ (residues),~ ~

(2.16)

where C is a contour excluding the cuts but enclosing the poles. This becomes

ng

[G(q')]'= ~ vW, (v, q')dv+ —QA,.(q', 0)
~ (P2 + 2NP -qf2)/2N ~ i i

' (cosu, y)[inR+f(q')]+y sinu, y d (2.1'I)

The upper limit B marks the beginning of the Hegge region, and, by virtue of our earlier remarks, de-
pends on q'; thus A'&2 GeV and R»-q'/2M. Moreover, [G(q')]2 is the nucleon pole contribution, and in-
-volves the electric and magnetic form factors G~ and G„:

[G.(q')]'+ (-q'/4M')[G. (q')]'
(2.18)

Now consider the scale-invariance limit of (2.1't). The term (q'/2M)[G(q')]' goes to zero, and if we

change the variable of integration from v to e and use (2.11) and (2.12), we have

(2.19)

1+($2+2411)/( —Q2) &z
[G(q )]'= il E (&d2)kd + [E,(e) —vW, (m, q')] dw

( p 2+2 Mp)/ q2

1 ~~,.~„"& 1 „'(cosu, y) In&ea+ysinu, y d
(1Il(dg) +p

r

with ~„=—2M'(q')/-q'. If we now subtract, (2.17) from (2.19), again changing the variable of integration,
we obtain

~, ( ', 0)(,
'*)"' '

1 ' (cosu, y) In~a+ysinu, y d+ 40g 'C . gC (In(u„)' +y'

-q' "~ ' " (cosu, y)[ln&ua+f (q')+ln(-q'/2M)]+ysinu, y
2M 0 [»a+f (q') + ln(-q'/2M)]' +y

(2.20)

Now let us suppose that scale invariance is approached by a power-law behavior, specifically

E,(e) —vW2(v, q') & „as -q' ~ (all ru),
E((u)

(2.21)

implying that

(2.22)

Then n~ 8 to give the observed diyole falloff of the elastic nucleon form factor, barring cancellations with
the first term of (2.20). If n& 8, or if the approach to scale invariance is faster than a power law, then for
large -q' we have

x+ (g2+2NII)/- q 2

[G(q')]' = E,((u)d(u .
1

(2.23)

This is the local version of the Bloom-Gilman sum rule, but we note that the upper limit is predicted. Of
course, the procedure of subtracting two sum rules may not be valid, since we aPPxoximate the high-ener-
gy behavior of vW„and so the sum rules are not locally valid. If, however, n=8, then the local version of
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the Bloom-Gilman sum rule may not even be approximately true, as the other terms in (2.20) must all be
considered. Experimentally, it is not yet possible to fix the value of n, but it is of interest to note that the
local version of the Bloom-Gilman sum rules reIluires a much larger upper limit than is written in (2.23)
to fit the data. ' We observe that (2.23) cannot be tested with a purely Regge model, as the region of inte-
gration involves @mal/ &u, i.e., v--q'/2M.

Now let us consider the limit q' = 0. Using (2.15) and the relation

4n
v„(yN)= lim, )[vw, (v, q')],

we obtain from (2.1'7)

=-(..'.)~;„.„. 2M It"~ 2M „'(coso.,y)(lnR+ f,) +ysinu, y
(lnR+ f,)'+y'

(2.24)

(2.25)

So far, we have assumed that the asymptotic be-
havior is dominated by Regge poles plus a cut.
What about fixed poles'P The original interest in
fixed poles arose when it was discovered that Reg-
ge poles alone were insufficient to satisfy the q'=0
and -q'=~ FESR's. The failure of Regge-pole
dominance, for the latter case, depends of course
on the validity of our assumption about the Regge
region; if Regge-pole dominance does not hold for
co&100, say, then one learns nothing from the -q'
= ~ sum rule. However, as noted, there is evi. -
dence for approximate Regge-pole dominance for
co&6.

At any rate, the solution has hitherto been to in-
troduce real fixed poles at J =0 to satisfy both sum
rules. ' Generally speaking, fixed poles can be of
two types: wrong-signature fixed poles (occurring,

at odd J in an even-signatured amplitude and vice
versa) and right-signature fixed poles [occurring
for even (odd) J' in an even- (odd-) signatured am-
plitude]. An example of a right-signature fixed
pole is the pole at J = 1 implied by the Dashen-
Fubini-Gell-Mann sum rule' in the amplitude for
the scattering of charged photons off protons. Such
a pole does n«contribute to the asymptotic be-
haviour of neutral y scattering, and so can be ig-
nored. Unlike real fixed poles, cuts contribute to
the total cross section.

HI. REGGE-'POLE-PLUS-CUT MODEL

We now turn our attention to a specific model for
the functions A, (q', f), A,(q', f), and f(q'). Sub-
ject to the constraints (2.12) and (2.15), we choose
the simple forms
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FIG. 1. The structure function vR& versus -q for fixed values of (d. Our fits (solid lines) are calculated using the

average value of u in each case. The data (Ref. 11) show the breaking of scale invariance for small —q2.
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+i(t) ( y n&

X, (q', r)=sq'(, , ( p;(r),
0

2M

0

(3.1)

[p~,(0)+P~(0)], P,(0), and o., are then determined
by requiring the model to satisfy the sum rules
(2.19) and (2.25). [Since the IP' and the A, trajec-
tories have the same intercept and slope, only the
sum (P~ + P„,) enters into this calculation. ]
The integral in (2.25) over the resonance region
has been evaluated by Damashek and Gilman, ' who
find

In general, more stringent constraints on

A,(q', t) and A;(q', t) are implied by (2.20): We
should choose the q' dependence of A,(q', t) and
A;(q', t) so as to reproduce the nucleon form fac-
tors. But as accurate data on vW, (v, q') do not
exist for all q', and since there is no difficulty in
principle in constructing functions with sufficiently
complex q' behavior so as to satisfy (2.20) for all
q', it was decided simply to test the sum rules at
q =0 and -q =~. The mass m0 is introduced as
a scale-breaking parameter, ""and to satisfy
(2.15). At q'=0, m, determines the normalization
of the total cross section, and the choice m0=0. 665
GeV was found to be satisfactory. This value is
also consistent with the violation of scale invari-
ance exhibited by the data". for the structure func-
tion vR'2 plotted as a function of -q' and for fixed
~&6, as shown in Fig. 1. The parameter X is
simply a mass which forces the cut contribution to
change sign between q'=0 and -q'=~, an essen-
tial property if the model is to satisfy both sum
rules simultaneously, and fit the data. In prac~
tice, the value A. -0.8 GeV was used. Of course at
q =0 and -q =~, the sum rules do not depend on
the value of A, chosen, but simply on the functional
form; the value of A. quoted, above was used to give
the fits in Fig. 1.

Two of the four remaining parameters P~(D),

M
or(yp)d)/ = 5.5'I,

7T + ~ +~2/2~
(3.2)

with or((/=1. 68 GeV) =151 y,b. Close and Gunion'
evaluate the integral of E, (&u) over the non-Hegge
region, finding

p12

E,((u)d(d = 3.32, (3.3)
4j

with E,(12) =0.35. The last two parameters are
fixed by requiring that the Regge model join on as
smoothly as possible to the resonance region; for
the sum rule (2.25}, this is achieved to about 3%.
We find

Pp,(0) = P~ = 0,365,

(6~,(0)+P„(0)-=Pp.+P/(, , =0.203 GeV '/', (3.4)

P,(0) =—P, = 0.493,

a, = 0.95,

and we take the usual intercepts z~= 1, ~„
1 '. "2

It was found that the results are quite insen-
sitive to the value of a,: The value in (3.4) gave
the best fit, but any value of cz, from 0.8 to 1 could
just as well be used. Of course, n, cannot be
greater than 1. In terms of our model, the total
yP cross section is (v & 2 GeV)

1 "', P, 2nrvl("* ' s cosss, -ln(22qv/I ') sinso,
)[In(2M(///mo )] +))'

(3.5}

and the structure function E,((d) in the Hegge region is given by

n cosro, —mrs sins o,
)(In(o)'+ ))' (3.6)

Using the Parameters above, we fit the data" for or(yP) for v&2 GeV and the data22 for E,(&u) for &g &4.
These fits are shown in Figs. 2, 3, and 4. It will be of great interest to see if the curve for E,((d) contin-
ues to be consistent with the Regge picture for values of ~ &20. Also shown is the prediction of our earlier
work in Ref. 6.

Consider now the differential cross-section for Compton scattering of real photons. In general six invari-
ant amplitudes describe this process. Four of these vanish at 1=0, however, so we assume that &y and T2
dominate and that the approximation of treating the nucleon as spinless is not important. In our model,
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FIG. 4. (a) The proton structure function vW2 versus u. The data are from Ref. 11. The dashed line is the fit to ~W2
in the scale-invariance limit, in the Regge region, using the model of this paper. The solid line is the fit using the
model of Ref. 6. (b) Our prediction for the structure function E&(~) for large values of cu, showing the slow approach to
the asymptotic value. The dashed line shows P2(~) =0.365 in our model.
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n (&) 1 ng

7'.(, ~', ~)= s'g( . . 2~ P;(&) '"' 't;(&)&(;)

2M ~~'t'~ 1 -q ' —A.
' inc(t) 2

( p) (t) -2
—2FQ'

q2+~ 2 2~ & q2+g2 ]n 2~ q2 ~ 2 ]n 2~p q2 ~ 2

If we use (2.6) and (3.7), we can evaluate the dif-
ferential cross section'

PTER

, IT, (v, 0, f)1'. (3 8)

Let us consider the t dependence. For the Regge
residues, we take the usual form

p, (t) = p, e"". ' (z=Z, Z', X„cut) (3.9)

with A and B constants. The cut trajectory is
taken to be flat,

a.,(t) = n, . (3.10)

Fairly large changes in the slope of the cut trajec-
tory have no effect on the results, so for simplicity
we choose a slope of zero. It should be emphasized
that no special significance is to be attached to this

choice. It is interesting to note that a cut generated
by double Pomeranchukon exchange would have in-
tercept 1 and slope —,'n~'; these values are quite
consistent with the cut parameters we use, al-
though this work is independent of the detailed mod-
el used to calculate the cut. Because cuts do not
factorize, we cannot make any prediction as to
whether this particular cut will also appear in the
strong interactions, although cuts are of course
present there as well.

The P' and the. A. 2 were given the usual Regge
slope, 1 GeV '. A least-squares fit to the data"
then determined the constants A, B, and the slope
of the Pomeranchukon, n~'. We obtain the results

A=4.8 Ge7 ', B=1.2 GeV ', o.~'=0.3 GeV '.
(3.11)
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FIG. 5. The differential cross section dg/dt for proton
Compton scattering plotted against -t. Four values of
the photon laboratory energy v are shown: (a) 5.5, (b)
8.5, (c) 11.5, (d) 17 GeV. The data are from Hef. 13;
the solid line is our fit.

FIG. 6. The differential cross section do'/dt plotted
against -t for small values of -t. The data are from
Ref. 13; the solid lines are our fit. The photon laboratory
energy v is (a) 8, (b) 16 GeV.
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The Pomeranchukon slope is small. The explana-
tion for this is that the data show remarkably little
shrinkage. If we define I" as the width of the dif-
fraction peak,

(3.12)

then the shrinkage S is defined by

M+2v d
& (3.13)

IV. CONCLUSIONS

We have exhibited a Regge-pole-plus-cut model
for proton Compton scattering for real and virtual

The experimental shrinkage" is consistent with
zero, although the errors are large,

S '

g 0 OV+ 0 88 GeV 5 v 17 GeV

(3.14)
whereas our model gives S=0.25 GeV ' in the same
range of v.

In Figs. 5 and 6, we present our fits to dv/d t,
and we see the agreement is good over the range
5.5& v &17 GeV and 0&-t& 1.2 (GeV/c)'.

photons. The model satisfies the FESR's at q' =0
and -q'=~ and gives good fits to the total cross
section, the inelastic structure functions in the
Regge region, and the differential cross section.

A similar treatment can be given to neutron

brompton scattering. The data for q'=0 are not
sufficiently precise to draw conclusions as to the
presence or absence of non-Regge-pole asymptotic
behavior, although the deep-inelastic data are sug-
gestive of the former. The model can also be ex-
tended to pion brompton scattering, as outlined pre-
viously. '

We conclude from our work that cuts in the angu-
lar momentum plane should be considered as viable
alternatives to fixed poles in brompton and deep-
inelastic scattering, for all the requirements of
various sum rules, as well as fits to presently
available data, can be accommodated by postulating
only cuts, in addition to the Regge poles. This of
course does not preclude the possibility of fixed
poles, but it does remove the argument that fixed
poles are a necessary feature of Regge-pole phe-
nomenology, as applied to electromagnetic inter-
actions with hadrons.
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