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Axial-vector-current conservation in a world of massless pions is used to investigate two-

body decays of vector and tensor mesons involving at least one pion. The axial-vector chan-
nel is saturated with the single-pion and BB intermediate states, which leads to absolute pre-
dictions for vector-meson decay rates, with no adjustable parameters. Good agreement with

experiment is found for &—xy and p mz. Comparisons with the vector-meson-dominance
model and p-meson universality are made. The model is extended to tensor-meson decays,
and vector-. tensor exchange degeneracy is found.

I. INTRODUCTION II. m ~yyAND V ~x y

In previous papers it has been shown how the
usual Ward identities of current algebra have
their origin in the "kinematical" principles of
vector- and axial-vector -current conservation. "
Furthermore, it, has been demonstrated that one
of the problems of current algebra, K» decay,
can be resolved within the "dynamical" approxi-
mation of saturating the axial-vector channel by
the m and BB (B =baryon) intermediate states (the
triangle approximation).

In this paper we extend these ideas to m -2y
and decays of vector and tensor mesons. In par-
ticular we treat the "abnormal" decay V- my in
a fashion similar to mo- yy (Sec. II), and the "nor-
mal" processes p-ww, f-mn, and SU(3)-related
process similar to K» decay (Sec. III). Replacing
a pion by the axial-vector current, using the ax-
ial Ward identities, and saturating the axial-vec-
tor channel by the m and NN (triangle) intermedi-
ate states, we obtain rates for these decays which

agree well with experiment. Qur results further
demonstrate the validity of the dynamical tri-
angle approximation which we discuss in detail in

Sec. IV.
Qur approach complements the usual vector-

dominance model (VDM) applied to vector-meson
decays. ' We saturate the axial-vector channel
and obtain absolute rates; VDM saturates the
photon vector channel and gives relative rates.
Qur extrapolation is in the Pion mass variable
with the vector-meson coupling on-shell; VDM
extrapolates in the Photon mass variable with the
vector-meson couplings off-shell. The concept
of universality of vector-meson couplings will be
used to compare these two extrapolation proce-
dures (Sec. III). The predictions of this model for
SU(3)-symmetry breaking are also discussed.
Vector-tensor exchange degeneracy is investi-
gated and found to be valid in this model.

fq Mpy~ +mMpp Epp(k k)

Adler then proceeds to write down the Ward iden-
tity for total axial-vector decay which does not
vanish, but is equal to the right-hand side of (l),

where g„' comes from renormalization in the e
model. Finally, the pion-pole dominates (3}to
obtain a low-energy theorem for the pion decay
amplitude E, ,

Rather than use the anomalous Ward identity and
a low-energy theorem, we formulate the problem
as an expansion, keeping only the m and the "na-
ive" NN intermediate states. By naive we mean
that the divergence of the related triangle graph
(Fig. 3}is'

q "M„*, (naive} = "e„„(k'k), (4)

equivalent to the vanishing of the right-hand side
of (I). The Ward identity for the total naive am-
plitude is

q"M&„„(naive) =0.

The prototype for abnormal (intrinsic parity
change} decays is m -yy. It has recently been
shown by Adler4 how the perturbation-theory tri-
angle graph for m decay' has its origin in an anom-
aly of the axial-vector triangle graph M„"„ for
axial-vector decay (coupling —,

'
y„y,) into two pho-

tons. The divergence of the latter is not propor-
tional to M» (coupling y, ), but one must also in-
clude an anomalous term
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Cutting off the expansion after the m and NN inter-
mediate states, we obtain

(6)

M p 2„=i(k —k')„e„„(k'k)F,

+ i(k+ k')„e„,(k'k)F, + i m v2e „,„(k')E, ,

where m~ is the mass of the vector meson and the
I',. are invariant functions. Axial-vector current
conservation (no anomalous Ward identity' ') re-
quires

0 = if,F,e „„(k'k)+ q "M"„„„(naive),

and using (4) we again obtain (8), aside from a
factor of gA2. Both (8) and this procedure give E,
in agreement with measured values, depending on
the value of f used (see Sec. IVE). Our procedure
is, then, to ignore the integration ambiguity when

using axial-vector current conservation, ~&A. "=0.
Without Adler's analysis, this procedure is ad hoc
and analogous to Steinberger's original triangle
calculation. ' However, this procedure can be ex-
tended to processes where low-energy theorems
do not exist and the axial Ward identity is normal
in the sense of (5). We use the w'- yy analysis as
a guide to our general triangle diagram approxi-
mation and justify its significance by the reason-
able agreement with experiment in all known
cases.

We begin by examining the process V„(k)-y„(k')
+A„(q) describing the decay of a neutral vector
meson into a photon and an axial-vector current.
The general form of the amplitude is [e„„(k'k)

pvpgk k ]'

FIG. 2. Pole dominance of e threshold photoproduction.

cays. Our only kinematic approximation is exact
axial-vector current conservation in a.world of
massless pions. We evaluate the invariants in
Eq. (8) at q' =0 and assume that they are slowly
varying in the region 0 & q' & m, '.

Evaluation of A(q') is accomplished by saturat-
ing the axial-vector channel. Only the single-pion
and nucleon-antinucleon states @re kept in Fig. 1.
The NN state is dominated by the nucleon pole
term with electric coupling via the Knoll-Ruder-
man theorem, ' since the diagram of Fig. 2 can be
seen to represent threshold vector-meson photo-
production. This is a frame-dependent statement
leading to the "triangle approximation" of Fig. 3,
with corrections of order mv/EN, where EN& m„
=m is some average energy of the intermediate
nucleons. Magnetic moment couplings in the nu-
cleon triangle graphs are intimately connected
with multiparticle states, and justification for ne-
glecting both will be given in Sec. IVB.

The pion state, Fig. 1(a), gives the contribution

M„"v„=if„~Fv(k', k", q')e„„(k'k),

where f, is the pion-axial-vector-current cou-
pling and Ev(mv2, 0, m„2) is the amplitude for
V'- m6& decay, defined by

S ~, = i(2v)45-4(k —k' —q)

= ie „„(k'k)[q'E, + m v2(F2+ E,)j =—ie „,(k'k)A (q ) .

(8)

xF ep(k)e*„(k')eP "(k'k) .
We calculate the NN triangle graph as in the
r yy case, ' and obtain

(10)

Since all of the covariants in M„„reduce to
e„„(k'k) when contracted with q", we need not
evaluate the I',. separately. Thus the procedure
becomes exactly the same as for the m'-yy case,
where there exists only one invariant amplitude
in M„p„

In the limit q'-0, Eg. (8) relates the pole part
(q ') of F, to mv(E, + F,). Note that we do noi
take the limit q„-0 (as in the soft-pion theorem)
which is obviously invalid for vector-meson de-

ANN(0) BvNN RA (I + I ++ 1 +2+. . . )
e (o)

(2v)2 3 6

where x=mv2/4mN2. Combining Ejs. (8), (9), and
(11), we predict a decay amplitude

E (m '
O O)=- ~A ' (I+-'x+-'0+ ~ ~ ~ )

eg g
v v r t (2v)2f 3 6

(12)

(a) (b)

FIG. 1. ~ Ay axial-vector channel saturation. FIG. 3. u triangle graphs.
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with a decay rate

m '-m '"
F(yo +0 ) (F (2 ( v ™r)

96mm~3
(13)

,F (p «v~( )mv'

g, (t)(m, '- t) ' (14)

Because the pion is far lighter than the vector
mesons it is consistent to replace g„/f, in Eq. (12)
by the Goldberger-Treiman value of g/m (see
Sec. IVE).

The vector -meson-nucleon coupling constant

g~~ in Eq. (12) is to be evaluated on mass shell
(k =mv ). This region is not available in either
scattering or decay experiments, so indirect
means must be used. One method is vector-
meson dominance of the nucleon electromagnetic
form factors. This relates g~~ to g~, the direct
photon-vector-meson coupling, which is measured
in leptonic decay processes V-e'e . One has

which we now include. The form-factor normal-
ization becomes

8 AN g SNAB 1

g Q) gtgl
(17)

This can be expressed in terms of decay rates
from (12), (13), and (15). The experimental val-
ues' " I'(Q-e e ) =(1.64+0.24)x10 ' MeV,
I'(v-m'y) =1.1 MeV, I'(P- may) &13.6X10 ' MeV,
and I'(ar - e'e ) = (0.76 a 0.08) x 10 ' MeV, give

i
0.50+0.14+Bi 0.5, (18)

where B ~ 0.044+0.006. The first term comes
from the ~ alone, and again shows the agreement
between calculated and observed decay rates for
co -wy. The last term is a correction due to the
coupling of the Q meson to nucleons, and is con-
sistent with ~ dominance of the isoscalar form
factor.

I

F(y + -) + gF(mv
3 4~ (15)

III. penn AND UNIVERSALITY

g ~(m„') = ~g„(m '), (16)

and a similar relation for the p couplings in the
isovector form factor. Note that this is not the
usual vector-meson dominance assumption g„(0)
= gv(mv'), which is known not to be a reliable
estimate. ' All we require is that g~» and g~ have
the same t dependence in the timelike region, so
that the vector mesons give simple poles in the
form factors for 0 & t & m~'.

From I'(e- e'e ) =(0.76+0.08) &&10 ' MeV, one
can extract g '/4n =18.4+2.0"and predict
I'(&u- my) = 1.14+0.12 MeV from (12) and (13), in
excellent agreement with the experimental value
of 1.13+0.17 MeV. "' Similarly, from I"(po- e'e )
=(6.1+0.7)X10 ' MeV, one extracts g~'/4w
=2.56+0.27, '0 and predicts I'(po- may) =0.15+0.01
MeV. The decay rate for p'- n'y can also be pre-
dicted. The factor of &2 for charged-pion and
vector-meson couplings to nucleons is compen-
sated by the absence of an exchange graph, so the
resulting number is the same, I'(p'- m'y) =0.15
+ 0.01 MeV. This is consistent with the experi-
mental upper bound of 240 keV." The equality of
decay rates for all charge states can be explained
more simply by noting that isospin invariance in
the strong interaction parts of the triangle dia-
gram requires the photon to be purely isoscalar.

In the determination of g, we have omitted the
P-meson contribution to the isoscalar form factor

The constraint at t = 0, [g~N(0)/gv(0)] =E,(0), is
assumed to hold in the timelike region also (t=m~').
Thus if the v meson dominates the isoscalar form
factor, we have

The prototype for normal decays is "axial"-
vector K„decay, K (K)-A„'(q)+ Vi(6), where ijk
are the isospin labels of the particles in question.
We review the key points of Ref. 2. First, one
solves the axial Ward identity

q"M„"„'=—if'"(-if~„) (19)

M„"„'=if"' P(if, K„)+ ~ ~, — (20)

where ~ ~ ~ means only the q„K„part of M„„can
be determined. Then once again we expand the
amplitude and keep only the m pole and BB inter-
mediate states as in Fig. 2. From the q„K„part
of the m pole and BB triangle graphs, we find

M„"„=if„,"(if"")[f,(tk'—)+f (tk')]K„+M„, .
q2

(21)

Our triangle approximation is really only justified
in the limit as 6-0, for then the intermediate
photoproduction process is baryon pole dominated
in the Kroll-Ruderman sense. ' Furthermore, all
possible members of the baryon octet should be
included. It turns out that the NNA and Z+Z' =
triangles dominate and lead to

MBB f (flak)
g P P

4m' m ~ (22)

Now as 6-0, q-K, and q2-m~2, where we keep
the kaon on shell. Combining (20), (21), and (22),
we obtain
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(a)

FIG. 4. p A x axial-vector. channel saturation. FIG. 5. p triangle graphs.

leading to the conclusion

(23)

(24)

which can be verified by examination of all possi-
ble current-conserving covariants, as in Ref. 1.

Now we relate this process to the physical decay
p «(k) -w~(q) + v'(q'), defined by

Sq,. = -i(2m)454(k —q —q')

M„",'=Ox q„(q q'), +, (26)

It is important to stress that this approach is a
model in that we have again cut off the intermedi-
ate states after the BB, and also keep only q„K„
coefficients.

Now we consider the process p„(«k)-A„~( q)

+ m4(q'). Since this decay involves only the one
conserved axial-vector current in a world of mass-
less pions, the axial Ward identity for this ampli-
tude M&„ is similar to Eq. (8),

qI'm""=0 (25)

Contrary to A yy or V-A.&, this amplitude is
"normal" in the-:sense that it does not depend upon
the abnormal tensor e„„8.Hence we analyze this
decay by following the techniques developed for
another "normal" process, E» decay. ' To this
end we partially "solve" Eq. (25) and determine
the q„(q —q')„coefficient of M„„ to be

(27)

This definition of the p- ww coupling constant i:s
consistent with the Hamiltonian

a= g,„,e'"m+'s'm'p„'+ ,' g,~N T—«y"Np„'+~ ~ ~ .

(28)

Then applying pion pole dominance to M„„accord-
ing to Fig. 4(a), we find

M„"„'(m)=if, ~gp„,( ic"«)(q —-q')„

','")q'"q„(q —q') .. (29)

Next we include the NN intermediate state in the
saturation of the axial-vector channel as in Fig.
4(b). Once again an important contribution to the
NN intermediate state is the triangle graph of
Fig. 5. Accounting for the direct and exchange tri-
angle graphs, we use the Feynman rules to write

M~' (NN) = —2 g~ g ~g~(Tr T~7 T«)(2)) )
4

d'x Tr y„y5 y r+0 —m 'yv y r —m 'y5 y r+q' -m ' + (3o)

As in the case of K» decay, this "normal" triangle graph diverges logarithmically; yet the coefficient of
q&(q —q )„ is finite. Evaluating this finite part of E(I. (30) by field theory or dispersion techni(Ines, we
find (using mg„=f, g)

(31)

P P' mpq"'f, -', —-' q, (+,+' }q„(q-q')„+' m p' (4m)'m„' 6m„'

2 p2~ 2~ l2
M'"(NN)= — ' '~ ~ 1+ + ~ cU«q (q-q') + ~

(4v)' 12m„2

In order that the triangle graph be the dominant contribution to the NN intermediate state, we must take
q' 0 to enhance the nucleon pole. Even then we must neglect the magnetic pNN coupling as well as other
intermediate states; we postpone justification for this triangle approximation until Sec. IV. Since k'=m&',
as q'-0 we have q'-mz' and we find from E(ls. (29) and (31)

M" =M" (m)+M" (NN)+PV PV PV
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g'Pff7f g Pygmy

2f,' m p2
(34)

which is a vector-dominance type of statement
obtained by p dominating the Adler-Weisberger
low-energy theorem M~~ ~- (—,f,')ie'~~ v~ at t= 0.
Equation (34) can also be used to test universal-
ity. " Note that the relevant variables in this case
are g& (0, m, ', m, ') and gz~(0, m„', m„'). Taking

f, =94 MeV and g~=5 67, w.e findg~„, (0, m, ', m„')
= 5.77, which is in agreement with universality
and 12%%uo higher than the on-shell value quoted ear-
lier. Note too that the relative signs of gp„and
g~ in (33}and (34) are consistent.

There is yet another way we can probe the mean-
ing of the universal coupling of vector mesons,
and that is by replacing the vector p (V, ) with a
conserved vector-isovector current (J'„). The
axial Ward identity for the process Z~(k) -A'„(q)
+ v'(q') can then be obtained from the local com-
mutation relation, [4, V] =4, or from the "kine-
matic" approach of axial-vector current conserva-
tion similar to E» decay, giving

q "M ' ' = —is"'(—if„K„).
The "formal" solution of Eq. (35) yields

(35)

(36)

as opposed to Eq. (26) for real p meson decay.
Again saturating the axial-vector channel with the
m and NN intermediate state triangle diagrams as
q'-0, we obtain from Eqs. (29), (31), and (36)
the universality statement

g2
+J7N' 8 2 g JAPm p

Equating the coefficients of q&(q —q')„ in Eqs. (26)
and (32), we obtain

(33}

We interpret Eq. (33}as a dynamical statement
of the universal coupling of vector mesons. Note
that the arguments of the coupling constants in (33)
are g~ (m&', m~', 0) and g~(m~', m~', r') where
r ~mz . Taking for g~ the value found from
po —e'e, g~(m~', m~', rn„') =5.67+0.29, we "'nd

from (33) the value g (m~', m ', 0) =5.05+0.26.
This result is in agreement with the on-shell val-
ue of g~ (mz', m „',m, ') = 5.14 found from p - nv

decay, g~ '/4m=2. 1+0.11, and, of course, 11%
lower than the universal value g~ =gz(=g~) im-
plied by fits to p decay with finite width correc-
tion "

Furthermore, we remind the reader of the
Kawarabayashi-Suzuki-Fayyazuddin-Riazuddin
(KSFR) relation, "

This relation for the conserved vector current
coupling to pions and nucleons is stronger than Eq.
(33}because the factor one on the right-hand side
of (37) determines the sign and scale of g~~ and

gJ~. Choosing q'=m p' and gJ~=g~ ——5.67, we

obtain from (37) g~ = 6.05 —somewhat higher
than the measured value of gp„=5.14, or the uni-
versal value gp =gp.

Note that Eqs. (33) and (37) are not inconsistent
and bear the same relationship that the pw- pm

superconvergence relation has to the Dashen-
Fubini-Qell-Mann" sum rule for Jm- Jm. That is,
using the current-field identity, one can p domi-
nate (37), multiply by mz' —k', and recover (33)
in the limit k'-m p'.

IV. THE TRIANGLE APPROXIMATION

Having successfully explained the decay pro-
cesses n -yy, K», v my, and p-nmby triangle
graphs, we now synthesize our interpretation of
the triangle approximation.

A. Abnormal vs Normal Decays

One treats the processes vVV(v-yy, &u- vy)
and vPV(A„, p- vn') by replacing the (massless)
pion by a conserved axial-vector current A„(q),
as &VV and ApV. Abnormal (AVV) triangle
graphs diverge linearly, but, multiplication by the
axial momentum (q„) renders them convergent due
to the peculiar nature of the abnormal tensor

On the other hand, normal (APV) triangle
graphs (and their momentum contractions) diverge
logarithmically and one obtains a finite number
only by isolating the coefficient of a particular
covariant also occurring in the Ward identity.

B. Axial-Vector Channel Saturation

One then equates the axial Ward identity to axial-
vector channel saturation, singling out the single-
particle pion and NN intermediate states. Mag-
netic moment couplings, multiparticle states, and
resonance states are lumped together and ignored.
For the case of m'- yy, this approximation has
been justified by Adler and Bardeen using the field
theory 0 model" and spinor electrodynamics. ' '"
The cr model embodies the content of PCAC (par-
tially conserved axial-vector current) and current
algebra, can simulate resonance states, and ac-
counts for nucleon magnetic moments. ' We in-
voke the Adler-Bardeen proof to justify neglect
of these higher-order states for &u- ny and the
normal decays K», p-mm as well.
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C. Triangle Enhancement

In order that the NN states be dominated by their
triangle diagrams, one must assume a particular
momentum configuration. For abnormal decays
the covariant e„, 8 suppresses the importance of
the pion pole because c„„(k'k}-q', and taking the
limit q'-0 keeps the triangle graph on the same
footing with the pion pole. In the case of v decay,
the triangle graph is enhanced at q' = 0 (not q-0),
but only in the threshold configuration of the rest
frame of the decaying vector meson. For normal
APV decays, the triangle graph is enhanced in the
soft limit of the other final-state momentum [q'
-0 for p -A(q)m(q') and 4 -0 for K-A(q) V(A)].
This makes the pole graphs of p-NNm(q') and
K-NNV(A) dominant, leading to universal p
couplings, and g = -1 in K» decay. '

D. Inclusion of Hyperon States

Our approximation of m plus NN intermediate
states can be amended to include all BB octet
baryon states. Such states do not appreciably
alter the w-yy and co- my triangle contributions
because of the SU(3) values of the couplings con-
stants in conjunction with a D/F ratio of 2. For
Kf 3 however, strangeness conservation rules out
the exchange NN state, and substitutes in its place
the Z+g+= triangle graph to match the "direct"
triangle graph ppA. So we see that BB states
should be included in the triangle approximation.
However, p - mw involves no strange particles,
and hyperon triangle graphs s/ould not play a sig-
nificant role. One can, in fact, show this by com-
paring p- mw with K*-Kv. (See Sec. V. )

V. SU(3) EXTENSIONS AND TENSOR-MESON
DECAYS

W'e now examine the effect of inserting the en-
tire baryon octet in the triangle diagram for vec-
tor-meson decay into two pseudoscalar mesons.
The pseudoscalar SU(3} symmetric coupling to
baryons is used with the usual D/F =-', . The vec-
tor-meson coupling to baryons is the SU(3) gener-
alization of the electric pNN coupling used in
Sec. III, with f„, d„=1-f„left as a free param-
eter and with over-all coupling strength g~
=g o~. The vector-. meson coupling to two pseudo-
scalar mesons is taken in the usual form with
strength g~, such that

Er(v-f f )= —g
3 4w m'' (38)

where E, is the momentum of the decay products.
For a given charge state of the external particles,
there are 12 triangle graph contributions. The
integral is performed with the physical masses in-
serted; and the factor (1/m„')[1+ (mo'/6m„')] in
Eg. (32) is replaced by

the fact that the m' rate is 301o higher because
g„/f „ is replaced by g/m, such a prescription
leads to a rate for g- yy which is an order of mag-
nitude too small. " We have used axial-vector cur-
rent conservation to justify the (axial-vector) tri-
angle approximation for decays involving a pion.
Less justification exists for using the triangle ap-
proximation for decays with no pions, such as,
g yy. ' Furthermore, "normal" pion triangle
graphs are divergent and no covariance arguments
can be used to extract a finite result.

E. Coupling-Constant Prescriptions

It is a subtle but important point to note that if
the pion is the initial decay particle, as in n - yy,
then one uses the value of f„obtained from the
charged decay process (f, = 94 MeV) w - p, v. If
instead, the pion is a final-state decay product,
as in ~-my, K», or p nw, then one uses the
Goldberger-Treiman value of f„(f,=83 MeV),
mg„=f„g. The prescription for VNN couplings is
to ignore off-mass-shell nucleon corrections,
keep the V (or K) on shell, and use SU(3) on-shell
couplings.

F. Importance of Axial-Vector Current

Conservation

where M„M„and M, are the masses of the bar-
yons in the triangle, with M, and 3f, coupled at
the axial vertex. The axial coupling g„~ is deter-
mined by an SU(3) generalization of the Goldberger-
Treiman relation as

2f~ g ~» (M2 ™3)g (39)

and for K*(890)-K'mo is

where g„» is the SU(3) value for pion coupling to
M, and M, . The result for p' w'm is

2 m 2

0 =gp» —g~ ~,(1.09+ 0 78f~), (40. )
K WmN

One might argue that Steinberger's original pion
triangle graph, ' which does not depend upon the
Ward identities of current algebra, is just as val-
id an approximation as our procedure. Aside from

0 =g~r go
—g~ 4 4, (0.56+ 0.37f~) .

7T FPFL N

(41)

Note that for no strange particles in the p triangle
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graphs [Eq. (32)], the factor (1.09+0.'78fv) is uni-
ty. Using f» as an adjustable parameter, we can
satisfy (40) with the experimental values gp
=g~ =g~= 5.67. Since the relative sign is not
determined by experiment, two solutions exist.
One is f„=0.21, which gives gr~r, o = 3.92. The
other is f»=-3.0, giving g„~r,0=3.36. The ex-
perimental value, from I'x~ = 50 MeV, I"(K*'
-If x')/I'(&'-all) = —,', and using Eq. (38), is
g~+~„=3.23. Thus we have the interesting re-
sults that the two f„values which satisfy p uni-
versality relation (40) with experimental values of
couplings both give fair agreement with the E*de-
cay value. Note also that these couplings are
evaluated with the vector meson on the mass shell
and the pseudoscalar mesons off the mass shell.
Thus we should not be surprised that the f» values
are different than the pure-f coupling expected
from universal p coupling (presumably valid at
zero p mass) and the values for vector-meson
Regge residues in meson-baryon scattering" (val-
id for m v' = t ~ 0).

We now consider the tensor-meson decays into
pseudoscalar mesons. The relevant quantities for
the decay are

and

&r~= "&„'.(&)(Pi-P.)"(P,—P,)"
T

(42)

'z'
( )

16 gr~ K,
15 4n m ' '

where (43} is multiplied by 2 if the pseudoscalar
mesons are identical. For coupling to baryons,
we use

&,~ = ~„".(I )v (P,)1'""I (P.), (44)

[r"(P~ -P2)" + r'(P, -P,)"], (45)

r~ [dr Tr((B, B)T) —(1 dr) Tr([B,B]T)]—

r~ TTr(BB).h~~

We use m= m& = 1264 MeV as the scaling mass.
The ratio br~/gr~ is fixed by requiring the ab-

in analogy to the electric vector-meson coupling.
The other possible coupling is proportional to
'(p, —p, )"(p, -p, )" and gives a divergent contribu-
tion to the triangle diagram, as does the magnet-
ic coupling for vector mesons. It is interesting
to note that the coup1ing (45) conserves s-channel
helicity in a scattering diagram. To account for
f, f' mixing, we include a term for singlet coupling
as well as the SU(3) octet-coupling,

sence of f'- wm decays. The results are

(a) f'-m'w', (gt„,)„»=5.82+0.50,

0 = gz~+ sin&(1+ cot'6)
2 m 3

x r~ "~ ~, (8.84 —9.Vldr), (46)
m 4m 4@m

with 6=27.7', determined from mass formula;

(b} ~+,+0 -ff wo, (g~ggr, ),„=2.94+0.21,

0 BTBB +&AN fc++
( 5 40+ 4 82d ) ~

(c) A,o-»iaido, (g„~),„=3.58+0.85,

2 m 3
0=g — '~ '~ "2 (5.62-4.28d ).m 4~ 4m'„

(48)

There are two parameters g~~ and d~ to fit three
decay widths, so one prediction is possible. We
choose the parameters to fit (a) and (b), and then
predict (c). Since the sign of the couplings is not
determined, we get two possibilities. One choice
(g& and g~~~r„have opposite signs) gives dr
=0.984, g~~ =5.34+0.45, and predicts g+~=5.86
+0.50- not very good agreement. However, the
other choice gives d~=0.64, g~~ = -1.47+0.13,
and predicts g„~=-3.28+0.28 in good agreement
with the experimental value.

One can regard this as a model of SU(3} symme-
try breaking, since ratios of Eqs. (46)-(48) are
independent of g~~. This should be compared to
the results of SU(3) symmetry for (gr~/mr) with
pure D-coupling in (42), which also gives satis-
factory results for ratios of decay widths. '

It is interesting to note that the favored value of
dr gives a D/F ratio for TBB quite close to one
of the solutions in the VBB case. This result is
expected in the exchange-degenerate Regge trajec-
tory model, so that one could consider d~ deter-
mined externally and increase the number of pre-
dictions by one. The residue function magnitudes
are also predicted to be equal in the model. The
corresponding quantities in this model for mp

elastic scattering are

~P g TB8gf Ww 0 (49)
Pv mi g'pmgvaa

where we have used s, = 1 GeV'. Note that the res-
idue functions are evaluated at the partic1. e poles,
i.e., Pr(t= mz'} and P»(t =m p'), so that the devi-
ation from equality could be just the t dependence.
In fact, a form pv r(t) = poe"' with A = 0.2 (GeV/c) '
will give exact exchange degeneracy.
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The results of'combining conformal invariance and chiral symmetry are given for the pro-
cess mN xmN. It is shawn that if the symmetries are broken spontaneously the data are in-
sufficient to determine the scaIe of the breaking term. The. ~m scattering Iengths remain
small although both ao and a2 are altered- substantially.

I. INTRODUCTION

In the past few years there has been considerable
interest in two aspects of phenomenological 'La-
grangians. Initially, the interest lay in using such
Lagrangians to understand better the results of
current algebra. and chiral symmetry. ' More re-
cently, with the possibility that conformal sym-
metry might also be a useful approximate symme-
try, attempts have been made to combine the chi-
ral and conformal symmetries. In particular,
Ellis, ' on the basis of the phenomenological La-
grangian method, has shown that both chiral and
conformal symmetries must be realized in the
same way when the symmetries are combined.
Since the pion is normally considered as an exam-
ple of a Goldstone particle, this leads one to view
the dilaton, scalar-isoscalar o, also as a Gold-
stone particle. With a probable mass of around
700 MeV, and possibly a broad width of -300-400
MeV, it is not easy to find reliable evidence of the
underlying conformal symmetry.

In this paper we wish to test these ideas in the
process gN-nwN. This is one of the few process-

es which have not as yet been looked at with a
view to finding out more about the breaking of con-
formal and chiral symmetry. It is a process which
appears to be able to answer in an independent way
a diXferent problem which arises in chiral sym-
metry. It is well known that there exists an arbi-
trariness in choosing a suitable chiral-symmetry-
breaking mechanism. The single-pion production
process has been used successfully in eliminating
some of the existing ambiguity. ' In these studies,
however, contributions which would ari, se from
the. existence of a scalar-isosca, Ear. resonance,
such as the 0, have been omitted, and it is impor-
tant to be sure that the results would not be af-
fected too much by their inclusions. We shaQ show
that there is a substantial change in ao and a„al-
though these scattering lengths still remain small
in magnitude, when such terms are introduced. It
has, of course, beenknown for some time that the
current-algebra scattering lengths would change"
from the Weinberg solutions if there were a broad
gz resonance below 500 MeV. The present work
is to some extent complementary to that of Carbone
et al.~ from the point of view of chiral symmetry


