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It was pointed out in a recent series of papers that for theories possessing an approximate
Goldstone symmetry some physical amplitudes are necessarily nonanalytic functions of the
symmetry-breaking parameter, e. In particular, this fact implies some corrections to a
theorem on the X» form factors, which was derived under the assumption of an approximate
SU(3) x SU(3) symmetry of the Goldstone type. In this paper we show how these effects arise,
and prove that

is of the form (e inc)A. + eB+ 0(e, e inc) . Furthermore, we prove that Aelrx = 2 (f~/fz
—fz/f ~) independently of any assumption about the structure of the symmetry-breaking term
in the Hamiltonian. However the term eB is model-dependent. In the popular (3, 3) + (3,3)
model this term is small as compared to the term Aelne. Also we note that the theorem is
given at the unphysical point t = m~ + mz rather than at t = 0 as was previously stated.

I. INTRODUCTION

In a recent series of papers' it was observed
that for any theory possessing an approximate
Goldstone symmetry, the approach to the symmet-
rical limit is a nonanalytic function of the parame-
ter e which sets the scale of symmetry breaking.
The essential point in the argument leading to
these conclusions is that a8 this parameter, e,
approaches zero so do the masses of the would-be
Goldstone particles of the theory. It is then easy
to show that if one is careful to include the effects
of exchanging two would-be Goldstone bosons when

proving low-energy theorems, then the amplitudes
to which such exchanges contribute have terms go-
ing like e inc in addition to terms like e, e, . . . ,
etc. Since it has become increasingly apparent
that the PCAC (partially conserved axial-vector
current) hypothesis can be discussed in terms of
an approximate SU(3)&&SU(3) Goldstone symmetry
of the strong interactions, it is naturally interest-
ing to see if the existence of the nonanalytic be-
havior seriously modifies results previously ob-
tained ignoring these effects.

In this paper we rediscuss a theorem' concern-
ing the form factors measured in the process
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K'- I'+ l ' + v and attempt to answer this question.
As we shall show, it is possible to derive an iden-
tity for the function

,'D(—t)=(» IZB„V" (0)IK'&

= —.'[( m ' —m, ')f, (t)+ tf (t)]

which allows us to explicitly exhibit these correc-
tions. This identity allows us to show that

(i) D(t)— = ——' — +Xf, f»dt, ~ 2+„~2 2 f» fw

bosons, whose presence allows the axial-vector
currents to be conserved without requiring the ex-
istence of SU(3)x SU(3) multiplets of particles. Of
course, the vacuum of the symmetrical theory is
assumed to be annihilated by the vector charges,
requiring the existence of SU(3) multiplets of par-
ticles.

Some useful formulas follow from the general
expression for the matrix element of an axial-vec-
tor current between a single pseudosc alar -me son
state and vacuum,

+O(e', e'inc), & M.(e) I A(o) I o& = -ie"B.),/2f. (e)

where, in the limit e-o, f, '(e)- fo 'O 0, '
(2)

is the entire term of order e inc, and
(iii) X is a model-dependent term of order c,

which can be determined by assuming the symme-
try-breaking Hamiltonian belongs to a particular
representation of SU(3) x SU(3).

Three interesting aspects of these results are
worth emphasizing. First the fact that (f,/f»
—f»/f, ) is of order e in@, and not e, as one
would expect from SU(3) argument alone, means
it is quite insensitive to the actual value of e.
Second, any reasonable model for symmetry
breaking gives values for X which are small.
Last, the arguments leading to these results im-
ply that .one should not fit the K» data by a linear
function of t over the entire Dalitz plot.

In Sec. II, we derive an identity which yields an
expression for (d/dt)D(t)lg= 2,„,2 correct to or-
der e. Before concluding this section, we want to
review briefly the basic physical ideas underlying
our calculation. Our starting point is to assume
we can write the strong-interaction Hamiltonian
asH= H, +eH', wher. eH, is SU(3)xSU(3)-invari-
ant, H' breaks both SU(3) and SU(3)xSU(3), and e
is small enough so that a discussion of small-e
behavior to lowest nonvanishing order in e makes
sense. The symmetric limit (e =0) is to be under
stood to be one in which the octet of pseudoscalar
mesons plays the role of eight massless Goldstone

m
& M.(v) I B„A/(0) I o& =

22

=if.„D(t) (4)

which can be used to discuss the process K
+ t+ v. Note that for this process D„,(t) becomes

D„o»+»-(p'p')=2[(m»' —m. ')f, (p p')

+(m„'+m»'-2P P')f (P P')],

where we have used the variable (p p') instead of

t=(p —p")=m»'+m„' —2p p'

for reasons which will become apparent as we

proceed. Note that to lowest order in SU(3) break-
ing,

f, (t=o)= f (p.p'= —'(m +m„))=1.
We begin by studying the function

Since in the limit c- 0 the axial-vector current is
conserved, our previous assumption implies
m, 2(0) =0.

II. A BASIC IDENTITY

In this section we shall proceed to derive an
identity for the function

D.,.(p p')=&~.(p)l-tB, v~'(0)IM. (p')&

(ol T(B„A,"(p)B Vp(0)B, A,'(-p'))I 0&(p', p", p p')—= JI'd'xd ye '~'*e '~ '(OI T(B„A,"(x)B,V;(0)B,A,"(y)) Io&.

(6)

Straightforward application of the familiar techniques of current algebra allows us to pull the derivatives
through the T-ordering instruction to yield

&o IT(».(p)Bv(o)». (-p'))lo&(p', p", p p')

=i(P-P'), P„P,'(0IT(A "(P)VP(0)A,"(-P'))lo&(P, P', P P') —iPqP,'f~„(OIT(A,"(P')A,'(-P'))IO&(P";P P')

iP„P,f„,-&olT(AP( P)A:(P))l-o&(P" P P')-t(olT(B.V~(0)~..(P-P'))lo&((P'+P' —2P P'))
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FIG. 1. Diagrams for the E,z Ward identity.

+-,'(P+P')„f.„&0
I T(l'AP -P )a.V, (0))10&(P',P",P .P ) - & 0

I T (s„A.(P) P„(0))IO&

—
& 0 I TA(aA.'(-P') P.~(0)) I 0& + i[&0

1 W...(0) I 0&+ & 0 I W.„(O)10&],

where rve have adopted the obvious definitions

-i g (p —p') =- ' d'xd'y e'~ '* e '~ ' 5(x, —y, )-,' ][A,'(x), s „A,"(y)]+[A,'(x), s&A, (y)] j,

-iP„(0)=— (t d xe '~ '" 5(x,)[A,'(x), s,V(', (0)],

g „~-=jtd~xd ye'~'"e '~ '" 5(x,)5(y )[A,(x), [A,(y), s,V;(0)]]~ (10)

We have explicitly indicated the dependence on p', p", and p p' for each term in Eg. (7), and these
assignments depend only on the locality of the equal-time commutators. From these explicit dependence
on p p', we see that the last three terms in Eg. (7) do not depend on variable p.p'. Hence we can drop
them in calculating the derivative with respect to (p p ). The next step in manipulating Eq. (7) into a use-
ful form is to isolate the terms on both sides of Eq. (7) which have poles at p'=m, '

adn/or p"= m, '. Fig-
ure l(a) shows the diagrams which contribute to the left-hand side of Eq. (7) and Figs. 1(b), 1(c), and 1(d)
show the diagrams contributing to the three terms on the right-hand side of Eq, (7). We then multiply
both sides of Eg. (7) by (p' —m, ')(p" —m, ') and differentiate with respect to (p p') with p', p" fixed, to
get to the final form of the identity which we need in order to discuss K„decay, namely

m.'(p" —m, ')
d(p. pa) (2f )(2f ) a)pc(p P )+ 2f &M. IT(sl ~(0)sAc( P ))Io&(P";P P')

+2
' (P' —~.')&0I &(».(p)si' (0)) IM,)(p', P P')

C

+(P'- .')(P"-m.')&0IT(aA.(P)sV(0)sA, ( p))IO&(P', P",P P )
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2 l2
E

2

D. .(p p')+
2

(P"- .')(O'-P). P,'&M. IT(v'(0)A.'(-P'))Io&(P";P P')

(P' —m. ')(O' -P).p„&0
I T (V~ (0)A."(P))I M.&(p'; P P')

C

-f(p'- m.')(p"- m, ')(p' p-).p„p.'&olT(A&(p)v (0)A,"(-p )) I o&(p2, p", p p )

, (P'-m. ')f...(P P')+(P' —m, ')(P"-m, ') "2, -P'(P P')O, (P', P P )
C C

, (P"—m, ')f...(P P'}+(P' —m.')(P" —m, ') "2, -P"(P P')O, (P";P P')
a

+ lf(p'- m. ')(p" —m. ')[&0lT(e.v;(0)&,(p —p')) Io&((p —p')')]

—l'f: (I—m.')(t" —~.')(o" D')(', ((P —-Y)'))
I

where the caret denotes the fact that meson poles have been removed.
We have used the fact that'

- fp, P.'f~. (&01 T(Ai"(P') A.'(-P'))I 0&( P"; P P')=-
2 .(P P')fn..+P"(P P')o.(P" P P')

'

C

and V, is defined by

(12)

f,, & o
I T(v,"(p-p')s. v,'(0))

I o& =f.,„(p-p )„v,((p- p')').
If we choose p"=0, p'=0, p p'=0 [this corresponds to letting p„=o on the right-hand side of E(l. (11)],
we obtain

. , [D..(P P')-(2f. )&M. IT(ev(0)». (-P'))lo&(o;P P ) —(2f,)&olT(sA.(P)sv(0))IM&(0~P P')

e

+ (2f, )(2f,)&0 I T(BA,(P)sv((0) BA,(-P '))
I 0&(0,0, P P')]

(n. u') =0

-f(2f,)(2f,)(P'-P) P&P,'&OIT(A, (P)vq(0)A', (-P'))Io&(0, 0, P'P')

+f„,(
—'- (P p')+ —'(()f,}(mf.)((}l)'(')"(o))l,.(P-)"))(O)((u )''))

a c PP-0
(14)

Counting explicit powers of e we find that the first term on the left-hand side of E(I. (14) is of order &, «
next two are of order c', and the last is of order e'. Since it is our purpose to prove a theorem correct
to order e, if the formal power counting was sufficient the only term we would have to keep on the left-
hand side of E(l. (14) would be the first term. However, as we shall see, each of the terms of order e'
and e' contains terms of order e'In(p p'- e) and c'In(p p'- e); clearly differentiating these with respect
to p p' and setting p p' equal to zero gives us contributions of order e and e'. Therefore it is accessary
for us to examine all e' terms for logarithms. On the right-hand side of E(I. (14) we see that the first
term is of the form

d
d p. p, [(P')'A(P' P"'P 'P')+P'P" &(O' P"'P' P)+P'(P 'P')C(p' P"'P 'P').

+P"(P P')D(P', P" P P') (P P')'E(p' P" P P')]

which clearly vanishes at p' =p" = p p'=0; thus we may restrict our attention to the last three terms.
As we will show in Sec. III, all thege terms give contribution of order e, instead of e', because of the

nonanalyticity in e. It is pointed out in Ref. 1 that the leading term in

d
d( .p, )

&.~.(p P').
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is of order e in&. Therefore by inspecting Eg. (14}, we conclude that the term ~(f,/f, —f,/f, ) is the only
term of order cine; all the other terms contribute to order e. This result can be stated in the form of a
theorem.

Theorem. Under the assumptions listed in the Introduction, we can show that

In the next section, we will discuss how the terms of order e come about.

III. THE CONTRIBUTIONS OF TWO-MESON INTERMEDIATE STATES

Let us, for convenience, rewrite Eq. (14) as

D.a.(P P') =f.n. I

—' — I+ d p. , I 2t(2f.)(2f.)& o IT(sl' (0)E..(P -P'))
I
o&((P-P')')

+(2f }&M.IT(s~ (o)».(-p')) lo&(o, p.p )

+(2f.&&oIT(».(p)sl'~(0))IM, &(o, p p }]
P P'=0

~ (16)

The easiest way to see how the terms of the form e'in(p p'-e) come about is to consider the dispersion
relation for&:0

I T:(sV,(0)Z„(p-p'))
I
0&. As usual we write

&0IT( l'(0)&..(p-p'))lo&((p-p')')= „.„t (16)

where p»(t) is the spectral function obtained by inserting a complete set of intermediate states in the T
product. Now we can write for its derivative with respect to (p p') as

(17}

The contributions of two pseudoscalar-meson intermediate states are of the form
OO

—,' D„,(t)Z.",(t) —&[t —(m. + m„}'][t-(m„- m.)']]'~',

where

z".,'(t) =&M,M, lz., lo&, t =(p p')'. -
As we can see in the limit m„' = m, ' = 0, the two-body phase space is independent of t and the integral di-
verges linearly in t. To get the leading divergent behavior, it is sufficient to replace D,~, and Z„' by their
values at t =0; we get

1 1+x x
16&~ Di, (0)Z„'(0) ' 2(1 —x)2

+ (1- )3
lnx

where

x = m, '/m, '.
Since DM, x Z"„' is of order e', m&' is of order e, and x is of order unity, we see that the two-meson contri-
bution is of order ~, not e . The contributions coming from four or more meson intermediate states would
give terms of order e'in& or higher

One can apply the same analysis to all of the terms in Eg. (15). For the particular process K'- m +e'+ v,
we get the contribution of the &-K intermediate state to the derivative

1'= —
16 a 2 f+(0)[~at(2fz)(2f. )&'.5(0)+2fr&vl»rl«&+(2fw)&SKI». IK&]

1+x x
2(1 —x)' (1 —x)'

where Y is defined as

(18)
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d 1 f„ f»')
( ).»»

The quantity in the first square bracket can be related, via the generalization of steinberg's analysis of
sw scattering (to the order in which we are working), to the part of the &-K scattering amplitude which
is independent of t.

In addition to the &K intermediate states, we also have qK intermediate states contributing to the dis-
persion integral. Exactly the same analysis goes through and a similar result can be obtained.

En each of these cases [in, for example, the (3, 3)+(3, 3) model of symmetry breaking], we can calculate
explicitly Z'„»(0), (v( 8A»

~
»K), and (vK )

sA „(K) in terms of the symmetry-breaking parameters, which
can be expressed in terms of pseudoscalar-meson masses and their decay constants. The result in this
model for the &K intermediate states is

31(may m)»s 2 2 2 2 sE»r 33s2 (m» —m„)(f„m„+f» m, ),

where

dt ([t—(m„+ m )'][i —(m —m„)'] '~'

(m~m») 2

Numerically, this is small by one order of magnitude compared to the leading term;(f, /f» —f»/f „). A
similar result can be obtained for the contribution coming from the g& intermediate state, which is also
small.

IV. CONCLUSION

En the preceding sections we discussed how to prove a theorem about (d/dt)D, »»(t) at the point
t = m, '+ m~, which is outside the physical region for the decay K- &+ l+ v. It is important to notice that
our arguments can only be expected to yield the correct slope for D,«(t) at t = 0 if one assumes D,»»(f)
is essentially a linear function of t over the. entire Dalitz plot. If, however, our arguments about the con-
tribution of two-pseudoscalar-meson states are correct, the most illuminating way to discuss experimen-
tal data is to fit the function D,»»(t) to the sum of a term linear in t plus a term of the form ln(-t/t, )
coming from the &K intermediate state. Certainly, if there is no deviation from a linear dependence in
f over the entire region of the Dalitz plot for K- s+ l+ v and if the slope of D„«(t}at t= 0 is inconsistent
with our formula, then one would be forced to reconsider either the whole idea of SU(3)&&SU(3) as an ap-
proximate symmetry of the strong interactions, or the implicit assumption that the weak current is by
Cell-Mann-Cabibbo theory related to the almost conserved SU(3) && SU(3} currents.
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