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Elastic scattering of ~+ and z on He is analyzed for information on the charge radius of
the pion using a new method based on boundary conditions near the nuclear surface. The pion
radius enters the calculation via the electrostatic potential of the pion and helium charge dis-
tributions, which is assumed to be the only charge-dependent interaction. Since He is isoscalar,
the strong nuclear interaction is assumed to be charge-independent. Differential cross-section
data for both signs of the charge are fitted simultaneously by a program that uses the loga-
rithmic derivatives of the pion radial wave function for each charge as free parameters. If
the nuclear interaction operator is symmetric (i.e. , (r'~Us~ r) = (r~Us[r')), the difference in
the logarithmic derivative for a given partial wave resulting from changing the sign of the
charge may be expressed as an integral of the internal Coulomb potential weighted by the wave
function. Nuclear model dependence is greatly reduced by the constraints imposed by the em-
pirical boundary conditions on the internal wave function. The Berkeley data at beam momenta
of 130 to 163 MeV/c are analyzed by this method using both local potential and Kisslinger mod-
els for the strong interaction, and Gaussian and Yukawa pion charge distributions. The re-
sults indicate 2.2 &r„&3.2 F, depending on the theoretical model, with an experimental pre-
cision of - +0.5 F. In the course of the analysis, the singular-point difficulty with the Kiss-
linger model was examined and found to be serious. -

I. INTRODUCTION

The possibility of measuring the pion electro
magnetic form factor by comparing the elastic
scattering of g+ and p beams on an isoscalar tar-
get nucleus such as He4 has been the subject of a
series of recent papers. ' ' The key assumption of
these studies is that the strong nuclear interaction,
whatever its detailed nature, is the same for both

pion charges, while the Coulomb potential is the
same except for sign. This Coulomb potential,
which is taken to be the only electromagnetic in-
teraction, depends on the charge distributions of
the pion and nucleus, and thus on the parameters
of their respective form factors. The general plan
is to analyze the differential cross-section data
for both charges to separate the nuclear and
Coulomb contributions to the scattering amplitude.
If the nuclear charge distribution is known, the
Coulomb contribution may then be interpreted as a
measurement of the pion charge radius.

Accurate calculations, with the fewest possible
approximations, are needed to find the small ef-
fects due to pion size in the large nuclear scatter-
ing amplitudes. It is also essential to reduce the
effect of the uncertainties in the pion-nucleus in-
teraction by using model-independent methods as
far as possible. With these objectives, two meth-
ods of analysis have so far been proposed:

(i) OPtical model analysi-s The emp. hasis here
is on calculational accuracy. ' ' The nuclear in-
teraction is represented by an optical-model po-
tential and the Schrodinger equation integrated

numerically for both signs of the charge. The pa-
rameters of both the optical and Coulomb potentials
are then adjusted to fit the cross-section data. An
exact solution is obtained for the given model, but
the method mixes the Coulomb and nuclear parts
of the problem, so the pion radius obtained may
depend on the model chosen.

(ii) Coulomb Perturbation methods. These em-
phasize model independence. ' " The nuclear am-
plitude is parametrized by a set of phase shifts,
and the Coulomb-Born amplitude, which is pro-
portional to the product of the form factors, is ex-
plicitly separated out. The method is less model-
dependent than (i}, and it avoids the use of Coulomb
wave functions, but it introduces an important
first-order Coulomb-nuclear interference ("dis-
tortion") amplitude that is given by a logarithmic-
ally divergent integral.

A third method of analysis, using the same basic
assumptions as the above two, is proposed in Sec.
II of this paper in an effort to combine calculational
accuracy with model independence. A close-fitting
boundary surface (radius R} is drawn around the
nucleus, and the Coulomb potential +Ze'/r is as-
sumed to be the only interaction in the external
region (r )R). As in (i), the exact external solu-
tion of the Schrodinger equation is expressed in
terms of Coulomb wave functions, and related to
the logarithmic derivative of the interior solution
at the boundary. These logarithmic derivatives,
however, are taken as free parameters, thus
giving a model-independent fit to the cross-section
data, while avoiding the divergence difficulties
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that arise in perturbation treatments of the long-
range part of the Coulomb potential. The interior
Coulomb perturbation on the logarithmic deriva-
tives is then derived for a very general form of
nuclear interaction operator, and turns out to be
only slightly model-dependent.

In Sec. III the method is applied to the Berkeley
data' to determine the empirical boundary condi-
tions at r =R. The relevant aspects of models for
the pion-nucleus interaction are discussed in Sec.
IV, and the conclusions about the pion size given
in Sec. V. Finally, the effects of some alternative
assumptions are discussed in Sec. VI.

(1) results in a set of Coulomb radial equations
which have the general solutions (for I =0, 1, 2, . . .
and r) R)

uI(r) =AI[ cos 6', F,(tq, kr)+sin6', G, (tq, kr)], (2)

where F,(q, x) and G, (q, x) are the standard regular
and irregular Coulomb functions, A. ', are normali-
zation constants, and 5', are the "nuclear phase
shifts" due to whatever deviations there are (for
r(R) from a pure 1/r potential. The correspond-
ing differential cross section for elastic scattering
may be written

II. THE BOUNDARY CONDITION METHOD

The Klein-Gordon equation for the motion of a
pion of energy E„and charge te (f =+1, 0, or -1)
in a fixed electrostatic potential Ze/r may be writ-
ten

[V'+ k' —t 2qk/r] 4'(r) =0,

where k = (E,' —m, ')'" is the asymptotic momen-
tum of the pion, and q = Ze'/p is the Coulomb scat-
tering strength parameter for v~' "ity P =k/E,
second-order term in the potential, which is less
than 10 4k' for our pion-helium scattering prob-
lem, has been omitted from Eq. (1) so that con-
ventional Coulomb functions may be used. in its
solution. We slightly generalize Eq. (1) by taking
k to be the momentum and P the relative velocity
in the center-of-mass coordinate system as com-.
puted according to conventional two-body relativis-
tic kinematics. Then @'(r) is interpreted as the

probability amplitude for the interparticle separa-
tion r. This compromise to alTow for both nu-
clear recoil motion and relativistic kinematics
leads to kq =ZnE, where E=E,E„/(E„+E—~) is the
"reduced energy" in terms of the center-of-mass
energies of the pion and nucleus. The numerical
values of k, g and the kinetic energies T, =E, —m,
and T =E„—M„(with m, =139.6 MeV and M„
=3727.6 MeV) are listed in Table I. In any case,
we assume Eq. (1) applies to the pion-nucleus
system when the pion is outside some small sphere
of radius g centered on the nucleus.

Substitution of a partial-wave expansion into Eg.

where, except for an unobservable phase, f~ is
the usual pure Coulomb scattering amplitude

2tqk . q
fe(q) =-, exp - i iq ln 4k, (4)

L=0

Here 8 is the center-of-mass scattering angle,
q'=2k'(1 —cos8) is the momentum transfer
squared, and the partial-wave amplitude g', is
given by a', (k) =—(k cot6', —ik) '. The Coulomb phase
shifts cr, =argI'(I +1+ iq) are absorbed in the fac-
tors

y, ( )q=- exp2i[o, (q) -o,(q)],

which may be conveniently generated from the re-
cursion formulas

(6)

(7)

If Eq. (1) were valid for all r, then only the regu-
lar solution F, (q, x) would be permitted in Eq. (2),
and all the 6', would have to be zero. Equation (3)
would then reduce to the well-known Rutherford
formula for pure Coulomb scattering.

Of course Eq. (1) is not valid for all r. At small
distances the electrostatic potential will deviate

and f„' is the nuclear scattering amplitude given by
the partial-wave expansion

f~(8) = g (2l+1)y, (tq)a', (k)P, (cos8) . (6)

TABLE I. Kinematics and fit quality.

Data
set

P hb
(Me Vjc)

k

(F )

c.m. kinetic
energy (Me V)

W (X

i rms
error

0.~(0) fits
30 data points
2 2 2

X+ X- Xg.

4(0) fits
15 data points

Xg'

130.2
142.3
153.2
163.0

0.6280
0.6850
0.7361
0.7818

0.0209
0'.0199
0,0192
0.0186

47.1 2.1
54.7 2,4
61.8 2.8
68.4 3.2

0.045
0.022
0.042
0.028

21.1 16.3
71.1 40.5
37.2 17.4
55.2 35.2

37.4
111.6

54.6
90.4

0.063
0.022
0.054
0.033

14.9
29.2
21.9
28.0
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from the 1/r form due to overlap of the charge dis-
tributions of the pion and nucleus. The pion's
charge form factor is related to its charge distri-
bution tep, (r) by

model

F.(q) =(1+q'/V') ',
which leads to a Yukawa charge distribution

(14a)

E,(q) = f d re'"' p, (r),

where p, (r) is normalized so that

a (0) =f d'rp, (v)=).

Expansion of Eq. (8) in powers of q yields

(8) p, (r) =)u' e "'/4m" (14b)

with r„= )) 6/i(, . The corresponding potential is"
1 y 1 a22 r pvr(r) = — erf — + —e "' ' e""erfc —+-

a 2 2 a

—e ~"erfc

Z(q) =1-—q &r &+ —q &r &
——

q &r &
—.~1, , 1 4 4 1

3 f 5f 7f

where

(r") -=f r'p(r)4''dv

(9a)

(9b)

is the nth moment of the charge distribution. Our
objective is to measure the rms pion charge radius
r, —= &r'&'" via its influence on the short-range be-
havior of the electrostatic potential between the
pion and nucleus. This is given in terms of their
form factors and the separation y of their centers
by Ve(r) —= tZe'v(r) with

(15)

According to the vector-dominance model, "where
i(, is taken as the mass of the p meson, Eq. (14) is
a good approximation to E,(q), at least near the
pole at q = -p, =-15.1 F . The corresponding
predicted pion radius is y „=0.63 F. The data of
interest here, however, are for 0 & q'& 2.4 F ',
and we analyze it treating the r „ in Eqs. (13) and
(15) as the unknown to be determined. For r, = 0,
Eqs. (13) and (15) give identical results. Figure 1
shows the He4 density distribution, and the effec-
tive Coulomb potentials V,(r) =Ze'va(r) calculated
from Eq. (13) for r„=0, 1, 2, and 3 F. The po-

v(r) = (, d'q e' ~' F,(q) —,EN(-q) .2v' q2 N (10)

For the nuclear form factor, we take the Gaus-
sian"

E„(q) = exp(-q'r '/6) (1la)

with the rms radius z~ = 1.65 + 0.03 F indicated by
electron scattering on He4. This corresponds to a
Gaussian charge density

c' I.o

0.0

I

I

I

I

I

I

I

pN(r) ~ aN xp& (11b)

with width parameter aN =(—', )' 'r„. For the pion
form factor, we need to adopt a specific model
whose parameters we can relate to r, and v(r)
The simplest choice is to take the pion shape as
also Gaussian: E,(q) = exp(-q'r „'/6) Then th. e
effective charge distribution defined by

I.O

2.0

p„,(r) -=(47)) 'V'v(r) (12)

is again Gaussian with width parameter c'
= 3(rN + r, '), and Eq. (12) may be readily inte-
grated to give'

1 r
va(r) = —erf-r c (13)

As a possibly more realistic alternative, and to
check our sensitivity to the detailed shape of the
pion form factor, we also use the simple one-pole

(Fj
FIG. 1. Nuclear density distribution p (x)/p (0), and

effective Coulomb potentials V&(~) (MeV) for Gaussian
pion charge distribution [Eq. (13)] with r~ =0, 1, 2, and
3 F; Yukawa pion charge distribution [Eq. (15)] with ~~
=2 F (dashed curve); and pure 1/r potential of two point
charges. (curve P).
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e'(r) =X',(r)I', (e, q), (17)

the radial wave function y, is determined to within
a normalization constant by Eq. (16), and so its
logarithmic derivative at the boundary z =R, de-
fined by

X', -=R —ln(r y,'(r))Br r=z
(18)

is completely determined.
For the experiment in question (130-160 MeV/c

m' on He~), the whole Coulomb potential Vc(r) in-
side x =R is a small perturbation on the energy
and strong-interaction terms in Eq. (16). There-
fore changing the sign of V~ should induce only a

tential for r, =2 F according to Eq. (15), and for a
point charge (v, =Ze2/r) are also shown for com-
parison. Beyond R =3.5 F, which we choose as the
boundary radius, we have essentially p„(r) =0 and
v(r) =1/r

In addition to this Coulomb potential, the pion
for y &R feels a strong nuclear interaction which
we will assume to be short-ranged, rotationally
invariant, and charge-independent. We therefore
generalize Eq. (1) in the form

(V'+k' —2tqkv(r))q"(r) = J( d'r'(rIU„Ir')4'(r'),

(16)

where (r I U„ I r ) is the coordinate representation
of some nuclear interaction operator U„. Charge
independence means that U„ is the same for all
values of the charge index t. We choose the bound-
ary radius p so that in the external region r ~ A,
U„ is negligible ((r I U„Ir') =0), and v(r) takes its
asymptotic form 1/r, so Eq. (16) takes the form
Eq. (1).

The assumption of rotational invariance means
we can solve Eq. (16) one partial wave at a time.
In a solution of the form

small shift in X', . Writing

where

1 (S, +qD, )F,(+q, x) -xz,'(+q, x)
k (S, ~qD, )H, (+q, x) -xa,'(+q, x), „,' (20)

a, (q, x) =G, (q, x)+ tz, (q, x),

&Fr q, x)

A least-squares program, the details of which
will be discussed in Sec. III, was used to adjust S,
and D, for the first few partial waves to fit the
Berkeley scattering data. ' The use of S, and D, as
free variables assures a fit as model-independent
and general as phase-shift analysis, while com-
bining data for both signs of the charge in an ad-
vantageous manner. The partial waves with l~3
were found to be negligible, so the empirical val-
ues of S, and D, for l ~ 2 must contain all the in-
formation available in the experiment about both
the nuclear interaction and the pion form factor.

To extract this information, we relate these
quantities to the generalized interior model rep-
resented by Eq. (16) as follows: Multiply Eq. (16)
by the wave function for charge index t', subtract
the corresponding equation with t and t' inter-
changed, and integrate over the internal volume
I r I

~ R to obtain

X,'(k, R) —=S,(k, R) +AD, (k&R),

we expect the average logarithmic derivative S,
= -,(A. ,'+ A. , ) to d'epend mainly on the strong inter-
action, while the difference D, = (X,

' —X, )/2q should
depend mainly on the Coulomb effects. The nuclear
phase shift 5', corresponding to a given value of A. ',

is obtained by substituting ry', (r) = u', (r) into Eq.
(18), where u, is defined by Eq. (2). The paramet-
rization of the observable nuclear partial-wave
amplitudes by the variables S, and D, is then given
by

JJ d'r(4'(r)&'4'(r) e'(r)V +-'(r)+2@k(t' —t)v(r) 4'(r) 4'(r))
Ir l&R

d'rgJ d'r'(0' (r)(rIU„ Ir') 0'(r')-0'(r)(rIU~ Ir') 0' (r')j.

(21)

The integral on d'r on the right-hand side of Eq.
(21) may be extended over all space, since by as-
sumption (r IU„Ir') =0 for IrI&R. If we now further
assume that the nuclear interaction operator is
symmetric,

(22)

then the entire right-hand side vanishes, since r

and r' are equivalent dummy integration variables
and may be interchanged in the first integrand.
Local potentials [(r'IU„ Ir) =U„(r)6(r -r')j a,re
certainly symmetric, as are a wide class of opti-
cal potentials derived from multiple scattering
theory (see Sec. IV for proof), so Eq. (22) is not
unduly restrictive. The left-hand side of Eq. (21)
may be transformed using vector identities and
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Gauss's law, and the angular integration done by
the orthonormality of the spherical harmonics.
Then, assuming R is chosen so that yf(R) o0,
divide through by RyI (R)yI(R) and use Eq. (18) to
obtain

R

AI —
A& =2qkR(t —t') v(r)yt (r)y,'(r)dr, (23)

0

where

=R —ln [rg(r) ]
=R

R dye(~)

r=B

D, = 2kR v(r) [y~(r)]'dr .
0

(2"t)

(28)

is the radial wave function normalized to unity at
the upper limit r =g. Finally, taking t'=0, t=+1,
we derive the following exact formulas for $, and

D

$i=~s+qkR v r yr r gr r —gi r dr, 24
0

D, =2kR ) v(r)yo(r) 2[y~+(r)+y, (x)]dr.
0

(25)

All the wave functions behave near the origin as
y,'(r) =—constxr"' and are by definition equal at the
upper limit: y,'(R) =y, (R) =y', (R) =1. The effect of
the Coulomb potential is to give y, (r) slightly more
curvature than y', (r), and y,'(x) slightly less.
Therefore it should be a good approximation in Eq.
(25) to put

(26)

Also, since the difference y,'(r) —y, (r) vanishes at
both limits and is expected generally to be of or-
der q, the second term in Eq. (24) is of order q'
=0.0004 and is negligible. We may therefore in-
terpret the fit parameters $„D, by the working
approximations

For the best fitting nuclear models of Sec. IV, the
error in these approximations is s0.2% for Eq.
(27), and s0.1% for Eq. (28). Since this is well
within the experimental uncertainties (Table II),
Eqs. (2V) and (28) are entirely adequate for our
present purposes.

The general behavior $, and D, may be antici-
pated from Eqs. (2V) and (28). With v(r) given by
Eq. (13), and the approximation y', (r) = (r/R)'"
(good for large l), Eq. (28) yields the estimate

(29)

Since a more diffuse charge distribution produces
a shallower potential (Fig. 1), D, in general is a
monotonically decreasing function of r, . To in-
crease the sensitivity of D, to r„ the boundary
radius R should be chosen as small as possible
consistent with the condition v(r) —= 1/r, for r &R
As l increases, the integral in Eq. (28) is more
dominated by the outermost values of v(r), so D,
becomes both smaller and much less sensitive to

It also becomes harder to measure, since $,
generally increases with /, eventually taking the
form $, - l+1, and completely dominating the D,
term in Eq. (19). It is therefore the fit parameters
(S„D,) for the low partial waves, especially the S

TABLE II. Model-independent fit parameters for S, P, and D waves'.

P lab
(Me V/c) E

Logarithmic derivative avg. and diff. (S» D&)
ReS ReDg ImD,

Nuclear phase shifts 6& (degrees)
Re 6+, Im 6+ Re 5$ Im6,

130.2
142.3
153.2
163.0

-1.161+ 0.007
—1.928+ 0.008
-2.931+ 0.021
—4.304+ 0.034

-0.110+0.008
-0.125 +0.008
-P.172 +P.P21
-0.326 +0.033

4.18+0.21
6.07+0.18
9.90 + 0.74

14.67 + 0.86

0.40+ 024
0.89 ~ 0.19
1.45+ 0.74
2.83 + 0.88

—7.3 + 0.2
-7.7 + 0.1
-8.2+ 0.3
-8.3 + 0.3

2.2 + P.2
1.6+ 0.2
1.5+ 0.3
1.8+ 0.3

-9.0 + 0.2
-9.5 +0.1
-9.7+0.3

-10.1+Q.2

2.3 +0.2
2.0 +Q.l
1.8+0.3
2.1+0.2

130.2
142.3
153.2
163.0

P
P
P
P

0.520 + 0.004 —0.067 + 0.005
0.174 + 0.004 -0.100 "+ 0 00 5

-0.191+0.00 7 -0.154"+ 0.009
-P.611+ 0.007 -0.226 + P.010

1.61 +0.12
2.05+0.07
2.24 + 0.22
2.80+0.18

0.13b+ 0.16
0.17"+0.11
0 30 + P.32
0.55"+0.28

8.7 +0.1
10.9 + 0.1
12.8+0.2
14.9 ~0.2

1.8 + 0.2
2.6+ p.l
3.8 + 0.3
5.0+0.3

8.9 +0.1
11.1 +0.1
12.6 ~ 0.2
14,7 + 0.2

1,9 +0.2
2.8 +0.1
4.0+0.3
5.3 +0.3

130.2 D
142.3 D
153.2 D
163.0 D

2.100 +0.009 -0.013 b ~ P.012
1.921 +0.006 —0.015 + 0.007
1.750 +0.009 —0.020 + 0.010
1.568 + 0.007 -0.022 + 0.008

0.70 +0.29
0.78 +0.12
p 88 b+ p. 30

0 90
1.00 + 0.18

0.02 ~ + 0.36
0.02"+0.16
0 03 ~0.25
P P4 +0.20

1.0 +0.1
1,5+ 0.1
2.0 +0.1
2.7+Q.l

0.1+0.1
0.1+0.1
0.2 +0.2
0.3+0.1

1.0 + 0.1 0.1+0.1
1.5 + Q.1 0.2 + 0.1
2.0 + 0.1 0.3 + 0.2
2.7+0.1 0.3+0.1

Listed errors on (S&, D&) are the deviations that increase y by 10%. They are propagated crudely to the phase
shifts via Eq. (20).

These variables arbitrarily fixed at "reasonable values" in final fit (see text).
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wave, that must be well determined to permit
measurement of y, . The higher partial waves need
only be consistent with the general formalism. We
note in passing that this formalism offers a natural
way to eliminate Coulomb effects from strong-in-
teraction cross sections: Pure nuclear phase
shifts may be computed from the neutral logarith-
mic derivative A,', obtained from the empirical A. ,',
either as their average (isoscalar targets only),
or by means of an a priori estimate from Eq. (28)
of the charge shift correction qa, .

Our goal here, however, is in a sense just the
opposite: We want to eliminate the unknown nu-
clear interaction, representing it by the empirical
quantities $,. The only role left to specific models
of the nuclear interaction is to generate reasonable
internal wave functions y', (r) to use in interpreting
the empirical values of D, according to Eq. (28).
The parameters of the model must be adjusted to
satisfy the empirical boundary conditions of Eq.
(27). Thus, no matter what nuclear model is used,

the internal wave function must always be of the
form Cr'" for small r, and have specified value
and slope at the boundary ~ =R: y, (R) -=1 and y,'(R)
=S,/ft. These constraints on the form of y, serve
in practice to greatly reduce the sensitivity of Df
to the details of the nuclear interaction, thus pro-
viding a good separation between the strong and
electrodynamic parts of the problem.

III. DATA ANALYSIS

The Berkeley data consist of measurements of
the m'-He elastic scattering differential cross sec-
tions o'(8) at 15 scattering angles and four beam
momenta: 130.2, 142.3, 153.2, and 163.0 MeV/c.
The cross sections show a deep interference mini-
mum of about 0.3-0.5 mb/sr near 70', then rise
to some 5 to 7 mb/sr in the backward direction
(Fig. 2). See Ref. 3 for the full data set and de-
tails of the experiment.

From these data the fractional difference

I Q. Q 10.0

5.0- 5.0-

E
1.0

+I
b 0.5 0.5 —.

'

Q. p I I I I I I I I I I I I I I I I I I I Q 0 p i i i j I I I I I I i I I I I I I I I

I.Q 0.5 0 -0.5 0 10 05 0.0 —0.5 -1.0
10.0 IO. O

5,0 5.0

lh

E

m I.Q
+I

b

0.5

I .0

0 5

.zl. . . , .0.
1.0 0.5 0

cos 8
-0.5 —1.0 I 0 0.5 0

cos 9
—0.5

I I I I / j j / 0.2 i ) i i I & I i i I i i i i I

—
I 0

FIG. 2. Elastic differential cross sections 0. (0) (mb/sr) vs coso, for 7r on He . Theoretical curves are calculated
from the model-independent-fit parameters of Table II. Triangles are 71+ data; circles are m data.
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(8) -=[ -(8) — '(8)]/(-'[ -(8) '(8)]] (30)

&l.t. (8.) -o:a t.(8.) '
Xt ~ 5+(8 )

t

4=1

(31)

and 5v(8;) is the experimental error. Similarly for
fixed S„ the D, were adjusted to fit the 156(8,.)
data points by minimizing the corresponding yz,'.
With the improved D„ the $, were refitted and
vice versa for as many iterations as needed until
the process converged.

It was found that not all of the 12 parameters
(real and imaginary parts of S, and D, for l= 0, 1, 2)
could be determined by the data. In particular, the
imaginary parts were poorly constrained, since
only elastic scattering data were used. There-
fore only Imago and ImD, were left free to fit the
data, while the other imaginary parts were fixed
at reasonable values. The choice of the "reason-
able values" was guided by considerations of
smooth energy dependence, unitarity (i.e., Im5t'
& 0), and, in the later stages, Eq. (28) for D, with
fitted optical-model wave functions. The necessity
of making some such arbitrary choices is easily
seen if only the main S- and P-wave amplitudes
are considered, and the small Coulomb and D-
wave amplitudes neglected. In that case there
would be four free parameters (say, Re5t and Im5,
for l=0, 1) but, since the cross section would be
quadratic in cos8, only three coefficients could be
determined by the elastic scattering data. Al-
though our actual case is. not so simple since we
do have some sensitivity to the imaginary parts
via interference with the Coulomb amplitude, the
net empirical result is essentially that the com-
bination ImA.,+constxlmA. , (const=1. 5) is well de-

is formed. This difference is due in general to
Coulomb-nuclear interference effects, and is ex-
pected to be sensitive to the pion radius, especial-
ly near the minimum where the nuclear amplitude
is small and momentum transfer is not (q-0.8 F ').
Although &(8) is not independent information, its
precision benefits from the cancellation of some
uncertainties in beam normalization. The total
data set thus consists of 120 cross-section points
o,'(8;) and 60 semidependent derived quantities
~.(8,).

The data were analyzed independently at each
beam energy using Eqs. (3)-(V) and (20). To ac-
count for inelastic processes, complex values of
S, and D, were allowed in the first three partial
waves (l& 2). Higher partial waves were omitted
(at' —= 0 for l&2). The basic fitting procedure was
to fix the D, and adjust the S, to fit the 30 cross-
section points [o'(8;), i=1, 15] by minimizing

y, '+ y
' where

termined, while the orthogonal combination Imago
—ImX, /const is undetermined by the data. As a
check on the imaginary parts, the absorption cross
section was calculated from

oo

v b, (k) = —,p (2 l + 1)(1 —
[
e"&t p)

1=0
(32)

I I
I 4 E I H SJ

Q

0

120
I I

140
P ( MeV/c )
lab

160

FIG. 3. Total absroption cross sections (mb) vs lab
momentum (MeV/c) for x+ (triangles) and x (circles).
Solid symbols are data from Ref. 11, open symbols are
calculated values from fit parameters of Table II.

and compared with the experimental values of
Block et al. (Fig. 3). The fair agreement lends
confidence to the choices made. In any case it is
the real parts that are significant for the measure-
ment of the pion radius, and their best-fitting
values were essentially independent of the values
chosen for the imaginary parts. The only con-
straint placed on the real parts was that in the
final fit, ReD, for 153.2 MeV/c was fixed on a
smooth curve passing through the best-fitting val-
ues of ReD, for the other energies. This was the
only constraint necessary to give a smooth energy
dependence to all the fit parameters.

Table II lists the final fit parameters (S„Dt) at a
boundary radius of p =3.5 F. The corresponding
phase shifts are calculated via the a,' given by
Eq. (20). Table I lists some kinematic quantities,
the final g' values achieved, and some indications
of the relative accuracy of the four data sets. At
each energy, the data were taken with all the
cross-section points having roughly the same per-
centage experimental error p;—= 5v(8;)/o(8;), so
that the fractional difference data points would
have roughly equal errors 6b,(8,.). The inverse
rms percentage error p, defined by

1 1 1
(33)

i =1

is given as a measure of the precision of the
cross-section data. The inverse rms error 5~,
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defined similarly, specifies the average weight of
the &(8,.) data points [cf. EIl. (31)], and hence the
scale of the corresponding y~. It should be noted
that although the 142.3-MeV/c data have the highest
g' values, they also have the greatest statistical
precision, and in fact yield the best fits relative to
the scale of their y'. This is also apparent in
Figs. 2 and 4, where the best-fit curves calculated
from Eels. (3)-(V), (20), and (30), using the values
of 8, and D, in Table II, are shown with the data

points. It should be emphasized at this point that,
except for the assumption that EIl. (1) applies for
y &g, the values given in Table II are a model-
independent fit to the data. Since the differences
of the logarithmic derivatives D, are determined
by fitting the b(8;) data, the proper relationship of
o'(8) to v (8) is enforced in the final adjustment of

. the average logarithmic derivatives $, to fit the
combined v'(8, ) and o (8;) data. This constraint is
absent from a conventional phase-shift analysis

1.2

T' 7 l 1 T T "1 't 1 I I

I 50.2 MeV/ c
l, 2—

I I I I
I I I I I

I 4 2.5 MeV/c

0.8
=0

08—

0.4—

I

i

O.O
I 0.0

—0.4—

I.O

I . I I I I I I I I 1 I I I I I I I

—0.5 0 0.5 -I, O —0.5 0.5 I. O

I.2 I.2

0.8 0.8

Q.4 0 4

0.0

—Q.4 I—I -0.4—

I I I I I I I I I I I I I I I 1 I I I

I.o 0.5 0 -0.5 —I. O

cos 8
I.O
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cos 8
—I, O

FIG. 4. Fractional difference data 4(0) vs coso, Curve MI calculated from model-independent-fit parameters of
Table II; Curve for r~ =0 calculated using Kisslinger-model wave functions in Eq. (28).



788 T. MOTT ERSHEAD

that separately fits the cross sections for each
pion charge. Otherwise the two methods are
equivalent. The fact that the resulting fit param-
eters show a smooth and physically reasonable
energy dependence, even though each energy was
analyzed separately, is viewed as further evidence
in favor of these solutions.

The indicated errors in the tables are the devia-
tions in each variable that produce a 10% increase
in y' with all the other variables held fixed. These
are to be taken as a somewhat arbitrary, but
scale-independent, measure of the relative sensi-
tivity of the fit to the various parameters. The
conventional error estimates for fitted parameters
are the deviations that give unit increase in y'
above its minimum value, which is supposed to be
less than the number of data points. This was
thought inappropriate in the present case because
of the mixed way the data were fitted, and because
of the large y' values obtained. Since we are doing
a model-independent fit equivalent to a phase-shift
analysis, the larger than expected g' suggests un-
derestimated data errors, possibly systematic.
For example, the data points at 8=80' consistent-
ly lie above the best-fit cross sections for both
charges, and the 100' points consistently lie below.
These two angles account for nearly half the total
y' of the a, (8) fits. When the 142.3-MeV/c o, data
were refitted without them, the g' improved dra-
matically from 112 to 48, but the fitted values of
S, hardly change (about 1%). It should be noted that
this kind of systematic error, that affects both
charges in the same way, tends to cancel out of
the 6(8}data that are used to determine the pion
radius. In any case, the full data set was used in
the final analysis.

f(-k', —k) = f(k, k') .
In terms of a partial-wave expansion

f(k, k') = Q (21+1)a,(k, k')P, (k' ~ k)
1=0

with k—= )k), k=—k/k;

(36)

(37)

this only requires that the partial-wave amplitudes
be symmetric in k and k':

(k')U„)k) = 2, Jl d'xp(x)e'&"-)'')'x[-4mf(k k')].

(34)

All that remains of nuclear structure in this for-
mula is the density of nucleons p(x}, normalized so
that p(x)d'x is the number of nucleons in the vol-
ume element g'x. The amplitude, averaged over
spin and isospin, for any one of them to scatter the
pion from incident momentum k to final momentum
k' is f(k, k'). The exponential provides that each
volume element contributes with the proper phase
to the total amplitude.

The coordinate-space matrix elements of this
optical potential are obtained by Fourier trans-
formation. In Dirac notation [(r~k) =(2))) '"e'"'],
we have

(r'I pr)r) =-dr J( d'xp(x) f d'P J( d'P'd(k, )r')

x(r'ik') (k'[x) (xik) (kyar) .
(35)

Since (k( r) =(r)k)*=(r ( -k), and k and k' are
dummy integration variables, we see by inspection
that (r

~ U~) r) satisfies the symmetry condition of
Eg. (22) provided

IV. NUCLEAR INTERACTION MODELS
a, (k, k') =a, (k', k) . (38)

To interpret the empirical values of D, in Table
II according to Eq. (28), we need a specific form,
such as the optical-model potential, for the nucle-
ar interaction operator U„, so that Eq. (16) can be
integrated to provide a suitable internal wave
function. In a multiple-scattering-theory deriva-
tion of the optical model, ' 2 the scattering wave
function of a pion on a nucleus is constructed from
the pion-single-nucleon scattering amplitude and
properties of the nuclear states, particularly the
spatial density of nucleons. The optical potential
is then defined as the equivalent interaction opera-
tor, acting on pion coordinates only, that gener-
ates the same elastic scattering amplitude.

In Watson's formulation, "the momentum space
matrix elements of the optical potential are, in the
impulse approximation, and with neglect of nu-
clear correlations,

-4m f(k) k') = b + ck' ~ k, (39)

where b and c are certain linear combinations of
the S- and P-wave scattering lengths. All of the

This is trivially satisfied on the energy shell where
k=k'. Thus the symmetry condition of Eq. (22),
which is essential to the derivation of the key equa-
tions (27) and (28), is translated in the optical-
model formalism into a symmetry condition Eq.
(38) on the off-shell behavior of the pion-nucleon
partial-wave amplitudes. In Eq. (36), this condi-
tion takes the form of an off-shell extrapolation of
time-reversal invariance.

Kisslinger's optical potential is a convenient and
widely used approximation to Eqs. (34) through
(37). It consists of keeping only the first two par-
tial waves of Eg. (37) in the form2'
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integrations in Eq. (35) may then be done explicit-
ly, yielding the form

(r (UN (4)=bp(r)4(r) cV. (p(r)V%(r)) (40)

for the right-hand side of Eq. (16). The local nu-
clear interaction potential U(r) —= bp(r) is repulsive
and dominates the S wave. The nonlocal interaction
operator -V ~ n(r)V, with n(r) =—cp(r), is attractive
and dominates all higher partial waves. This ex-
planation of the observed behavior of pion-nucleus
interactions is the principal achievement of the
Kisslinger model. Substitution of Eqs. (40) and
(1I) into Eq. (16) results in the radial Eqs. (Al)
and (Bl) of the appendixes. Ericson and Ericson
have refined the model, taking into account more
details of nuclear structure and pion-nucleon in-
teractions, but finding the same general form of
wave equation. "

We assume the He4 nucleon density has the same
Gaussian form [Eq. (11a,)] and extent (a„=1.34 F)
as the He4 charge density (Fig. 1). For our pur-
poses, b =—b, + ib, and c-=c, + ic, may be considered
complex phenomenological constants to be deter-
mined by the data. In particular, an attempt was
made, using the methods of Appendix B, to adjust
b and c so that the numerically computed X', would
match the experimental S, [Eq. (2T)], at least for
the S and P waves. This proved impossible, how-
ever, due to a branch cut in X', (b, c) along the
negative real axis [-~& c, & -p(0) '] of the complex
c plane. As c, passed through zero in the search
routine, Imk, jumped from a value well below the
empirical ImS, to a value well above it. This dis-
continuity is shown in Appendix A to result from
the singular point y, in the Kisslinger-model radial
equation where o(r,) = -1. The wave function in
general has a logarithmic branch point at ~,. For
c, =0 this is in the nuclear surface where the den-
sity has fallen to the value p(r, ) =-1/c, . If c,c0,
x, moves slightly off the real z axis, and the sign
of c, determines which branch of the function is
generated. Consequently, the computed logarith-
mic derivatives, and corresponding nuclear phase
shifts, may have intrinsic imaginary parts even

in the limit of real b and c. This effect obviously
ruins the interpretation of b, and c, as a measure
of physical pion absorption processes in nuclear
matter.

This unphysical behavior is evidently a conse-
quence of integrating the low-energy approxima-
tion (39) over all momentum space in the course
of the Fourier inversion leading to Eq. (40). In

fact, Lepore and Riddell have shown, by direct
numerical solution of the partial-wave Schrodinger
equation in momentum space for the optical-model
interaction (34), that the singular-point effects in
the wave function disappear if the coefficients
(b, c) of Eq. (39) are given a gradual cutoff for
large k and k'." All of this is a serious difficulty
in principle with the Kisslinger model: The wa, ve
functions it generates, having logarithmic branch
points, cannot be physically correct.

For our present purposes, however, all we
really require is a set of radial wave functions
y', (r) (1 = 0, 1, 2) satisfying the boundary conditions
X', =S„ to be used to interpret the empirical D)'s
according to Eq. (28). To this end, we have adopt-
ed the following ad hoc procedure. The imaginary
part of the P-wave logarithmic derivative, ImSy,
was temporarily replaced by a fake value ImS,'

large enough to permit a solution for (b, c) that
satisfies the corresponding modified S and P wave
boundary conditions. The result is given in the
first three columns of Ta,ble III. Then with c fixed
at the value so determined, the complex parameter
b was readjusted separately for each partial wave
to exactly satisfy the original empirical boundary
conditions. For the S wave there was, of course,
no change in b. For the P and D waves we find
b, &0, to partially cancel the anomalously large
negative ImS, resulting from the singular point.
These values are given in the last two columns of
Table III. We refer to this solution in Sec. V as
the "modified Kisslinger model. " At 142.3 MeV/c,
a fit was also done with a„=1.27 F as a check on
the sensitivity to nuclear density. This solution is
listed in the Tables as data set b'. The solid
curves in Fig. 5 show the real part of the fitted
weighting functions

TABLE III. Modified Kisslinger-model optical parameters.

Data
set ~

a
b
b'
c
d

Fake
Im 5(

-0.13
—0.19
—0.19
-0.25
—0.35

c(F 3)

-6.40 —0.16i
-6.62 -0.25i
-6.14 —0.10i
-6.61 —0.26 i
-6.78 -0.15i

S wave

1.24 -0.26i
1.37 —0.15i
1,28 —0.17i
1.50 —0.07 i
1.65 —0.04i

readjusted local const b (F)
P wave

1.16+0.41i
1.87+0.59i
1.82+ 0.61i
1.98 +0.53 i
2.20+ 0.50 i

D wave

3.15+0.22 i
3.42 +0.59 i
2.27 +0.66 i
3.79+0.47 i
4.10 +0.41 i

' Model b' has density radius parameter az =1.27 F [cf. Eq. (11b)]. The rest have aN =1.34 F.
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TABLE IV. Local-model optical parameters (c —= 0) .—Kiss ling er mode I

-- Local model Data
set $ wave

Adjusted b, (E)
P wave D wave

l.5

I.O

a
b
b'
C

d

1.08 —0.34 i
1.10 —0.26i
1.0 7 —0.26 i
1.12 —0.23 i
1.13—0.27 i

-6.47 —0.92 i
—6.59 —1.10i
-6.78 —1.08 i
—6.58 —1.36i
-6.75 -1.56i

—12.31—0.90 i
—12.70 —0.92 i
-14.30 —0.99i
-12.39 —1,12i
-12.67 —1.10i

0.0—

I

I.O
I

2.0
r (F)

3.0

6 shows the calculated ReD, vs r, at 142.3 MeV/c
for the first three partial waves. The calculated
curves for free waves [i.e., g, (r) =j,(kr), the
spherical Bessel functionj are also included to
show the effect of wave-function distortion by the
nuclear force. The nuclear force is repulsive in
the S wave, attractive in higher waves. This re-
sults in a decrease in ReD, and an increase in

ReD, for l ~ 1 from their free-wave values. To
show the dependence on the pion model, the S-
wave curves are drawn for both pion charge dis-
tributions. The two distributions are of course

l2—

FIG. 5. Real part of normalized weighting functions
[y)(&)] =[~)(r)/Ry)(R)l for S, P, and D waves at 142.3
MeV/c lab momentum. Solid curves for modified Kiss-
linger model, dashed curves for local potential model.

l0

KY'

(41)

resulting from this model. The peculiar behavior
near y =1.1 F is the remnant of a sharp spike in
y', (x) at the singular point; it appears considerably
damped by the normalizing condition yt(R) =—1.

As a simple alternative to test nuclear model
dependence, the same programs with c =—0 were
used to fit a different complex local potential U, (x)
= b,p(x) to each partial wave. The results are list-
ed in Table IV. This completely ad hoc model,
also used for similar purposes by Block et al. ,

"
is loose enough to fit any data. The weighting
functions it generates, shown by the dashed curves
in Fig. 5, are well behaved, and perhaps thereby
more realistic than those of the modified Kissling-
er model.

V. DETERMINATION OF THE PION RADIUS

Given an internal wave function y', (r) that satis-
fies the boundary conditions, and a formula such
as Eg. (13) or (15) for the internal Coulomb po-
tential v(r), we may calculate D, as a function of

Since we have two nuclear models (Kisslinger
and local) and two pion shapes (Gaussian and
Yukawa), . there are four cases to consider. Figure

L~P wove
VsXX~XX'lRhthXXXINXXVVAVAXV, VXOAVA~X'i' V.'AXXXXXXXXV VAXXXXVAI

.~F
49%%%4%99%99lhKY, I'bXxKN N'l6' '

'
''. 'i''X". !'':,XXX» 'i:i%~~~ 99,'6699iiiiiiiiiiiixiixxuw

0 wave
0 I I I I I I

0 2 3
Pion radius r~ (F)

FIG. 6. ReD, vs r~(E) for S, P, and D waves at 142.3
MeV/c (data set b). Horizontal bands are data values and
errors from model-independent fit (Table II). Solid
curves (G) calculated from Eg. (28) with Gaussian pion
charge distribution using wave functions generated by
local (L,) and Kisslinger (X) nuclear interaction models.
Curves for free-particle wave functions (P) are shown
for comparison. Dashed curves (Y) are for 7ukawa pion
model [Eq. (15)]. The "data points" are the fitted pion
radii and errors from Table V.
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identical at r, =0, but for large pion radius, the
Yukawa model [Eq. (15)] gives the larger value of
D„corresponding to a deeper central value of the
Coulomb potential. The effect of the nuclear mod-
el on the calculated values of D, is also exhibited.
For the same internal Coulomb potential, the
modified Kisslinger-model wave function yields a
value of ReD, some 6% larger than the local model.
For the P and D waves, where the internal wave
function is more dominated by the centrifugal po-
tential, the nuclear model dependence of ReD, is
2.8% and 1.6%, respectively.

The horizontal bands are the empirical values
of ReD, from Table II, with the deviations that
cause a 10% increase in y~'. The pion radius for
each model may be read from the intersection of
the computed curve for ReD, with the data band.
This indicates a surprisingly large pion radius of
between 2 and 3 F. With the pion radius so deter-
mined, the calculated ReD) for the P and D waves
lies somewhat above the corresponding data bands.
Nevertheless, the numerical agreement is close
enough to be taken as some confirmation of the
basic equations (27) and (28). Note that without the
wave-function distortion by the nuclear force,
there would be no agreement on the value of y,
among the partial waves.

For a data fit completely consistent with a given
model, we compute D, for all partial waves as a
function of pion radius, and using the empirical
values of S, from Table II, we plot y~' vs r„(Fig.
7). The values of y~' and y, at the minima, with
the deviations Ar, that cause a 10% increase in y~'
for the various models, are listed in Table V.
Some of these values of y„are also shown in Fig.
6. The minimum values of y~' are larger than for
the model-independent fit of Table II because of
the additional constraint: The P wave is well de-
termined by the precise data in the minimum, and
it disagrees slightly with the calculated value for
each model. The following remarks may be made
about Fig. 6 and Table V:

(i) The 142.3-MeV/c data again have the highest
X~' (around 60 for 15 data points), but have the
sharpest minima, reflected in the size of the 4y „.

(ii) The modified Kisslinger model gives pion
radii about 0.4-0.6 F larger than the local model
with the same pion form. Since the wave functions
generated by these two models are about as dif-
ferent as possible within the constraints imposed
by the boundary conditions at r =0 and ~=R, we
may estimate that the uncertainty in r, due to the
nuclear model dependence is s 0.6 F.

(iii) In the 2 to 3 F range, with a given nuclear
model, the Yukawa pion model indicates an r,
about 0.2-0.5 F bigger than the Gaussian pion mod-
el. This is a measure of the uncertainty in r „due
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FIG. 7. g~ vs r~(E) for Gaussian pion model and both
nuclear models, Labels a, b, c, d refer to the data sets
at the four beam momenta (cf. Table I).

to choice of pion shape.
(iv) All four energies are consistent, with per-

haps a slight tendency for the higher energies to
require a bigger z, to fit.

Figure 4 shows the data and calculated values of
4(e) at each energy for the best model-independent
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TABLE V. Pion radii from minimizing y & for various models.

Modified Kisslinger nuclear
model

l -dependent local potential nuclear
model

Data
set

Gaussian Yukawa
2

Gaussian
4r~i

Yukawa

xg 2

a
b
b'

2.64+ 0.39
2,70 + 0.23
2.63+0.25
3.03+0.61
3.32 + 0.42

19.9
58.2
64.9
49.6
51.9

3.02+ 0.51
3.12 + 0.30
3.02 + 0.32
3.61~ 0.82
4.02 + 0.57

19.2
52.0
57.8
46.3
47.7

2.26+ 0.41
2.19+ 0.29
2.21 + 0.30
2.35+0.72
2.63 + 0.50

19.0
71.5
77.9
53.6
60.6

2.52+ 0.51
2.44+ 0.35
2.47+ 0.37
2.71+ 0.89
3.05 +0.64

18.4
66.0
71.8
50.7
56.0

~All radii in F, Gaussian model uses Eq. (13), Yukawa model uses Eq. (15).

fits (Table II). The curves for the best model-de-
pendent fits (Tables III, IV, and V) are very simi-
lar, although they give somewhat higher X' values.
The curves for r „=0 calculated with the fitted
Kisslinger-model wave functions are shown for
comparison. These gave the highest calculated y'
values (cf. Fig. 7). All this shows that 6(8) is too
small in the forward direction, or corresponding-
ly, that o'(8) is too close to o (8) to permit a
small value of r, .

VI. DISCUSSION OF ALTERNATIVES

%'ithin our basic assumption that the Coulomb
potential, Eq. (10), is the only charge-dependent
interaction in the generalized Klein-Gordon equa-
tion (16), data analysis indicates a surprisingly
large r, o'f 2 to 3 F. The boundary-condition meth-
od effectively reduces the uncertainty in r, due to
nuclear model dependence to about the level of the
uncertainty due to experimental statistics. The
use of the exact external (r &g) solution of the
radial wave equation avoids the long-range Cou-
lomb divergence difficulties. Evidently then, the
large-pion-radius result is inherent in the data
and our basic theoretical assumption

I
Eqs. (10)

and (16)], and is not due to either calculational
difficulties or the detailed choice of nuclear in-
teraction model. In view of the disagreement with
the simple vector -dominance-model prediction of
r, =0.63 F, some comments are in order on pos-
sible alternative methods and assumptions:

(i) A direct optical-model analysis requires at
least six numerical integrations (for It,', 1=0, 1, 2)
for each iteration of the search routine that adjusts
the parameters of the model (including r, ) to fit
the scattering data. Since only solutions consis-
tent with the given model are considered, the
question of model dependence of the results is left
open. However the arguments of Sec. II are valid
for a very general class of nuclear models, and
imply that the result for r „ is not sensitive to the
particular model used. Any model flexible enough
to fit the data should yield the same phase shifts,

and thereby generate wave functions that satisfy,
at least implicitly, our key equations (27) and (28).
Our ad hoc adjustment of each partial wave to fit
the empirical boundary conditions guarantees this
flexibility at the cost of giving up a simple physical
interpretation of the nuclear parameters. Partly
due to the singular-point difficulty (Sec. IV), the
Kisslinger model without this ad hoc adjustment
is not quite capable of an optimum data fit.

(ii) In order to provide a more efficient and mod-
el-independent analysis, Schiff' proposed evaluat-
ing the Coulomb perturbations on the dominant
strong-interaction amplitude to first order in the
small parameter @=0.02. Writing o'(8) —= ) f+(8}P,
and neglecting terms of order q', we have

f-= '(f'+f ) =-f~ (42)

the pure strong-interaction amplitude given in
general by Eq. (5) with t =0. The Coulomb differ-
ence in general may be written

fz=-.(f' —f ) = fs+fo, (43)

where f~ =-2qkE (q)E~(q}/q is the Coulomb-Born
term depending directly on the form factors, and

fo is an additional "distortion amplitude" due to
deformation of the Coulomb wave functions by the
nuclear force. Although fD for a given model is
well defined in nonforward directions by Eq. (43},.

it diverges as q
' for q-0. Schiff showed that the

partial-wave expansion of fD is correspondingly
plagued by the logarithmic divergences character-
istic of 1/r potentials, whether they act on free
spherical waves or nuclear phase shifted ones.
Subsequent authors' "have discussed methods for
handling these divergences, but Crowe et al. find
inconsistent results when the various prescriptions
are applied to their data. 23 As might be expected
from the divergence problems, fo seems to be
determined mainly by the nuclear phase shifts 5'„
and is relatively insensitive to other details of the
model, ' including r . These long-range Coulomb
distortion effects are thus automatically accounted
for in a direct optical-model calculation, and more
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generally in our boundary condition method, by the
use of the exact external phase-shifted Coulomb
radial wave functions [Eq. (2)].

(iii) We have taken relativity explicitly into ac-
count only in the kinematics used to calculate k
and q. Only the instantaneous (Coulomb-gauge)
electrostatic potential is included in the equation of
motion. The magnetic field seen in the c.m. sys-
tem due to the recoil motion of the nucleus is
neglected. Rix and Thaler'4 suggest that k and q
be chosen for the relativistic two-body problem
so that the pure Coulomb amplitude, Eq. (4),
agrees to first order with the covariant Feynman-
Born amplitude for the electromagnetic interaction
of two spinless bosons. This leads to

where E„E, are the c.m. energies of the two par-
ticles, and k is the c.m. momentum. Our formula
differs only in the absence of the k2 term from the
numerator. (This b' term presumably represents
the magnetic contribution. ) Another alternative
would be to neglect nuclear recoil motion, and use
the lab momentum and velocity of the pion to com-
pute (b, q). Magnetic interaction would then be
strictly zero, and the Klein-Gordon equation in a
Coulomb field would govern the long-range motion
of the pion. Both these alternatives give a value
of q about 2-3% larger than ours, and lead ulti-
mately to a small increase in the measured value
of z

(iv) Christensen" attempts to calculate the dis-
tortion amplitude using conventional Feynman-
diagram techniques for the electromagnetic cor-
rections to the strong m-n amplitude. After nu-
merous approximations and simplifying assump-
tions, he concludes that certain crossed diagrams
("relativistic terms"), which are .omitted in a
calculation based on a wave equation, can contrib-
ute to the distortion amplitude in such a way as to
allow a fit to the data with smaller g, more in the
expected range y „&1.0 F. He points out, however,
that this result is sensitive to such details of the
strong-interaction amplitude as its off-mass-shell
behavior, for which he uses a linear approxima-
tion, and its over-all phase, which he leaves ar-
bitrary. But this angle-dependent phase, which is
determined implicitly by the phase shifts in the
other formulations of the problem, is crucial to
the Coulomb-nuclear interference effects used to
determine r . This only serves to reemphasize
the need for an accurate model with well controlled
approximations to extract the small pion size ef-
fects from this kind of data.

(v) The assumption of exact charge independencs
of the nuclear interaction operator is crucial to

this whole approach to the measurement of y, . If
the nuclear interaction of m+ differed slightly from
that of g, there would be a direc. 't strong-inter-
action contribution to the logarithmic derivative
difference D, [Eq. (19)]. Let U„' be the nuclear in-
teraction operator for g', and assume that the dif-
ference &U„—= U„' —U~ is a local operator. Then,
by the derivation leading to Eq. (28), we have D,
-Dc(r, )+D, , where Df(r„) is the pion-radius-
dependent Coulomb contribution given by Eq. (28),
and D, is an additional strong charge-asymmetry
contribution given by

R

D, =
2

&U„(r)[y', (r)]2dr .
0

(44)

The experimental values of D, from Table II are
now to be interpreted according to

DExPt Dc(r ) +Ds (45)

Any combination of r „and &U„ that satisfies Eq.
(45) [via Eqs. (28) and (44)] will agree with the
data. The values of r, given in Table V are based
on the assumption that D, =0. Since D, is a de-
creasing function of r, (Fig. 6), we require in
general De, & 0 (U„' ~ U„) to fit the data with smaller
values of y, . For example, using the local model
wave functions, it would require ReD, =—-1.13 to
bring the 142.3-MeV/c S-wave data into agree-
ment with r, =0.63 F. Evaluation of Eq. (44) on
the assumption that U„'(r) = (b + ,&b)p(a„; r—), where
b = 1.1 F from Table IV, and p(a„;r) is given by
Eq. (11), then leads to a fractional strength dif-
ference b,b/b =+0.0'l3 Do~ = -0.083. Similarly, if
U„'(r) = bp(a„+ 2ba; r),35 we have to lowest order a
fractional range difference b a/a„= -0.10 D~o

=+0.113. At least for these simple models, then,
roughly a 10% violation of strong-interaction
charge independence is required to bring our fit
into agreement with the vector-dominance-model
prediction for y „.

(vi) Finally, Oades et al'4 use a boundary con-
dition method similar to ours, but with more
simplifying approximations, to calculate first-
order Coulomb corrections to the phase shifts. On

applying their analysis to the Berkeley data, they
find somewhat larger r„and y' than we do. They
also find that the other p'-He' data, ' "although in
some disagreement with the Berkeley data, are
not precise enough to show much sensitivity to r„
it is consistent with any r„&2.2 F. In view of this
conflict and uncertainty in the data, and the avail-
ability of workable methods of analysis, another
precision measurement of p' scattering on an
isoscalar target appears worthwhile. If such ex-
periments confirm the large pion charge radius,
no matter what the ultimate cause, it is signifi-
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cant for the calcuiation of Coulomb corrections in
pion nuclear scattering and pionic atoms in gener-
al.

k' —U(r) l(l+ 1)qr)= 1+n(r) r' (A3)
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have first-order poles at r =r, . Substitution of
power-series expansions about r, for (r -r, )p(r)
and (r r-o)'q(r), and the form

(A4)

for X into Eq. (A2) then yields a set of recursion
formulas for the a„. The first of these is the in-
dicial equation which turns out to be P' =0. There-
fore y(r) is analytic at ro:

APPENDIX A: ANALYSIS OF THE KISSLINGER-
MODEL SINGULAR POINT FOR REAL n(I")

y(r) =1+a,(r -ro)+am(r ro)-+ ~ ~ ~, (A5)

The radial Schrodinger equation for the Kiss-
linger model of pion-nucleus interactions has the
general form

and, since the indicial equation has equal roots,
the second independent solution must be sought by
variation of parameters. Writing it in the form
au(r) = $(r)y(r), we find on substitution in Eq. (A2)
that

d$
dr r'[1+a.(r)]y'(r) (A6)

+(r'[k' —U(r)] -[1+o, (r)]l(l+ I)}X =0.

(A1)

The complex nonlocal interaction coefficient n(r)
is in general proportional to the nuclear density
p(r), and vanishes outside the nucleus. We take
for simplicity n(r) = cp(r) where c = c, + ic, is a
complex constant. The essential features of the
following argument remain valid, however, for
more complicated forms of n(r) such as those
given in Ref. 20. Equation (1) has a singular point

r, where 1+n(r, ) =0. If c, =0 and n(0) =c,p(0) & -1,
this singular point will be in the nuclear surface
where the density has fallen to the value p(r, )
= -1/c, . If c, g 0, the singular point will be at the
complex value of r, where p(r, ) =-I/c =(-c,+ ic,)/
~
c ( . For the Gaussian density distribution, and

presumably in general, Imr, has the opposite sign
from c,: For c,&0, r, lies above the real r axis,
and comes down onto the axis as c,-0.

To investigate the effect of this singular point on
the Kisslinger radial wave function, we apply the
classical analysis of second-order linear differ-
ential equations as given in Ref. 26. Writing the
radial equation in the form

This means that since 1+a, (r) has a simple zero at
r„$'(r) has a simple pole there, and $(r) has a
logarithmic branch point. The general solution of
Eq. (A2),

x( ) =[A B&( )]y( ), (A7)

where A and B are arbitrary constants, then also
has a logarithmic branch point at r, (unless B=0).
Now the physical solution of the radial equation
must start at the origin as X(r) = constxr'. We
want to propagate this solution outward along the
real r axis to the boundary r =R, using the form
(A7) to cross the singular point. The constants
(A, B) are determined by the continuity of X(r) and
0'(r) —=r'[1+a.]X'(r) at r =r, =r, —&r:—

B= y(r, )4(r,) r,''[1+n(r-, )]y'(r, )X(r,),
A = X(r,)/y(r, ) -B((r,) .

(A8)

Since y(r) and. X(r) both satisfy Eq. (A2), B is ac-
tually independent of r, The same .continuity con-
ditions .are used again at r =r, —=r, + &r to obtain
the values of X(r,), % (r,) needed to continue the
integration:

x"+P(r)x'+ q(r)x = o,
we find that both

(A2) X(r.) = X(r,) +y(r. )B[((r.) —$(r,)1,yra (A9)

and

p(r) -=—+
2 e'(r)
r 1+n(r) We therefore must somehow evaluate the singular

integral
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1(&r)-=h(r. ) —$(r )
ro+ h, r

J„~, r'[1+a(r)]y(r)' '

The pole at r =x, may be explicitly separated by a
partial-fraction expansion of the integrand. Writ-
ing the denominator in the form (with z =r r-, )

(A10)

r'[1+a(r)]y(r)'-=z[g+zh(z)], (A11)

we have g=ro'a'(r, ) and h(z) =h, +h,z+h, z'+- ~

where

= I, 1+,(~ )r (A13)

The second integral, l, (&r), is a dull, well-be-
haved function of &z. To lowest order in r it is

(A14)

To evaluate I, however, we must detour around
the pole in the integrand. For a continuation of the
solution when the pole is above the axis (c,&0), we
use the g-plane contour shown in Fig. 8. Then
I, =+in/g Simi.larly, for a continuation of the
solution when c, & 0, we must go above the pole.
This yields I, = -iw/g. Substituting all this back
into Eq. (A9), and expanding everything to lowest
order in &r, we have

g(r, ) = X(r,) + e(r,)—

+2&r a, (1+ i 2m)g(r, )+ —e(r, ) + ~ ~,ho

4(r~) =4(r, )+2a~Ar[( 1+ i 2m)4-(r, )

+gX(r )]+~ ~ ~

(A15)

where the upper sign corresponds to continuation
from negative c2, and

a, =[U(r,) —k']/a'(r, ) .
Thus even if the radial wave function y(r) started
off real for small r, as it could if the optical po-

Ii

h0=2r, ' '
+U(ro) —k'+ ~a"(r,), etc.

0

(A12)

Then

tentials [U(r), a(r)] were real, it would develop an
imaginary part on propagation through the singular
point r, . Consequently the logarithmic derivative
at the boundary p &x„defined by

X(R) = 1+@(B)/ffq(R),

will be complex even in the limit of a real optica1
potential. And since the sign of its imaginary part
depends on whether c, approaches zero from above
or below, Imh. (R) will have a discontinuity at c, = 0.
If we let U(r) = bp(r), and consider X(B) as a func-
tion of the two complex variables b =b, + ib, and
c = c, + i c„we have in general A(b *, c*. ) = A. *(b, c).
This implies that when the local potential is com-
plex (b, e 0), Rek(R) also develops a discontinuity
at c, =0.

The conclusion is then that the Kisslinger-model
wave function y(r).and its logarithmic derivative
A.(R) are in general not continuous functions of the
interaction parameters b and c, there being in
particular a discontinuity in A(R) as c, = Imc passes
through zero. Since I, =a i w/g, where g —=r,'a'(r, )
= -r, 'p'(r, )/p(r, ), this discontinuity depends in-
versely on the gradient of the nuclear density at
the singular point. These wave-function branch-
point effects will evidently be absent in only three
cases:

(i) If a(0) = c,p(0) & -1, there is no singular point
near physical values of r.

(ii) If B=4(r,) =0 [Eqs. (A7) and (A8)] the singu-
lar component is absent from the physical solution.

(iii) In the limit of a uniform square-well nucle-
ar -density distribution, g -~ and I,—0.

APPENDIX B: SOME COMPUTATIONAL TECHNIQUES
FOR-THE KISSLINGER MODEL

In this appendix, we list some formulas useful in
the practical problem of integrating the Kisslinger-
model radial equation and adjusting the nuclear in-
teraction parameters to make the resulting wave
function satisfy assigned boundary conditions at
some radius g just outside the nucleus. Local po-
tential models are of course included as the special
case where the gradient interaction function a(r) is
identically zero. It is convenient for the following
derivations to split the Kisslinger-model radial
eciuation (A1) into a pair of coupled linear first-
order differential equations:

e(r) = r'[1+a(r)] dx
d+

(B1a)

FIG. 8. z-plane contour.
d+ = Q(r)X(r), (B1b)
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X -=1+ (1+n) " =1+4 (R)/RX(R),
X r=R

(B2)

depends implicitly on the choice of U(r) and n(r).
To investigate the changes in X due to changes in

(U, n), we compare the solution (X, %) of Eq. (B1)
with the solution (X, 4) generated by an alternate
.choice (U, n):

4 = r'(1+n)X', O'= Qx, etc. (Bs)

By usual multiplication of Eq. (Blb) by X, Eq.
(B3) by X, and subtraction we have

x+' - x4" = (Q —Q) xx. (B4a)

Use of Eqs. (Bla) and (BS) allows this to be re-
written as

—(X+ —X+ = (Q —Q)XX+ r (n —n)X'X' (B4b)

Integration from 0 to R, and division by RX(R)X(R)
then results in an exact formula for the logarithmic
derivative shift due to the change (U, n) - (U, n):

X -X=[I,(R)+I (R)]/Rx(R)X(R), (B5a)

where

and

I (U)=j [ U(r)-U(r)]r y(r)y(r)dr
0

(B5b)

R

I„(R)=)[n(r) —n(r)-]
0

x [I(l +1)X(r)X(r)+r'X'(r)X'(r)]dr .

(B5c)

This general formula has several interesting
special cases:

(i) If

n(r) = n(r),

V(r) = V„(r) + i'2qkv(r),

U(r) = U„(r) +t2]lkv(r),

then Eqs. (B5) reduce to Eq. (23) of the text, lead-
ing directly for this model to the formula (28) for

where

Q(r) = r [U(r) —k']+ l(l +1)[1+n(r)] . (Blc)

This form was also necessary for the numerical
integration routine (Berkeley ZAM ) that was
available. Given l, k', U(r), and n(r), this rou-
tine was set up to generate the solution with the
form X(r)-constx r' near the origin (r =0). The
logarithmic derivative of this wave function, de-
fined as

the Coulomb difference g), .
(ii) With the same (U, n), but n =U=O, the com-

parison solution is just the spherical Bessel func-
tion: X(r) =j,(kr). Then, after a partial integra-
tion on I„[utilizing Eq. (B3) and assuming n(R)
=0], Eqs. (B5) yield an integral representation for
the neutral (i =0) logarithmic derivative in terms
of the normalized internal wave function y(r)
=r X(r)/RX(R):

kRj, '(kR)

j,(kR)

+ Jt dr y(r)
0

rj, (k r)[U„(r) +k'n(r) ] —krj, '(kr) n '(r)
j,(kR)

Of course if X(r) were known, X would be given. by
Eq. (B2). But conversely if ]]. were the known quan-
tity (e.g., Table II), y(r) would be strongly con-
strained [cf. Eq. (27) of text] and Eq. (B6) could
be used to display the contribution to A. of the vari-
ous terms in the wave equation. Similar formulas
for the other charges (i=+1) may be derived using
U(r) =2qkt/r. Then (kr)j, (kr) is replaced by the
regular Coulomb function E,(tq; kr), and Eq. (B6)
has an additional Coulomb term.

(iii) Suppose U and n depend on a set of param-
eters s=(s„s„.. . , s„): U=U(s;r) and n= (sn;r)
Then the logarithmic derivative X(s) will also de-
pend on these parameters, and Eq. (B5) may be
used to construct the derivatives BX/ss; from a
single calculation of the wave function X(s;r). This
permits the use of efficient gradient-type iteration
methods to adjust the parameters to match an as-
signed value of X. Taking U=v(s;r) and n=n(s;r),
where s = (s„s„.. . , s;+4s;, . . . , s„), in the limit
4s;-0 we have

x=x(s;r)-x(s; )

and

J[ dr([r))(r)]' +[)()+))),(r)

+[~X'(~)I*] 8™) (U7)

In Sec. IV we used U(r) = (b, + i b2)p(r) and n(r)
=(c,+ ic,)p(r). The parameter set is s
= (b„b„c„c,), and Eq. (BV) was used with Bv/8 b,
=p(r), etc., to fit the calculated A.'s to the empiri-
cal ones. Note that if U and + are analytic func-
tions of a complex variable z = s, + is„and so
satisfy the Cauehy-Riemann conditions (sv/ss,
= isv/ss„etc. ), then X(z) is also analytic in z be-
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cause it also satisfies these conditions. The one
restriction to be observed is that if the parameters
are such that y(s; r) has a branch cut (cf. Appendix
A), s and s must be chosen on the same side of the
cut to achieve X- y in the limit s —s. In this con-
nection, note that substituting the complex con-
jugates of U and a. into Eq. (B1) does not neces-

sarily generate the complex conjugate of y. There-
fore use of Eq. (B5) to construct A. —A.*=2i Imk
must be done with caution. These restrictions are
not necessary if u(r) & -1 everywhere, as in the
special case of local potential models where o.(r)
=—0.
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