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We answer the criticism that was raised against our Kemmer K3 theory by exhibiting in
explicit calculational detail the inequivalence of the Kemmer and Klein-Gordon formulations
of K;; decay, taking care to clearly define “inequivalence.” It is shown that our published
results are correct as stated, including the prediction of a zero in the scalar form factor.

In a recent series of papers'~® a treatment of
K, decays has been developed in which the pion
and kaon are assumed to be described by the spin-
0 Duffin-Kemmer-Petiau equation rather than by
the usual Klein-Gordon (K-G) equation. Among
other results it was shown! that our theory gives
rise to an effective symmetry-breaking parameter
£ whose magnitude £,,=~0.77+0.10 is in excellent
agreement with the experimental value* £, = ~0.85
+0.20. It was further shown?'® that our formula-
tion of K;; decays resolves a long-standing dis-
crepancy between the values of the polar vector
Cabibbo angle 6, as determined from K,; and nu-
clear g decays, respectively. Finally we pre-
dicted a zero in the effective scalar form factor
fo(t) at t=(m+p)’=¢, where m and y are the kaon
and pion masses, respectively.

Subsequent to the appearance of Refs. 1-3, a
criticism of our Kemmer formulation of K;; de-
cays was raised.® This paper® asserted that (a)
our prediction of a zero in the scalar form factor
was incorrect and therefore that (b) our claim of
the inequivalence of the Kemmer and K-G formu-
lations was incorrect. We will show, however,
that even if assertion (a) were correct (which it is
not), this would not imply assertion (b). The rea-
son is that our remaining predictions are all in-
dependent of the existence of a zero in the scalar
form factor.

It is thus the purpose of the present note to
answer in detail the above two assertions, and to-
thereby dispel the misunderstandings that they
have generated. We will show that the conclusions
of Refs. 1-3 are indeed correct as stated. In the
process we shall also clarify what is meant by the
“inequivalence” of the K-G and Kemmer formula-
tions® of K,, decay, since this is admittedly a very
subtle, albeit important, question.

We start by considering the matrix element in

|o

question, that of the hadronic AS=1 current V,(x),
which is given by

(T VAO)IK (0)) =T, (p" )T\ (p", 0, )EL(D). (1)

¥, (p) and T, (p’) are the initial and final wave
functions, respectively, T',(p,p’, ) is a covariant
4-vector function of p and p’, and ¢=-q?2
=—=(p-p’')P. Inthe conventional treatment of K I3
decays the kaon and pion are assumed to be ‘de-
scribed by the usual K-G equations (-0 +m?)|K)
=0 and (7|(=0 +12)=0. In that case ¥,(p), ¥, (p"),
and T, (p,p’, t) are given by

VEC(P)= (20, V) M2, TKS(p')= (25 V)2, (2)

TXC(p,p', )=(p + ") f+ () +a, f-(D), ®)

foO = @) +[t/(m? = 12)] £_(2), (4)

where f,(f) are unknown form factors, f,(¢) is the
scalar form factor, and V is the normalization
volume. By contrast the development of Refs. 1-3
begins with the assumption that the pion and kaon
are described by the Kemmer equations

(B 3+m)|K)=0and (m|(~B+ 8+u)=0. In this case
¥, (p), ¥, (p'), and T'y(p,p’, t) are given by

V(D)= (m/po VI 2u, (D),

- 5)
TX(p") = (Wb V I ?a,(p"), (

X (b,0", )= Brgy @) +[igr/(m+ 1) gs )}, (6)
&) =gy (t) = [t/(m* = 1P)] g 5(2), (7)
where u,(p) and %,(p’) are 5-component spinors.
It is a straightforward matter to show that the

Kemmer scalar form factor g,(¢) is given by
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(m(p")[0,\ A (0)|K(p))

1/2
2 a0 2, (0 e (9]

1/2 t -t
=+i(m = u)( p:ZELW) &(?) ( n m:)

= —if () @pop s VD) V2 (mP = 1) (8)

Thus, (3,V,) [or equivalently, the effective K-G
scalar form factor fo(t)] was predicted! to have a
zero at f, barring the possibility of a dynamical
pole in g () at ¢,. In Ref. 5 it was claimed, how-
ever, that this zero could be made to disappear
if, in place of the Kemmer current of Eq. (6), we
use a new combination of invariants given by

=~i(m ~ u)(

TX(p, 0", O) =1l Brhy () + Xy hy ()], 9)
X, =3[ 8\B.8, = B,8,8). (10)

(To clarify confusion that has arisen, we wish to
emphasize that the matrix element can have only
two independent form factors, irrespective of how
they are obtained or chosen.) With this form of
the current the scalar form factor is given by

i(mu/popd VX m(p')]8,V, (0)| K(p))
= (4mp) Y%, (p M(m — wh ,(2)

+t(m+ph (DB Bluy(p) (11a)

= (4mp) {[(m = Wk, (2) + (m + wh (O] (=t + 1,)

+Bmu(m + wh(£)} . (11b)

On the basis of Eq. (11) the claims were made®
that (a) there is no zero in the scalar form factor
at =1, and that (b) as a consequence the Kemmer
and K-G formulations of K;; decay were “equiva-
lent.” To start with we reemphasize that (as we
demonstrate below) our new predictions for ¢ and
0, are completely independent of the existence of
a zero in (8,V,). Thus the conclusion (b) of Ref. 5
concerning the equivalence of the Kemmer and
K-G formulations of K,; decay is false as the in-
equivalence does not depend on the zero discussed
in (a). Specifically, we note from Eq. (11b) that
the mere introduction of the operator X, in no way
“proves” that a zero is absent, since % x(?) can it-
self have a zero at £=¢,.” The question of whether
(8,Vy» has a zero is thus a combined one of kine-

matics and dynamics, as was stated clearly in Ref.

1. The only effect of introducing the parametriza-
tion of Ref. 5 in place of Eq. (6) is to trivially

shift the dynamical question from whether or not
&,(t) has a pole at £, to whether or not % x(#) has a
zero at #,. Ultimately, of course, this dynamical
question must be settled by future experiments.
The situation with respect to the Kemmer formu-

lation of K;; decays is, in this regard, similar to
that for the matrix element of the hadronic cur-
rent in e-p scattering, which can also be written
with two different sets of form factors:

(') p)

=iew(p ") F, () = (0,,4,/2M)F,()]u(p)
(12a)

=eu(p' (P, /2M)Gg(t) = (/4 M?)G ,()]u(p),

(12b)

where P, = (p, + p{) and 7, = (—i/2)(n P4 - 4Pv,).
Since the two form factor bases are related via
the equations

(1= t/8)G5(t)=F,(t) - tF,(0/1;,
(13)
(1= t/8)G ((t) = F, () = F,(2),

where ¢;=4M?, seemingly one can make a zero
appear or disappear simply by choosing the ap-
propriate parametrization of (J,) in Egs. (12).
This is of course not true here any more than in
the Kemmer matrix element. If one starts from
a fundamental Lagrangian theory, different inter-
actions will predict different K;, physical matrix
elements (independent of what parametrization
one uses), and these physical matrix elements
will not be the same as the K-G matrix elements
(see below).

To try to obtain some insight into the correct
dynamics (or the best parametrization to use),
we can resort to elementary Feynman diagrams,
such as the K *-pole diagram shown in Fig. 1. We
leave it as an elementary exercise to the reader
to show from Fig. 1(a) that g,(¢) does not have a
pole at #, [or equivalently that 4,(¢,)=0], from
which we conclude that (3,V,)|, =0 as asserted in
Ref. 1. The electromagnetic form factors also
provide a clue as to the best parametrization to
choose in the absence of a detailed dynamical
theory, namely the one which maximizes the num-
ber of form factors which are angular momentum
eigenfunctions. The reader can easily verify' that
&y(t) in Eq. (6) is pure J=1, while £s(?) is a linear
combination of J=1 and J =0. By contrast both
hy(¢) and hy(¢) in Eq. (8) receive contributions
from both /=1 and J =0 intermediate states. It is
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FIG. 1. K;; Feynman diagrams for (a) the Kemmer K*-
pole dominance model and (b) the Klein-Gordon K*-pole
dominance model. I, = i@ (k’)y\(1+ vs)v(R) is the usual
lepton current and f * is the K* — vacuum coupling
constant. fy*g, and gy g, are the strong K*Km coupling
constants in the K-G and Kemmer formulations, re-
spectively.

for this reason that there are no elementary pole
diagrams which directly give either of the form
factors h, y(¢), whereas the K *-pole diagram of
Fig. 1 gives g,(¢) directly. We have thus shown
that an appeal to elementary Feynman diagrams
substantiates the prediction of a zero in {8,V,), as
claimed in Ref. 1, irrespective of which Kemmer
parametrization of the K;; matrix element is used.
Finally, we wish to point out that

Uy (D)) X\ 1y (D) = =i(m + p)a, (p Yo (p). (14)

Thus, this new current X, has the unusual proper-
ty of changing the particle spinor [~u,(p)] into the
antiparticle spinor v,(p) obtained from the adjoint
equation (i.e., m— —m in [~u,(p)]), but it does not
change the sign in the exponential exp(ip * x) (which
is important in a first-order wave equation). So,
in addition to not arising from an elementary Feyn-
man diagram, the current X, would have to come
from some very unusual Lagrangian theory that
has never been used to describe K;; decays.

We turn now to the question of “equivalence” and
emphasize again that the parametrizations [above
and in Eq. (7) of Ref. 1] of the K-G and Kemmer
form factors should not be misconstrued as imply-

ing the “equivalence” of the two parametrizations.
To understand this, we must define what “equiva-
lence” means, in physical terms.® Given a knowl-
edge of the Kemmer form factors, a set of effec-
tive K-G form factors f,(t) can always be con-
structed a posteriori. However, in general there
is no way of guaranteeing that the effective form
factors so obtained could have been derived a pri-
ori from an acceptable K-G Lagrangian theory.
For example, in order to reproduce the zero in
Fo(#) which followed directly from the use of the
Kemmer formalism in a simple K *-pole model
(see above), one might have to construct a (non-
local) Lagrangian model of the K-G form factor
fo(t) containing an infinite number of derivatives.

This is the sense in which the Kemmer and K-G
K,, formulations are “inequivalent.” They re-
quire different dynamics to obtain the same physi-
cal matrix element. Contrariwise, if the same
dynamical assumptions (e.g., minimal couplings,
pole dominance, etc.) are made in the Kemmer
and K-G formalisms, respectively, one ends up
with different physical matrix elements.

Again, an analogous situation can be found else-
where, the nonrelativistic hydrogen atom. If one
uses the minimal electromagnetic substitution
Py —=b, —eA, in both the Schrédinger and Dirac
equations, one gets different energy levels. How-
ever, if one adds new dynamics (the Pauli spin in-
teraction) into only the Schrédinger equation one
can get the same energy levels, but one certainly
does not say that this implies the Schrédinger and
Dirac equations are “equivalent.”

We illustrate these remarks with two further
specific examples from the K;; problem, which
are both independent of the prediction of a zero in
the scalar form factor. (Remember, just one ex-
ample proves “inequivalence.”)

Consider the problem of calculating the symme-
try-breaking parameters £ = f_(0)/f,(0) and
p=g5(0)/g,(0) in the usual Kemmer and K-G K *-
dominance models shown in Figs. 1(a) and 1(b).
Straightforward algebra gives

£=-p="—s—=-0.28, (15)

where M, is the K* mass. We note, however,
[see Eq. (7) of Ref. 1] that the Kemmer matrix
element with p =0.28 is nof equal to a K-G matrix
element with £ = -0.28; it is equal instead to a
K-G matrix element with an effective symmetry-
breaking parameter

£=-028+2""_ _0.85.
w+m

Thus, to obtain this (experimentally suggested)
value of the symmetry-breaking parameter one
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would have to introduce different dynamics into
the Kemmer and K-G formulations, respectively.
(This prediction is independent of the zero in the
scalar form factor since it is evaluated at £=0.)

As a second example?’® consider the problem of
extracting the polar vector Cabibbo angle 6, from
the observed width for K,, decay. The matrix
element T,, for this decay is given by*'?

T =(G/V2)sing, T(p" )T\ (b, 0", D¥(P)L,, (16)

FI)EC(P,p’: t) = (p +p,))\f+(t)y
17
TX(p,p’, )=iB\ gy(2),

where G is the Fermi constant and [, is the lepton
current. In the usual development we expand
f+(t) or g,(¢) linearly in ¢,

Fo@=£.0)A+x.t/12), gy(t)=gy(0)1 +yyt/17)

and then, after taking account of radiative and
SU(3)-symmetry-breaking corrections, inserting
for £.(0) or g,(0) their SU(3) symmetric values.
Note that only T, is treated in the SU(3) limit,
while the physical masses (m# u) are used for
¥(p) and ¥(p’). The net result is that the Kemmer
matrix element with

gv(o) =1 =gv(0)|su(3)

is not equal to the K-G matrix element with f, (0)
=1=£,(0)|sys); it is equal instead to a K-G matrix
element with an effective form factor £, (0)(m + )/
2Vmy. This last factor is the origin of the dif-
ference in the K-G and Kemmer values for the
Cabibbo angle, which are (after inserting experi-
mental and theoretical corrections and errors)

63 =0.235_+0.019, 6X=0.192,+0.016. (18)

Note that both values of 6, in Eq. (18) are com-
pletely independent of the zero in the scalar form
factor, since f_(¢) and g4(¢) do not contribute to
the K,; matrix elements.

One concluding comment on “equivalence.” To
our knowledge (which is contrary to much belief),
there has never been a field-theoretic proof of the
equivalence of the Kemmer and K-G equations in
the presence of symmetry breaking.® In fact, our
K *-pole model of K,, decays is enough to prove
the “inequivalence.” Consider a world with only
K*s, 1's, K’s, and the lepton current, and where
&x*xkr < 1. Then the K *-pole term will dominate
over all other diagrams, no matter what they are.
As only one case is needed to prove the “inequiva-
lence” of the Kemmer and K-G equations, this

does it.

In summary, we have demonstrated all the things
we said we would and the conclusions in Refs. 1-3
have been shown to be correct as stated. The
Kemmer formulation of K;, decays has been clearly
and explicitly demonstrated to be “inequivalent”
to the Klein-Gordon theory of K,, decays.®

Note Added in Proof: In the following comment
(hereafter called NS-2) Nagel and Snellman refor-
mulate their criticism of our work in light of the
present paper. Although we are pleased that NS-2
retreats somewhat from the more critical stance
of NS-1 (Ref. 5), we still insist that our position
is correct as originally stated, and so will com-
ment on NS-2. (We note in passing that NS-2 does
not dispute several serious criticisms of NS-1
that we have made in the main text, such as those
contained in Ref. 7 and in our discussion of 6,.)

Point by point (rearranged for continuity), our
reply to NS-2 is the following:

(1) The Klein-Gordon (K-G) and Duffin-Kemmer-
Petiau (D-K-P) equations are only equivalent in
the symmetry case. This equivalence, however,
is not as obvious as NS-2 seems to think. If it
were, then the classic and long paper of Harish-
Chandra!® (let alone that of Klein'!) would never
have needed to prove this point.

(2) In the symmetry-breaking case, the algebra
of Harish-Chandra!® (as modified by Fujiwara'?)
does not yield the same result. Using this algebra
we have explicitly shown® that the D-K-P current,
when written in terms of K-G wave functions, is
not the usual K-G current, but rather is

jlx)KP = i@zﬁx%
= —i{(mzl/ztl); ) I::l_;\ (mlx /24’1)]
1

- [;_i(m;/w; )](m; %,)} : (19)

2

8} =0, ¥ieAd,. [The detailed proof of Eq. (19) is in
press elsewhere.®] If it will help, we can restate
this point in the language of nuclear physics: Dif-
ferent basis states (K-G and D-K-P) can imply
different residual interactions.

(3) From Eq. (19) one sees that various mass
operators would be needed in the K-G current to
make it equivalent to the D-K-P current. This is
the reason why the two fields have different scale
dimensions. Recall that masses are considered
as constants in scaling and not as operators. To
obtain the scaling dimensions of the D-K-P field,
all components of i must be consistently treated
together. (See Ref. 6 for a detailed discussion.)
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(4) The above points are related to the fact that
the D-K-P and K-G equations are first-order and
second-order differential equations, respectively.
Because of this, their solutions require the know-
ledge of one or two boundary conditions, respec-
tively. The boundary condition in the D-K-P for-
malism can be given by specifying the wave func-
tion at a specific time. In the K-G formulation
both the wave function and its first derivative
must be specified. In certain formal theories,
such as ordinary quantum electrodynamics, when
the appropriate boundary conditions are specified
the results obtained by use of the D-K-P equation
exactly coincide with those obtained from the K-G
equation.'®* What we have shown® is that this is no
longer necessarily true in an interacting field
theory in which explicit symmetry-breaking effects
are present.

(5) In a phenomenological theory (as distin-
guished from a formal field theory), one does not
attempt to actually solve the equations of motion
for the fields; instead one calculates appropriate
matrix elements in some simplified manner. The
starting point in such a treatment is the covariant
form of the matrix elements, such as in Egs. (1)~
(7) for K,; decays. Note that in Eqs. (1)=(7) only
the wave functions are specified, but not their de-
rivatives. Since this limited information is all
that is needed to specify the D-K-P boundary con-
ditions (but not to specify the K-G boundary con-
ditions), one sees that a phenomenological theory
based on the D-K-P equation does indeed have
greater predictive power than one based on the
K-G equation. To the extent that our results
agree with experiment, we can conclude that the
D-K-P wave functions have indeed been correctly
specified. The objection of NS-2 that we have
chosen “unnatural” form factors in Eqs. (1)=(7) is
answered in the main text. We give explicit calcu-
lational motivation for our form factors, which
seems not to have been understood.

(6) NS-2 states that our K *-pole model results
could very easily be duplicated by a K-G Lagran-
gian. However, if it is so simple, why have they
not written it? Remember, they must obtain the
residues

£ pote) = R
__(m=n\_ m? — |2
_—<m+ﬂ-) ( M*z )
=-0.85. (20)

Such residues do not resemble any of those ob-
tained from the usual K-G theories.!* Thus, it
would indeed be of interest if NS would exhibit the
“simple” K-G Lagrangian that yields the above

|

result.

(7) There is further evidence that NS-2 does not
understand our K *-pole calculation. The KnK*
vertices in both the K-G and D-K-P Feynman dia-
grams are correct as given since they are obtained
from the K-G and D-K-P 4-currents in the usual
way. To call these vertices “ad hoc” not only at-
tacks our work, but also calls the standard K-G
K*-pole model “ad hoc.” In other words, NS-2
is calling everybody’s K *-pole model “ad hoc.”
Surely something must be definite. In any event,
details of the predictions and differences between
the K-G and D-K-P K *-pole models will appear
elsewhere.’® In addition to the results which we
have already quoted [such as in Eq. (20)] we men-
tion one other interesting result, which is

Xo(K * pole)= B _0.046 (21)
o p = wampe - 0046

(8) NS-2 still confuses the zero in f,(¢) and the
question of equivalence. In the main text we have
explicitly shown in calculational detail how K-G
and D-K-P give different results in two cases
(E, 6,) where the zero has nothing at all to do with
the results. NS-2 has in no way faulted these
arguments.

(9) With respect to all the above, we make the
following point, which should be obvious: Since
neither NS nor anyone else has faulted our calcu-
lations (and they have been checked by a number
of people), we can presume that our calculations
are correct. Hence, if the conventional K-G for-
mulation of K;; decays were equivalent to ours (as
NS asserts), then the K~-G formulation would have
obtained our results long ago. Thus, the K-G for-
mulation would have yielded our large negative
value for £, our large negative value for Ao and
our agreement between the determinations of the
Cabibbo angle 6, from K,, decay and 0* - 0* nu-
clear B decay (all of which agree with experiment)
and there would never have been any problem of
disagreement with experiment. But the K-G for-
mulation did not do this. Therefore, how can K-G
and D-K-P be equivalent if they yield different
numerical results? In the end, the simplest an-
swer to NS-1 and NS-2 is res ipsa logquitur (“the
thing speaks for itself”).

(10) We conclude that K-G and D-K~P are in-
deed inequivalent in the symmetry-breaking case.
It remains for experiment to determine which is
the better equation to use to describe mesons. In
addition to our previous results, we are en-
couraged by new work which extends our theory to
other processes where again we obtain better a-
greement with experiment. We shall report on
these results shortly.!®

’
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In answer to Fischbach, Nieto, and Scott, we amplify our argument for the equivalence of
the Klein-Gordon and Kemmer formulations of K ;3 decay.

The preceding paper - hereafter referred to as
FNS - is the latest in a series of articles where
the authors propose and investigate a model for the
theoretical description of K;, decays, based on the
use of spin-0 Kemmer wave functions to describe
the kaon and pion.

There are two aspects on the work given in these
papers:

(a) The authors present a model - including in
the model the prescription that the form factor
&s(t) should be smooth — which is more restricted,

and hence has a higher predictive power, than the
ordinary phenomenological description in terms of
the form factors f,(?).

(b) The authors try to show that this model is a
necessary consequence of the use of Kemmer wave
functions, thus implying that the descriptions in
terms of Kemmer wave functions or Klein-Gordon
(KG) wave functions are inequivalent.

In the authors’ presentation, (b) comes before
and motivates (a).

It is aspect (b) that was criticized by us in Ref.



