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It has been previously shown that a zero-slope limit of the dual pion model with m =0 is
equivalent to the SU(2) ® SU(2)-symmetric nonlinear 0 model. We extend this result by show-
ing that an appropriately defined zero-slope limit of the dual pion model with m  # 0 exists
and corresponds to the nonlinear ¢ model with (3,3)-symmetry breaking.

The purpose of this paper is to demonstrate that
an appropriately defined zero-slope limit of the
dual pion model'™ is equivalent to the nonlinear
o model.® This result has been anticipated by a
number of authors®” and in one case was essen-
tially proved.® In the discussion below we empha -
size some important points that we feel have not
been fully exposed in previous discussions.

In Refs. 3 and 4 the dual pion model was formu-
lated for arbitrary value of the pion mass. On-
mass-shell N-pion amplitudes were obtained in
the tree approximation in a fully factorizable
scheme, which is probably ghost-free only in the
unrealistic case a’m,”= -1, Furthermore, the
amplitudes were shown to possess Adler zeros
in the case m, =0, from which one may infer that
in the zero-slope limit the dual pion amplitudes
are the same as the ones obtained (in tree approx-
imation) from the nonlinear SU(2)® SU(2)-symmet-
ric pion Lagrangian.®

Following Scherk,'? it is natural to inquire if the
dual pion amplitudes tend to a finite limit when
a'’-0 with m, fixed and nonzero, and if so, to find
the algebraic nature of the symmetry -breaking
term in the corresponding Lagrangian. We prove
below that this limit does indeed exist and that the
symmetry -breaking term in the equivalent Lagran-
gian belongs to a (3, 3) representation, as in the
nonlinear ¢ model, for example. We emphasize
that our theorem makes reference only to on-
mass-shell quantities. However, it is a useful
technical convenience in carrying out the proof to
consider off-mass-shell extrapolations. The rea-
son for this is the existence of a theorem, due to
Osborn and Ellis,!' which enables one to recognize
the nonlinear ¢ model from formulas for ampli-
tudes. It states that a set of off-mass-shell N-
pion amplitudes is uniquely those of the nonlinear
SU(2) ® SU(2) 0 model with (3, 3) symmetry break-
ing if the amplitudes satisfy the following condi-
tions. (1) They can be written in Chan-Paton form
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where the sum extends over all permutations P
that are inequivalent under cyclic permutations of
the N external legs. For each permutation, AE,”]
is a cyclically symmetric function depending ex-
plicitly only on the Mandelstam variables

Sy;=(ky+ky, + +k)?

associated with sets of adjacent lines, and indepen-
dent of the continued squared masses k2. The 7,’s
are Pauli matrices describing the charge state of
the external pions. (2) The amplitudes are factor -
izable at each of the pion poles in terms of the
analogously constructed amplitudes of lower order.
Also, they may contain contact terms (terms with -
out poles) that are at most linear in the appropriate
Mandelstam invariants. (3) Each amplitude A
satisfies the Adler condition, i.e., it vanishes
when any one of the pion momenta k; vanishes and
the remaining pions are on the mass shell.

To apply this theorem we first need to define an
off-mass-shell continuation of the dual pion model
amplitudes. It is a very difficult matter to formu-
late such a continuation in a way which is compat-
ible with the factorization and duality properties of
the on-mass-shell amplitudes without introducing
extraneous and physically unallowable singulari-
ties.!? Fortunately, it is permissible to use an
off-shell extrapolation, which we would not propose
seriously in its own right, but which satisfies a
limited set of criteria adequate for application of
the Osborn-Ellis theorem. The requirements are
that the off-mass-shell amplitude corresponding
to a particular cyclic permutation should (a) re-
duce to the correct on-mass-shell amplitude when
all external momenta satisfy #,2=m.,? (b) be cy-
clically symmetric in the N external lines, (c)
factorize at the pion poles into lower-order ex-
pressions of the same type, and (d) satisfy the
Adler condition. If we can find an off-mass-shell
extrapolation satisfying these requirements, then
it will suffice to show (e) that it has a finite limit
when o'~ 0 with m,? fixed and (f) that any contact
terms are at most linear in the Mandelstam in-
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variants.

In connection with (c¢) it should be noted that we
are requiring factorization only at the pion poles,
which are the only poles remaining in this zero-
slope limit. It is implicitly understood that no
other pole should appear at the pion mass. The
relevance of this remark is that in the &, formula-
tion? of the dual pion model there is a spurious de-
coupled spin-one state degenerate with the pion.

If the off -mass-shell extrapolations were to de-
stroy the gauge condition responsible for this de-
coupling, then this state could give rise to new
poles that might survive in the zero-slope limit
and we would be in trouble. This difficulty can be
circumvented by working in the &, formulation in
which the pion “ancestor” never appears as a can-
didate. The price one pays for using &, is that cy-
clic symmetry is less manifest.

An appropriate off-mass-shell continuation is
suggested by the Osborn-Ellis theorem. The pro-
cedure (noted by many previous authors) consists
of expressing the dual N-pion amplitude AL'! en-
tirely in terms of m,? and the variables {s,,} appro-
priate to the permutation P, and using the result-
ing expression to define off-mass-shell extrapola-
tions. All one must do is to replace p;-p; by
Mandelstam invariants according to the rules
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Condition (a) is then clearly satisfied.

To prove condition (b), we note that by cyclic
symmetry of the on-shell amplitude, the off-shell
amplitude is cyclic symmetric up to some additive
function of m,? and the variables {s;;}, which van-
ishes when the pions are on-mass-shell. Since the
dual -model formalism does not depend on the di-
mensionality of space-time and since for a space-
time dimension D =N -1 the 3N(N - 3) variables
{s,;} are independent, it follows that all such func-
tions of {s,,} and m,? must vanish identically. The
same reasoning can be used to show that although
the off-shell amplitudes are in general not expected
to be factorizable, they are factorizable at the pion
poles. The Adler condition may be established for
the continued amplitudes by the same method used
in Ref. 3, 4, and 6. If one supposes that all exter-
nal lines except k,, say, are on the mass shell,
then the amplitude vanishes in the limit &, - 0.
Note that in this limit the variable 2%,* k; appear-
ing in the on-shell amplitude approaches —m ?

Finally, we show inductively that the require-
ments (e) and (f), on the existence and structure
of the zero-slope limit, are satisfied. For the
four -point function,

&% T(a'm,*=s,) +3)(a’(m,” -szs)"'z)

A= 20 T(a'(2m,2 = s, = S,3))

the limit o'/~ 0 clearly exists and has the correct
structure (and satisfies the Adler condition, of
course).

The general N-point amplitude is obtained from
the expression

)—zu’k{ *kj
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with the replacement
20’k k=~ 20k Ry + 6y, J(a'm,E +3),

as described in Refs. 3 and 4. Consider splitting
the integral expression in Eq. (2) into terms with
and without pion poles. In the pion pole terms, the
lower-order amplitudes are, by the inductive hy -
pothesis, linear in a’ and {s,;, m,?} in the zero-
slope limit. The pion propagators in these terms
necessarily are inversely proportional to a’.
Since the number of propagators is one less than
the number of vertices for tree diagrams, the
terms with pion poles have an over-all factor a’,
cancelling the 1/a’ in Eq. (2) and leaving a finite
limit. The terms in the integral without pion poles
must reduce to a polynomial in {a’s,,, @ 'm,*} as

r

a’~- 0 and only terms at most linear in a’ will be
relevant. Furthermore, the full amplitude is
known to be finite at the Adler point and hence the
possible constant term [which would give a singu-
lar limit because of the 1/a’ in Eq. (2)] must van-
ish.® Thus the contact terms are also linear in
{a’s;;} and a’m,? as @’~0. AL is thus finite and
has the correct structure to satisfy condition (f).
This completes the proof of the applicability of
the Osborn-Ellis theorem and establishes the
equivalence of the zero-slope limit and the nonlin-
ear o model.

The explicit calculation of the limit of expression
(2) is difficult in general. As a further check on
the validity of the indirect logic of this paper we
have calculated directly that
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(Indices in the sum are to be understood as modulo
6.) These results are in agreement with what one
finds for on-mass-shell amplitudes from the non-
linear ¢ model.

We conclude with a somewhat philosophical com -
ment about the possible relevance of considera-
tions of the type presented in this paper. Progress
in the development of dual resonance models has
been so great as to justify some hope of ultimately
constructing a Born term for a realistic theory of

hadrons. However, we are beginning to get the im-
pression that further progress may require a
greater understanding of the field-theoretical
foundations of dual models. One indication for

this point of view is the tendency for ghost-free
and renormalizable dual models to contain a mass-
less vector meson. An intriguing possibility is
that this restriction may ultimately be overcome
by an analog of the Higgs-Kibble mechanism.!?
This appears to require a field-theoretical formu -
lation.
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