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Solutions are presented for subtracted dispersion relations, written for the s- and p-wave
inverse mn scattering amplitudes with poles inserted into both s waves. These solutions pre-
dict the existence of a broad I=0 s-wave resonance (0) accompanied by a small, negative
I =2 phase shift, in the absence of any s-wave experimental input. While P-wave subtraction
parameters are adjusted to fit a 755-MeV p resonance with width 120 MeV, the s-wave pa-
rameters are determined by crossing symmetry through derivative conditions to third order.
The coupling constant, A., is a free parameter, and resonant solutions are obtained for -0.033
» A, » 0.040 with a masses ranging from 550 to 900 MeV. Both s-wave amplitudes exhibit
zeros between the cuts for -0.01 & X &0.02, and for A. = -0.008 the zeros coincide with those
predicted by the Adler condition applied on the mass shell. Solutions with A. S -0.01 satisfy
crossing conditions for n x amplitudes. The failure of the other solutions to satisfy them
may be related to approximations made in applying crossing symmetry. A method of improv-
ing the solutions is suggested.

I. INTRODUCTION

In this paper calculations of subtracted disper-
sion relations written for the s- and p-wave in-
verse g3 scattering amplitudes are presented.
Elastic unitarity is used in the evaluation of right-
cut integrals, and approximate crossing symmetry
in the evaluation of left-cut integrals. s-wave pa-
rameters are evaluated using derivative conditions
from approximate crossing symmetry, and the two
p-wave subtraction constants are fixed by requir-
ing a P-wave resonance of mass 755 MeV and width
120 MeV, the p. The Chew-Mandelstam coupling
constant, A., is treated as a free parameter, and
orders the solutions.

Pole terms are inserted into the s-wave inverse
amplitudes, and allow the possibility of zeros in
both s -wave partial-wave amplitudes. While such
zeros have been predicted from PCAC (partially
conserved axial-vector current) considerations, '
no conditions from current algebra are imposed in
these calculations. For solutions obtained, the
positions of the zeros of the I =0 and 2 s-wave am-
plitudes, plotted one against the other, lie on a
straight line passing through the point predicted by
PCAC.

Solutions are presented for the range. -0.03 & A.

& 0.10. Within the range -0.03 & A. & 0.04 these solu-
tions exhibit an I =0 s-wave resonance, the cr, with
mass increasing from 550 MeV for X=-0.033 to
900 MeV for A. =0.04. The expected weakening of
the interaction with increasing X is seen in the be-
havior of the resonance mass, and in a transition
solution (5o0small and negative below VOO MeV,

small and positive above) for X = 0.100 linking the
resonant solutions to repulsive s-wave dominant
solutions previously reported for large positive
X.' 4 The I =0 s-wave phase shift is constrained
from passing through 180' above the resonance
energy since the inverse amplitude contains only
one pole term.

A series of calculations leading to the results
noted above is presented here. With A. fixed a
priori, five conditions are necessary to evaluate
the six s-wave parameters introduced by subtrac-
tions and pole terms. To second derivatives in the
s waves, approximate crossing symmetry yields
four conditions, and a single third-derivative con-
dition has been previously derived by the author'
(Ref. 5 will henceforth be referred to as I). Since
the third-derivative condition is difficult to apply
to the inverse amplitudes, initially it was not used
to evaluate parameters in the calculations reported
here. Instead, first, a o resonance of mass 745
MeV was required. In the solutions thus obtained,
the s-wave I =2 phase shift at the mass of the p
resonance varied (as a function of X) over the range
-43' & 5~ & -13'. The third-derivative equation was
satisfied by a solution with 5', = -19'.

Next, the a condition was removed and the value
of i5', at the p mass was fixed. Solutions were ob-
tained for 5~~values of -20', -15', and -10'. In
those solutions exhibiting an I =0 s-wave reso-
nance, the mass of the o was found to depend on
both the value of X and the value at which 5,'was
fixed. However, for each choice of 5'„ the third-
derivative condition was satisfied by only one solu-
tion. Examination of the three solutions satisfying

666



s -WA VE I = 0 it m RESONANCE

this condition revealed the already described cor-
relation of resonance mass with A. . This demon-
stration that the imposition of the third-derivative
crossing condition allowed the selection of solu-
tions with I =0 s waves having a sensible depen-
dence on ~ (including one in excellent agreement
with experiment}, provided sufficient motivation
to impose it in place of any condition from experi-
ment. When this was done the iterations con-
verged, yielding the resonant solutions varying
appropriately with X which have already been de-
scribed.

Using approximate crossing symmetry, the left-
hand-cut discontinuity is expressed in terms of the
right-hand-cut discontinuity in the crossed chan-
nels:

r~V 1 v +1
ImA, (v}= — dv'P, 1+2

V 4p v

2l'+1 P, , 1+2, ImA. , v',
I' lr

where g is the usual crossing matrix

II. FORMALISM

In terms of the variable v=s/4 —1, where s is
the center-of-mass energy squared (natural units,
m, =1), the unitarity condition for elastic scatter-
ing is

A', (v) =[(v+ I)/v]"'(cotter, —r) ',
where v&0 and the phase shifts, 6'„are real.
This relation is assumed valid within the energy
range of these calculations. The once-subtracted
dispersion relations for the s-wave inverse ampli-
tudes Er(v) =A(v) ', with pole terms inserted, are

Er =.,2(v) = rrr+ Pr/(I —rr v)+ f(v) + Lr(v) —&8r(v)

(2)

and the twice-subtracted p-wave dispersion rela-
tion, written for E,(v) = vA', (v) ' is

X= 3

and the partial-wave expansion is truncated after
p waves. On the right-hand cut, ImA, (v) may be
written using the unitarity condition as soon as
Re[A', (v) '] is known. Hence iteration proceeds by
neglecting Lr(v) and evaluating parameters, then
computing Lr(v), recomputing parameters, etc
until all parameters change by less than 1% in the
last iterative loop.

The eight parameters introduced by pole terms
and subtractions are evaluated by a combination of
conditions from crossing symmetry and experi-
ment. The p-wave subtraction constants are fixed
by the mass and width of the p resonance by re-
quiring

E(v) =rr, +P, v+ vf(v)+L, (v) —i v8, (v) .

[E,(v) lacks the threshold pole of A,'(v) '.] The in-
tegral over the right-hand-cut discontinuity (given
by unitarity) is

and

v
11

3 ll2
cot 6y 0v+1

Vp

(10)
v t.- [ v'/(v'+ I)]ii~

f(v) = ——P I, , dv'w, v'(v' —v)

V
1/2

ln[( I v+ 1 I
)'"+( I vI )"']

iT v+1

for v&0 or v& -1

with v = 6.25 and y = 1.15, corresponding to a reso-
nance of mass 755 MeV and width 120 MeV. Thus,
at the p resonance the p wave has the same slope
as if it were given by the Breit-Wigner. form

tan ' for -1& v&0.

The integral over the left-hand-cut discontinuity is

( )
v"' ' ImArg(v')dv'

w „v'(v' —v)IAg(v')Iw '

and the imaginary parts of the inverse amplitudes
are

v '" ImA'(v)
Sr(v) = 8(v) + r w

8(-v —1) .v+1

Crossing symmetry, applied at the symmetry
point of the Mandelstam triangle, provides deriva-
tive conditions which may be used to evaluate pa-
rameters. Although an infinite number of condi-
tions are available, higher partial waves become
more important in higher -derivative conditions.
(This is because the argument of the Legendre
polynomials used in the partial-wave expansion
contains the variable v; the point is more com-
pletely discussed in I.) Under the a.ssumption that
d and higher partial waves are small at the sym-
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metry point, they may be neglected in the zeroth-
and first-derivative equations with little effect.
The resulting approximate crossing conditions, to
be evaluated at the symmetry point v = ——'„are

2A0 = 5AR,

dAPp

dv

(12)

(13)

dAp g

dv
(14)

To derive a second-derivative condition of corre-
sponding accuracy, Chew and Mandelstam' reduced
the d-wave effects by approximating each d wave
by a one-parameter fit at threshold. They then
combined the three independent second-derivative
equations to eliminate the d waves, obtaining the
following approximate crossing condition for ap-
plication at the symmetry point:

X = -(5r,)-'
= -(2Z,)-',

(17)

(16)

' = -6(25~2m )-'
dv

third-derivative condition failed, in general, to
satisfy it. Since the second- and third-derivative
conditions enable the determination of parameters
necessary for calculation they are useful within
this formalism.

Although it may not be immediately obvious, the
application of the derivative equations to determine
parameters is straightforward. First the condi-
tions are expressed in terms of the inverse func-
tions FI. With A. specified a priori, the zeroth-
and first-order equations provide four conditions,
each linear in only one of the s-wave functions F, ,
(recall that the p wave is completely known from
the p mass and width):

d p d Ap 2~, 8dAg
dv 2 dv ' dv

(15) ' = 3(4~2m, }-'
dv

(20)

Proceeding in this spirit, in I a single approxi-
mate third-derivative equation was derived by ap-
proximating each d wave by a two-parameter
threshold fit, the f wave by a one-parameter
threshold fit, and removing the five parameters
by combining equations. This approximate cross-
ing condition, to be evaluated at the symmetry
point, is

1 d A() 5 d A() 675 ~ 225 dAy
3 dv 2 dv 8 ' 4 dv

'75 d Ay
4 dv

(16)

Further details and discussion are to be found in I.
Due to the attention devoted to removing the effects
of higher partial waves from higher-derivative
conditions, it is assumed that the errors incurred
in applying Eqs. (15) and (16) are no greater than
those in Eqs. (12) through (14), so that their detailed
application is indeed meaningful. An a posteriori
discussion of errors is to be found in Sec. IV of
this paper.

Before discussing the application of these condi-
tions it is perhaps in order to comment upon their
usefulness. In Ref. 7, Tryon comments that when
d waves are kept, the solutions of partial-wave
dispersion relations satisfy second- and all higher-
derivative conditions identically; thus they are not
useful to him in determining parameters. Within
the formalism used here, unless the pole-term pa-
rameters are chosen to satisfy a given condition
there is clearly no reason to expect it to be satis-
fied. Thus, for instance, the solutions here re-
ported which were obtained without enforcing the

While differentiation of the numerically evaluated
left-cut integrals is difficult after integration, Eq.
(5) may be differentiated any number of times prior
to the integration. Since the resulting integrals
converge even more rapidly, no accuracy is lost
by this procedure.

The second- and third-derivative conditions are
slightly more complicated to apply because they
involve both s waves. Nevertheless, when a con-
dition from experiment is applied to either one of
the s waves, that condition plus two of the condi-
tions [Eqs. (1'f)-(20)] allow the evaluation of the
three parameters of that partial wave via linear
equations. With one s wave known, the second-
derivative condition [incorporating Eqs. (1V)-(20)],

=-(5AF, ) ~ 12 —,(21)5 dv & dv 10k,

may be linearly combined with the other two equa-
tions above, specifying all parameters unambigu-
ously. The third-derivative equation [expressed
incorporating Eqs. (1V)-(20)],

dFp 2 dF2 18 dFp dF2 VFy 9
dv' 5 dv' 5AF, dv dv' 12 5A.

(22)

may then be evaluated straightforwardly.
When Eq. (22} is used in solving for parameters,

a quadratic equation results for the ratio yl/Pz for
one of the s waves. Consequently, two sets of pa-
rameters are produced. In general, initially
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FIG. 1. s-wave phase shifts, labeled by A, , for typi-
cal solutions obtained when a cr of 745 MeV was required
(method A) .

choosing the set with ep&0, then minimizing the
change in yp resulted in solutions, while the op-
posite initial choice led to imaginary roots. How-
ever, for A. & -0.008 the initial roots mere imagi-
nary. This difficulty was overcome by assuming
initial values for the Li(v) and their derivatives at
the symmetry point taken from solutions obtained
for the same A, values when the resonance was re-
quired. Even this technique failed for A. & -0.033,
when after a few iterations the roots became
imaginary.

III. RESULTS

Calculations mere carried out for three cases.
In the first 5p was required to resonate at 745
MeV; in the second, 5~ was fixed within its ex-
perimentally determined range near the p mass;
in the third case, the third-derivative condition
was imposed. In all cases A. was fixed a Priori as
a free parameter, and solutions were obtained over
as wide a range of A as possible. Crossing condi-
tions through the second derivative were enforced
in all cases.

—3-

FIG. 2. s-wave scattering lengths, with A, values in-
dicated, obtained when a 0 of 745 MeV was required
(method A) .
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as A. decreases to -0 080 5p increases more
rapidly near threshold, than occurred in their lim-
iting cases. Although they published no turnover 5'p

solutions, it may be assumed that they obtained
them, since they obtained positive I =2 scattering
lengths for A. & -0.03. A notable difference, how-
ever, is seen when the 5', curves of Fig. 1 are
compared with those of Morgan and Shaw near the
o resonance. Their solutions, obtained by treating
the width of the 0 as an input parameter, exhibit a
wide range of widths, while the formalism used
here predicts only very broad, asymmetric reso-
nances. This result is in agreement with their
conclusion that solutions with broad a's are prefer-
able.

The third-derivative condition, Eq. {16), is plot-
ted in Fig. 3. In order to display the results for a
wide range of A., the vertical scale has been com-

A. Resonance Required

The s-wave phase shifts of typical solutions ob-
tained when' a 0 of 745 MeV mas required are
shown in Fig. 1, and the related scattering lengths
in Fig. 2. For -0.05& A. &0.05, the scattering
lengths agree within 5% with the "universal curve"
of Morgan and Shaw' for a o of 765 MeV. Thus,
the general agreement found between their phase
shifts and those of Fig. 1 is expected. Since the
solutions presented here cover a wider range of A.,
it is to be expected that as A. increases to 0.100 the
sign change of 5', occurs at higher energy, and that

THiRD
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FIG. 3. Right- and left-hand sides of Eq. (16) as a
f'unction of X for solutions obtained when a 0 of 745 MeV
was required (method A). The solid curve is the left-
hand (s-wave) side and the dashed curve is the right-
hand (p-wave) side.
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FIG. 4. Typical s-wave phase shifts for positive A, ,
obtained when 60=-20' at 745 MeV was required (meth-
od B). The solid curves show 50 and the dashed curves
show 60. Since the 60 curves interpolate smoothly be-
tween bounding solutions, some have been left out for
clarity. All phase shifts are modulo 71.

pressed, minimizing the visual impact of the inter-
section of these curves. Nevertheless, the curves
clearly intersect, predicting "best" solutions with
A, values of 0.03 and 0.10. In Fig. 1, for a solution
wj.th A. =0.03, the value of 5p near the p mass would
be about -19', in acceptable agreement with recent
estimates. (The other solution is discounted since
its large negative ep and its 5, turnover above 500
MeV are contrary to experimental indications. )

Having demonstrated that the inverse amplitude
formalism used here leads to sensible solutions
when the o is put in, it is hard to avoid asking
whether or not other input can lead to solutions
predicting a v. A logical way to find out is to re-

FIG. 6. Typical s-wave phase shifts, labeled by A,,
obtained when 60=-10 at 745 MeV was required (meth-
od B). Solid and dashed curves are as in Fig. 4.

place the condition fixing 5p' with one fixing 5'p. The
next section documents the results of such calcu-
lations.

Q. $p Fixed near the p
2

Figures 4-7 show the s-wave phase shifts of
typical solutions obtained when' the value of 5', at
745 MeV was fixed in its experimentally deter-
mined range. The reproducibility of results within
this formalism may be seen as follows: From Fig.
1, a o near the p mass is predicted for A. =0.04
when 5', =-20; it is seen in Fig. 4 for A. =0.038. A
similar o may be expected for A. =O when 5', = -15',
and is seen in Fig. 5 for A. = -0.002. The incompat-
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FIG. 5. Typical s-wave phase shifts, labeled by A.,
obtained when 60—- -15' at 745 MeV was required (method
B). Solid and dashed curves are as in Fig. 4.

FIG. 7. Typical s-wave phase shifts for negative A,

obtained when 50=-20' at 745 MeV was required (meth-
od B). Solid and dashed curves are as in Fig. 4.
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ibility, seen in Fig. 1, of a c near the p mass and

5,'= -10 is evident in the lack of such a solution in
Fig. 6. Finally, for 5~=-20' a o near the p mass
is predicted for A. = -0.06 from Fig. 1. Although
such a result was not obtained, a solution for A.

=-0.057, resonant at 1 BeV, is seen in Fig. 7.
Thus the formalism is satisfactorily self-consis-
tent.

The most obvious feature of Figs. 4-6, the de-
crease of the mass and width of the v with increas-
ing A., turns out to be a misleading consequence of
the constraint of O', . The decrease would seem to
imply an attractive interaction, increasing in
strength with A.. However, the solution for A.

=0.057 of Fig. 5 shows that instead of a bound state
being formed for large X (i.e., the resonance ap-
proaching, then going below threshold with in-
creasing X) the interaction becomes repulsive.
(Since intermediate solutions of this type most of-
ten failed to converge upon iteration, this conclu-
sion was first reached by noting that the scattering
lengths of Fig. 8 did not exhibit the discontinuity
which would have corresponded to the establish-
ment of a bound state. ) The pertinent feature of
these solutions is instead, the advance with in-
creasing X, of the pole of Foo (zero of 6oo} toward
v=~ and its reappearance at large negative values
of v.

The true increase of attraction occurs with nega-
tive A., culminating in the formation of the bound
state seen in Fig. 7 for A, = -0.67. However, only
extremely heavy, broad cr's are produced here,
with the lightest occurring at 1 BeV for A. = -0.057.
The close similarity of the solutions with A. & -0.13
to the negative A. solutions obtained in I is probably
due to the constraint of the I =2 s wave imposed in

I by the insertion of a pole term into only the I =0
s wave.

In Fig. 8 the s-wave scattering lengths are plot-
ted one against the other. The curves are from
Morgan and Shaw, with the upper, middle, and
lower curves representing cr's of 900, 765, and
600 MeV, respectively. The curve of Fig. 2,
drawn for a 0 of 745 MeV, would lie just slightly
below the middle curve, as is expected. The pro-
gression of the points across the curves as the o

is established and moves toward threshold is in
accordance with the ordering of the curves.

Order was introduced into this confusing welter
of solutions by the third-derivative condition.
Equation (16}applied to the various solutions, is
shown in Fig. 9. It clearly selects a single solution
from each set computed for a given 5', value. For
5p values of —10', —15', and -20' the preferred
solutions have X values of -0.017, 0.007, and 0.038,
and exhibit a resonances with masses of 600, 660,
and 750 MeV. Thus, with increasing X the o. moves
away from threshold, indicating a weakening at-
traction. The connection of these selected solutions
with the repulsive solutions found in I for large
positive A. is seen by the onset of repulsion indi-
cated by the emergence of the pole of Fo(v) (zero of

THIRD
DERIVATIVE
EQUATION

A s -WAVES

~ p-WAVES

RESONANCE MASS
FROM INTERSECTION-

7IO
—.05—

660
600 MeV

—.IO

—.I5

FIG. 8. s-wave scattering lengths of the solutions of
Figs. 4-7 (method B). Values of 60 for solutions indi-
cated by circles, triangles and squares are —20, -15,
and -10', respectively. The curves are from Ref. 2, a
required 0 of 900, 765, and 600 MeV yielding the upper,
middle, and lower curves, respectively.

FIG. 9. Right- and left-hand sides of Eq. (16) as a
function of A, for solutions obtained when 620 was fixed at
745 MeV (method B).



BRYAN F. GORE

5OO) above threshold in the solution for 8', = -20 with

x = 0.088 (Fig. 4).
Thus, while restricting 5,' allowed the prediction

of 0 resonances of various masses, a clear inter-
pretation of the results required the additional im-
position of the third-derivative condition from ap-
proximate crossing symmetry. With its usefulness
thus proven, the next logical step was to see if it
could be used in the determination of parameters
during iteration. The results of such calculations
are presented in the next section.

QO

-4 —3 —.2 -I
I

.05--

—.033
.3g Q .5

C. Third-Derivative Condition Imposed

The s-wave phase shifts for typical solutions ob-
tained when all s-wave parameters were fixed by
conditions from crossing symmetry are shown in
Fig. 10. The attraction causing the resonant 6,"s
clearly weakens with increasing ), and the solu-
tion with A. =0.10 indicates the transition to the re-
pulsive solutions previously obtained for A. & 0.1.
The scattering lengths for these solutions agree
closely with those computed when the resonance
was required, and are plotted in Fig. 11. Imagi-
nary roots obtained in solving for parameters pre-
vented solutions with X& -0.033 or X&0.1. Thus
imposition of the third-derivative condition frees
the formalism from the need of s-wave input from
experiment, and leads to solutions having a sensi-
ble dependence on A..

The locations of the zeros of the s-wave ampli-
tudes are plotted one against the other in Fig. 12.
For the resonant solutions, they lie on a straight
line passing through the point predicted from
PCAC considerations, which coincides with the
solution with A. = -0.008. Since the resonant solu-

—25--

FIG. 11. The s-wave scattering lengths of the solu-
tions of Fig. 10 (method C) are indicated by crosses,
and labeled by A, values. Scattering lengths predicted
by a linear extrapolation from the symmetry point of the
s-wave amplitudes of these solutions are indicated by
the vertical marks crossing the appropriately labeled
dashed lines. These latter aspects of the figure are ex-
plained in the discussion after Eq. (30).

tions obtained for the other cases exhibited zeros
lying on this same line, it was felt that this must
be due to some invariant feature of the formula-
tion. The most obvious possibility was a combina-
tion of the lowest-order crossing conditions.
Parametrizing the s waves by

(23)

and applying only Eqs. (12) to (14) yielded the pre-
diction
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FIG. 10. Typical s-wave phase shifts, labeled by A, ,
obtained when Eq. (16) was imposed (method C).

FIG. 12. Zeros of the s-wave amplitudes of the solu-
tions of Fig. 10 (method C) labeled by A. values. Wein-
berg s prediction is labeled PCAC and coincides with the
solution for A=-0.008. The straight line is seen to pass
through the points.
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v2 = -0.8vo —1.2

for comparison with the line of Fig. 12,

v =0.740v -1.1'7.

(24)

(25)

Since the calculated amplitudes are not linear, this
is quite satisfactory agreement. The difference in

slopes is mainly due to a systematic decrease,
with increasing X, of the second derivative of A',

at the symmetry point.
In achieving the above prediction, it was seen

that, in addition, the scattering lengths would be
related by

2ao —5am = 18/F~(sp) (26)

(still assuming linear s waves). The Breit-Wigner
(B-W) p used to fix the P wave in Eqs. (9) and (10)
corresponds to F,'(sp) = 21.9, so the scattering
lengths would lie on the line

a, = 0.4ao —0.113 . (27)

Now in the actual calculations, the p wave differs
from a B-W resonance due to the cut integrals.
Examination of the solutions shows that F,'(sP) in-
creases with A, , and agrees with the B-W value for
A. =O. For each solution it is straightforward to
predict a line similar to Eq. (27) and (using the
value of X also) the point on the line expected if the
s-wave amplitudes were linear. These predictions
are shown in Fig. 11. From the surprising accu-
racy of these crude predictions it is clear that the
scattering length curve is determined primarily
by the lowest-order crossing conditions and the p
wave at the symmetry point.

The asymmetry of the 5', curves makes it diffi-
cult to assign widths to the o's indicated by the
various curves. A common approximation is to
quote the width of a Breit-Wigner resonance, the
real part of whose inverse amplitude at the reso-
nance position has the same slope. For the solu-
tions with A. = -0.033, 0.007, and 0.040, above the
resonance the square of such an amplitude falls to
half of its maximum value at 710, 1050, and 2350
MeV. However, the corresponding point below the
resonance lies below threshold for all solutions
except that for A. = -0.033, for which it lies at 310
MeV.

Resonance width is also often related to the po-
sition of an unphysical-sheet pole of the scattering
amplitude. When the variable v of Eq. (2) is al-
lowed to become complex, a zero of Ez(v) indicates
a pole of A, . The sheet structure of A, is such
that continuation above the real axis is onto the
nearby physical sheet, while continuation below the
real axis is onto the unphysical sheet. In search-
ing for complex zeros of Fz(v), various fits to the
functions were made on the real axis to facilitate

continuation. For X = 0.007 a zero corresponding
to a pole of A', was found variously from v

=1.6-1.6i to v=2.4-3.5i. No attempt was made
to iterate or refine the pole position because it is
clearly far from the physical sheet and narrow-
resonance formulas are no longer applicable. It is
worth noting, however, that neither A,'nor A,' were
found to have poles on the nearby physical sheet
by this procedure.

An indication of self-consistency is provided by
comparing A, for v&0 as calculated from the
crossing integral of Eq. (7) and from ImFz Th.ese
quantities are plotted in Fig. 13 for the solution
with A. = -0.008 which is typical of solutions in the
range -0.01&X&0.025. The agreement is seen to
be excellent out to v = -6.5; beyond this point the
curves diverge toward the different asymptotic
behaviors discussed in Ref. 3. Consequently, for
these solutions an upper limit of validity in the
physical region may be inferred at roughly the en-
ergy of the p resonance. Examination of Fig. 12
shows that for X& -0.01 the pole of Fo has moved
onto the left cut and for A. &0.025 the pole of F, has
done likewise. In the vicinity of such poles, values
of ImA, calculated from ImFI become very small
in contrast to values calculated from the crossing
integral which remain similar to the solid curve of
Fig. 13. Although the discrepancy is found only in
the immediate vicinity of the poles, the lack of
self-consistency on the nearby left cut makes the
validity of these solutions questionable. Further

FIG. 13. Imaginary part of the s-wave amplitudes for
v& 0 for the solution with A, = —0.008. The solid curves
are from crossing and the dashed curves are from the
inverse amplitudes.
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discussion will therefore be limited to solutions
not affected by this problem.

IV. DISCUSSION

It is seen that all solutions having zeros of both
s-wave amplitudes between the cuts (-0.01(A
(0.025) exhibit broadly resonant I=0 s waves.
Since ReF, falls from +~ between the cuts through
zero at the resonance position, a more rapid in-
crease of 5, above the resonance mass is clearly
possible within the present formalism. However,
a further rise through 180' as used by Bizzari' in
fitting experimental data is precluded by the pres-
ent formalism (an additional pole term would be
required in F, to allow 5, to reach 180' for finite
v). While the present calculations therefore yield
no information on the existence of such structure
in F, above the p mass, it is noted that the inclu-
sion of such effects would have little effect on re-
sults at lower energies. "

Tryon" has raised the possibility that the Ao~(v}

contain infinitely many complex zeros on the physi-
cal sheet, with an accumulation point at infinity,
which would cause poles of the FI in addition to
those below threshold. While the constant contri-
butions of such poles are automatically absorbed
into subtraction constants, higher-order terms are
not. From the nearest poles, Tryon has estimated
a linear contribution to F,(v) which increases to
0.22', at 750 MeV. Since the formalism used here
is based upon the assumption that such poles either
do not exist or can be neglected, it provides no in-
formation regarding this possibility. The reader
is cautioned, however, against using this estimate
to infer changes in the 5,' values here presented.
The contribution of the subthreshold pole term to
Fo(v) at V50 MeV ranges from three to six times
Tryon's estimate for solutions with -0.01(A.

(0.025. Since the evaluation of the pole-term pa-
rameters would clearly be affected by any attempt
to incorporate a linear term into F,(v), there is no
straightforward way to predict the effect of such
an attempt on 50. No further discussion of this

n(A,') =-(A,'--,'A,'). (28}

The change for each of the solutions of Fig. 10 is
listed in Table I, and in no case exceeds 2%.

For each of the solutions of Fig. 10 the f-wave
amplitude is less than +20 of the p-wave amplitude
(at the symmetry point). Although it does not af-
fect Eq. (28), it does affect the derivative condi-
tions for the s waves, which also involve the slopes
of the g waves. For each isospin state, the slope
of the d-wave amplitude ranges from 2~/ to 1% of

point will be attempted here.
Our solutions for Ao~(v) contain no ghost poles on

the nearby physical sheet, since our Fi(v) contain
no complex zeros in this region, as has already
been noted.

The determination of parameters through deriva-
tive conditions from approximate crossing sym-
metry introduces errors caused by the truncation
of partial-wave series in the derivation of Eqs.
(12)-(16). While waves higher than P were neglect-
ed in writing Eqs. (12)-(14), the effects of higher
waves upon the second- and third-derivative con-
ditions were minimized by including parametrized
threshold fits which were then removed by com-
bining equations. It is possible to show a posteri-
ori that the d and f waves are small, even with re-
spect to the small s waves associated with small
values of [A. [ [recall A', (sp) =-5X]. The equations
which were combined to remove the effects of
those waves in deriving Eqs. (15) and (16) have
been used to calculate their values at the symme-
try point from the s- and P-wave solutions pre-
sented in Sec. IG C." Even though the s-wave am-
plitudes vanish with A., for each isospin state the
magnitude of the d-wave amplitude is less than 4%
of the magnitude of the s-wave amplitude for all of
the solutions of Fig. 10, and this decreases to 1%
for solutions with larger values of [X[. More im-
portant, however, is how this affects the value of
A', as calculated from X = --', A', (evaluation at the
symmetry point is impl. ied throughout this discus-
sion). When d and f waves are included in Eq. (12)
the value of A,,'is changed by

TABLE I. Symmetry-point values of s-wave amplitudes and their derivatives for the solutions of Fig. 10 (method C).
Also, the changes in these quantities computed a posteriori due to inclusion of d- and f-wave contributions (A& is re-
lated to A, , and hence does not change).

A', A dp
dA20

dv
dA2fi

—0.033
-0.020
-0.008
0.007
0.020
0.040

0.167
0.100
0.040

-0.033
-0.100
-0.200

0.0667
0.0400
0.0160

-0.0133
-0.0400
-0.0800

0.0003
0.0001
0.0001

-0.0002
-0.0008
-0.0006

0.200
0.196
0.191
0.184
0.177
0.169

—0.015
-0.013
-0.011
-0.010
-0.008
-0.006

-0.1000
—0.0978
-0.0956
-0.0922
-0.0887
-0.0843

-0.0036
-0.0036
-0.0036
-0.0023
-0.0003
-0.0025
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the slope of the s-wave amplitude (at the symmetry
point) for the solutions of Fig. 10. When d and f
waves are included in Eqs. (13) and (14) the sym-
metry-point slopes of the s waves are changed by

dAO 63, 5 dA2
dv 2 ' 2 dv

(29)

and

dAO 63, 5 dA. 2

dv 4 2 dv
(30)

A,'(v) =cv', (31)

one may ask how the satisfaction of Eq. (16) would
be affected if the f wave were given by

A3(v)' =av'+bv' (32)

with the same magnitude at the symmetry point
and a/b=3. When Eq. (16) is rederived keeping f
waves in general, and then the form of Eq. (32) is
substituted in with parameters evaluated in terms
of the calculated value of A.,' at the symmetry
point, the result is [we denote the left-hand and
right-hand sides of Eq. (16) by L and R, respec-
tively]

L=R+6,
where

4 3'

(33)

(34)

The results calculated from the solutions of Fig.
10 are presented in Table II where the p-wave side
of Eq. (16) is seen to be shifted by about 10%%uc. If
a/b = -3 the 6 has the opposite sign and is about
half as large.

While it should be possible to remove the errors
in the magnitudes and slopes of the s waves by in-
corporating d-wave effects into Eqs. (12)-(14) in
an iterative manner, refinement of the second-
and third-derivative conditions will require better

[The large factor multiplying the f wave con-tribu-
tions in these equations is misleading -note the p-
wave multiplier in Eqs. (13) and (14).] These
changes are also listed in Table I for the solutions
of Fig. 10. The contributions to Eq. (30) tend to
cancel, yielding a maximum change of 2% for the
I =2 s-wave slope, while the contributions to Eq.
(29) tend to add. The percent change of the I =0
s-wave slope decreases from 7+20 for the solu-
tions with X = -0.033 to 3 ~/~ for the solution with
x =0.040.

Although higher partial waves have been removed
in the derivations of Eqs. (15) and (16) the restric-
ted nature of the parametrization may also intro-
duce errors. For instance, while in deriving Eq.
(16) the f wave is written as

TABLE II. Changes of the right-hand (p -wave) side
of Eq. (16) when the f-wave parametrization is changed;
(a/b =3) as discussed in the text.

Eq. (16) 10 A3

0.040
0.020
0.007

-0.008
-0.020
-0.033

0.008
-0.025
—0.061
-0.110
-0.147
-0.193

0.05
-0.11
—0.34
—0.59
-0.86
-1.1

0.0008
-0.0019
—0.0057
-0.0100
-0.0145
-0.0186

10
8
9
9

10
10

knowledge of the d and f waves, perhaps through

iterated dispersion relations utilizing present s-
and p-wave solutions in the calculation of left-cut
integrals. The success of the present formalism
in achieving sensible solutions makes it desirable
to pursue such calculations. Consequently the pos-
sible effects of f -wave behavior on solutions
selected by the third-derivative condition are now

discussed. As seen in Eqs. (33) and (34) the effect
of unanticipated structure in the f wave is to in-
troduce a correction to the right-hand (p-wave)
side of Eq. (16) which is proportional to the sym-
metry-point value of the f wave -amplitude. In-
spection of Table II yields the fact that the correc-
tion is essentially a constant percentage of the p-
wave side of Eq. (16). The effect of including such
a correction in the formalism may be seen by
shifting the p-wave curves of Fig. 9 appropriately,
then identifying the solutions of Figs. 4, 5, and 6
which correspond to the A. values for which the
curves of Fig. 9 intersect. Roughly, a 10%%u& lower-
ing of the P-wave curves of Fig. 9 (corresponding
to the ratio a/b = 3) results in a 10%%u, decrease in

the mass of the predicted o resonance for
~

X ~&0.02.
A 30%%uo lowering (a/b =1.4) causes 20%%u, decrease in
0 masses. A 10%%uo raising of the p-wave curves
(a/b = -1.7) results in a 10% increase in the o

masses for I X
~
& 0.02.

From the uncertainties documented above it is
clear that an accurate application of derivative
crossing conditions requires considerable care.
This, of course, accounts for the popularity of the
inequalities of Martin" which are less sensitive to
truncation of the partial-wave series. It is there-
fore of some interest to compare the solutions pre-
sented here with the results of independent calcu-
lations, also based on inverse amplitude disper-
sion relations, which use Martin's inequalities to
evaluate parameters. " In those calculations the s
waves were represented by functions similar to the
E,(v) of this paper. The six s-wave parameters
were fixed by matching the Ez(v) ' below threshold
to solutions for A, (v) obtained from quadratic
polynomial approximations to the amplitudes. The
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assumption that the Adler condition holds on the
mass shell caused zeros of the s-wave amplitudes
to coincide in all cases with those of the solution
for A, = -0.008 presented here. The solutions of
Ref. 15 are ordered by a free parameter X; con-
straining X to positive values caused the poly-
nomial amplitudes to satisfy eight conditions
placed on the g g scattering amplitudes. Solutions
with 0.7 & X~ 0.5 were preferred on the basis of
agreement with experiment; the solution with X
=0.7 is in good agreement with the solution here
presented for A. = -0.008. Since the s waves of both
solutions are similarly parametrized and have
subthreshold zeros at coincident points one might
expect that the crossing conditions used in Ref. 15
were satisfied by the A. = -0.008 solution. Qf the
eight conditions, "only the sixth and seventh were
unsatisfied, by 20%%uo and 10%%uo, respectively. All
conditions were satisfied by the solution with A.

= -0.020, while the solution with X=0.007 was less
satisfactory. One may speculate that a more care-
ful treatment of higher waves might induce changes
in the solutions presented here which were some-
how related to the lack of satisfaction of these con-
ditions. If so, the greatest changes would be ex-
pected in solutions with X&0, perhaps even yield-
ing nonresonant solutions for realistically small
values of X. The significance of this possibility
lies in the existence of such solutions in the litera-
ture. ' It is possible that differences in the behav-
ior of various solutions near the p mass may be
mainly due to differences in the details of applica-
tion of approximate conditions near and below
threshold.

In summary, the solutions presented in Fig. 10
are known to contain errors due to approximations
made in the derivation of derivative conditions
from crossing symmetry which are used in the
evaluation of s-wave parameters. However, solu-
tions with X s -0.01 satisfy a set of crossing con-
ditions derived so as to be insensitive to higher
partial waves, and the solutions with A. = -0.008
are in good agreement with independent results
obtained without using derivative conditions. Thus
the solutions with lower mass o resonances may

change little under improvement of the formalism.
The imposition of derivative conditions to third
degree from crossing symmetry is seen to provide
a formalism which produces s-wave solutions
above threshold with a sensible behavior as a func-
tion of A., which also indicates a connection to
earlier nonresonant solutions. In addition zeros of
both s-wave amplitudes are found. The positions
of the zeros are linearly related, and one solution
has zeros which coincide with those obtained when
the (off-mass-shell) Adler condition for PCAC is
assumed to hold on the mass shell. The zeros ap-
pear naturally from the imposition of the crossing
conditions, in the absence of any input from
PCAC —in fact the only input to the calculation is
the requirement that the p wave exhibit a resonance
of mass 755 MeV and width 120 MeV, which is
used to fix the p-wave subtraction constants.

In order to improve the accuracy of the predic-
tions of this model the following future modifica-
tions are proposed. First, the d- and f -wave
modifications to the zeroth- and first-derivative
equations indicated in Eqs. (29)-(31) should be in-
corporated in the determination of parameters in
an iterative way. Second, more accurate estimates
of the d and f waves at the symmetry point should
be obtained using dispersion relations incorporat-
ing the s- and p-wave results. These results
should then be incorporated into the application of
all derivative conditions used in the determination
of s-wave parameters in an iterative way. Efforts
are being initiated toward the accomplishment of
these objectives.
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In order to calculate the magnetic dipole moment of the electron in a nonperturbative
manner, the vertex function of quantum electrodynamics is studied in the ladder approxima-
tion. The vertex function is written as the sum of form factors and coupled, linear integral
equations are derived for these form factors. After converting the system of integral equa-
tions into differential equations, the form factors are expressed by means of an infinite
series. By using the leading term in the series solution, an approximation for the magnetic
dipole moment of the electron is obtained. This nonperturbative approximation is consid-
ered in the limit of a large coupling constant, g, and the electric dipole moment, pE, of a
magnetic monopole with mass M is found to be pz [W2(4x) g ~ ]g/2M. Assuming the neu-
tron to be a bound state of magnetic monopoles, the electric dipole moment of the neutron is
estimated as being 10 e cm.

I. INTRODUCTION

From its inception, quantum electrodynamics
has been closely associated with a perturbation
expansion in terms of the fine-structure constant
a. The first calculations in quantum electrody-
namics were of the leading term in this expansion
and, surprisingly, gave results which were in
good agreement with experiments. Later, when
the divergences in the higher-order terms were
explained and removed by the Dyson-Salam tech-
nique' of renormalization, it was possible to cal-
culate processes to an even greater degree of ac-
curacy. The accuracy to which theoretical predic-
tions for processes such as the Lamb shift and the
magnetic dipole moment of the electron agree with
experiments is quite remarkable. ' However, these
calculations are valid only in a perturbation theory
and no one has been able to show that such an ex-
pansion does converge or that the remaining high-

er -order terms are, in fact, negligible.
When the magnitude of the coupling constant is

small, as it is in quantum electrodynamics, one
may be somewhat content in being able to calculate
only the leading terms in a given process. How-
ever, a perturbation treatment makes no sense
when the coupling constant is large as it is in the
strong interactions and in the interactions of mag-
netic monopoles.

Dirac postulated the existence of magnetic mono-
poles, particles with magnetic charge, in order to
explain the appearance of only integral electric
charges in nature. ' With the inclusion of magnetic
charge, Maxwell's equations become completely
symmetric with respect to electric and magnetic
quantities. Furthermore, the properties of the
monopoles will be symmetric with the properties
of the electrons under the interchange of electric
and magnetic terms. For example, in an external
electromagnetic field, the electron will possess a


