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'Since there exists no nonperturbative way to solve
field theory, one is forced always to identify leading
terms before carrying out the sum over orders of per-
turbation theory.

This multiplicity growth will not be altered by includ-
ing subleading logarithms.

That is to say, we sum also a selected class of non-
leading logarithmic contributions. Gribov and Lipatov,
Ref. 15, have by first summing over n& covertly obtained
the cancellation of the A, ln {Q /p ) terms and have then
gone on to sum (all) terms proportional to A, ln(Q /p ).
These latter {next-to-leading in our language) logarithms,
aside from the X ln(Q2/p, )ln(1 —x) terms which we keep,
come from "ultraviolet" regions of integration and thus
have a very different physical origin from the "infrared"
logarithms which we consider. Summation of ultraviolet
logarithms in both y& and ys field theories [for a discus-
sion of this in the context of the elastic form factor see
T. Appelquist and J. Primack, Phys. Rev. D 1, 1144
(1970)] seems to lead always to results which have a
malevolent analytic behavior as in Ref. 15. On the con-

trary, infrared logarithIns correspond to simple paths
of momentum flow in diagrams and are well behaved
when summed. See Ref. 1 for a discussion of momentum
flow.

See S. L. Adler and W. K. Tung, Phys. Rev. Letters
22, 978 (1969); R. Jackiw and G. Preparata, ihd. 22, 975
(1969).
2~For a discussion of this point see Ref. 14.

S. D. Drell, D. Levy, and T.-M. Yan, Phys. Rev. Let-
ters 22, 744 {1969);Phys. Rev. 187, 2159 (1969); Phys.
Rev. D 1, 1035 (1970). For a summary of this work see
S. D. Drell and T.-M. Yan, Ann. Phys. (N.Y.) 66, 578
(1971).

SS. D. Drell and T. D. Lee, Phys. Rev. D 5, 1738 (1972).
J. Stack, Phys. Rev. 164, 1904 (1967). See also

J. Harte, iNd. 165, 1557 (1968); 171, 1825 (1968).
25K. Johnson, M. Baker, and R. Willey, Phys. Rev. 136,

B1111(1964); 163, 1699 (1967). For an efficient deriva-
tion of their results see S. L. Adler and W. A. Bardeen,
Phys. Rev. D 4, 3045 (1971); 6, 734(E) (1972). The orig-
inal formulation of this program is contained in M. Gell-
Mann and F. E. Low, Phys. Rev. 95, 1300 (1954).

PHYSICAL REVIEW D VOLUME 6, NUMBE R 2 15 JULY 1972

Relation Between Nonlinear and Linear Realizations of SU(3) X SU(3):
Theory and Applications*

A. McDonald and S. P. Rosen
Department of Physics, Purdue University, Lafayette, Indiana 47907

(Received 9 March 1972)

In an earlier paper we took the most general, nonlinear form for the action tK, , x&] of chiral
operators upon an octet of pseudoscalar-meson fields, and we developed functions z~ and
zs (&, p =0, 1, 2, ..., 8) which span the (3,3) and (3,3) representations of chiral SU(3) symme-
try. Here we use the nonlinear properties of z~ to show that the 3 xs matrix (gaze~~) is pro-
portional to a unitary, unimodular matrix exp(tQ&&uz Xz). We then find that the matrix A which
converts an arbitrary nonlinear field into a linear realization of SU(3) x SU(3) is a pure chiral
transformation with &uz as its parameters, A=exp(ig&&u&X&). This result enables us to dem-
onstrate the equivalence of different approaches to the theory of nonlinear realizations, and to
construct a model for meson-baryon scattering. In the model, chiral symmetry is broken by
a mass term which transforms as an admixture of singlet and octet members of the (m, m) rep-
resentation of SU(3) x SU(3). There are thirty parameters in the most general symmetry-break-
ing Lagrangian, but this number can be reduced to eight with reasonable assumptions. Unfor-
tunately this is still too large a number for us to learn anything definitive about the manner of
chiral symmetry breaking.

I. INTRODUCTION

In an earlier paper' we developed an SU(3) ver-
sion of the o model from pseudoscalar mesons
which transform nonlinearly under chiral SU(3).
That is, knowing the action of chiral operators
upon an octet of meson fields, we constructed a
set of functions of the fields so as to span the
linear representations (3, 3) and (3, 3) of SU(3)

x SU(3). From products of these functions we
built up all representations of the type (I, l}, and
then applied our results to the study of meson-
meson scattering. In this paper %e turn our at-
tention to nonlinear fields other than pseudoscalar
mesons, and to the associated problem of meson-
baryon scattering.

Qur main concern is to show how any field which
transforms nonlinearly under chiral SU(3) can be
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converted to a linear realization of this group.
For, once we know how to do this, we can con-
struct effective Lagrangians with well-defined
transformation properties and thereby study the
general question of symmetry breaking. We took
this approach to meson-meson scattering in our
earlier paper, ' and we were able to place definite
limits upon the set of representations to which
the symmetry-breaking Lagrangian may belong.
In the case of meson-baryon scattering, however,
we shall find the outcome less propitious.

To convert a nonlinear field into a linear real-
ization, we use the fact that the functions' z and

Z„((x = 0, 1, 2, . . . , 8), which span the (3, 3) and

(3, 3) representations, respectively, are not in

dependent of one another. Instead they obey a set
of bilinear equations of which'

8

zozo + zaza = n
1

U = — — A.~z~ (1.2)

8

g (f.„~,~„+(-,' P'(~,~.+ Z,~.) = 0
1

are but two examples. One consequence of these
equations is that the only representations of SU(3)
x SU(3} that we can construct from products of z
and Z8 are of the type (l, l). Another consequence
is that the 3 x 3 matrix

equations (1.2) and (1.3) serve as an implicit
definition of the octet ~, in terms of z, and hence
in terms of the original pseudoscalar-meson fields
w, (i =1, 2, . . . , 8}. From them we can develop all
the results we need without knowing the explicit
relation (if it exists} for u&(, in terms of &;. For
example, there is the property of covarianc e with

respect to redefinitions of the meson field; we

proved in our earlier paper' that z and Zz are
covariant with respect to redefinitions of the rne-
son field, and so it follows from Eqs. (1.2) and

(1.3), that a(, must behave in the same way.
The covariance of e, is important not only be-

cause it ensures that results derived from ef-
fective Lagrangians in the tree approximation are
independent of the definition of the mesoa field,
but also because it provides the link between dif-
ferent approaches to nonlinear realizations of
chiral symmetry. Weinberg' develops the theory
from the viewpoint of infinitesimal transforma-
tions, and he describes the action of chiral oper-
ators upon the meson field as a function of the
meson field itself. Coleman, Wess, and Zumino, '
on the other hand, use finite transformations as
their starting point. Now it so happens that, in
the Coleman-Wess-Zumino (CWZ) version of the
theory, the operator which converts a nonlinear
field into a linear one is a pure chiral transforma-
tion with parameters proportional to the meson
fields.

is both unitary and unimodular.
These latter properties enable us to write U in

exponential form:

8

e(cwz)=..p, g(,x),
1

4=&~ F.
(1.6)

8c=-, ~Z..x.)1

(1.3)

and to prove a more general result about the real
quantities ~, (k =1, 2, . . . , 8), namely, that if the
matrices B, (f = 1, 2, . . . , 8) form a representation
(m) of SU(3), then the matrix elements of

8

U(B)=exp(2 Z;B),
1

(1.4)

8

x=exp i xr,),l
(1.5)

where the X„(k= 1, 2, . . . , 8) are matrices repre-
senting the chiral operators of SU(3}xSU(3}.

span the representation (m, m) of SU(3) x SU(3).
Obviously U is a special case of U(B) with m = 3
and B; = & A.;. With the aid of this result, we shall
then demonstrate that the matrix which converts
a nonlinear field into a linear realization is of the
forrn

where F, is the meson decay constant. Comparing
the expression for A(CWZ) in Eq. (1.6) with the
general result of Eq. (1.5), we see that the CWZ
version can be obtained from the Weinberg ver-
sion by choosing v~ to be the redefined meson
field.

Another approach to the nonlinear theory is
that of Gursey. ' In it he starts with a 3 & 3 matrix
which is some function of the meson field, and
which transforms according to the (3, 3) repre-
sentation of SU(3)x SU(3}. Thus Giirsey's matrix
is equivalent to our matrix U in Eqs. (1.2) and
(1.3), and the exact relationship between his me-
son field and our z or (d~ depends upon the way
in which his matrix is parametrized. Again it is
a matter of redefinition.

Given the linearizing matrix A of Eq. (1.5), we
can now construct effective Lagrangians for the
meson-baryon system using the standard tech-
niques of linear representation theory. We divide
the Lagrangian into two parts, one which pre-
serves the chiral symmetry and another which
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breaks it. The chirally symmetric part consists
of the kinetic terms for mesons and baryons, a
meson-baryon interaction with derivative cou-
pling, and an invariant baryon mass term; the
symmetry-breaking part is assumed to consist
only of noninvariant mass terms. With these as-
sumptions the strength of the meson-baryon inter-
action can be expressed in terms of the meson
decay constant via the Goldberger- Treiman rela-
tion.

The question of most interest concerns the sym-
metry-breaking part of the Lagrangian: Does it
transform according to one single representation
of SU(3}xSU(3), or is it an admixture of several
different representations? Now, if we expand the
noninvariant baryon mass term in powers of the
meson field and assume the tree approximation to
be valid, then the first term in the expansion will
contribute only to baryon mass differences, and
the next to meson-baryon scattering. Therefore
we can, at least in principle, answer the question
raised above by comparing the known mass dif-
ferences and scattering lengths with the predic-
tions of each representation.

This is the approach we applied to meson-meson
scattering, ' and it allowed us to say that the mass
term could not belong to certain classes of repre-
sentation. In the case of meson-baryon scatter-
ing, however, we cannot draw the same conclu-
sion. The amount of data is small, and the num-
ber of different ways of forming a given repre-
sentation from products of baryon, antibaryon,
and meson fields is quite large; as a result we
have more parameters to fit than conditions to
impose on them. Under these circumstances, the
most useful things we can do are to construct the
most general Lagrangian which transforms accord-
ing to the (n, n) representation, and to indicate
ways in which simple models might be developed.

The properties of the matrices U, U(B), and A

are derived in the second section, and meson-
baryon scattering is analyzed in the third.

A. Properties of U and uk

From Eq. (1.2), we can write the product of U

and its Hermitian adjoint as

UU =— A.~z~ ~sz g

8

Qz~z8[(d~ay+if By)A~+ 23b 8I]
2S 1

8

+ s zt)zt)I+ (3 ) Q (zoz~+zoz~)X~
1

Using Eq. (1.1) together with the relation'

if B„z8z =0,

we then obtain

UU = I.
The characteristic equation for any matrix

g') X, a, is well known to be'

(2.1)

(2 2)

(2.3)

8

de) Zt, , — I) =ed;;, ;;,~ ( )—
1

=0

With the particular choice

(2.4)

~k Zk ~ (2 5)

we find that

1/2 33
det U = — {--', d, ~, z;z, z„

+ (-')"'z,(z, z, ) —[(2)"'z,]').
(2.6}

Now, as we have shown elsewhere, ' the products
of the z; satisfy the relations

d;,~z,.z, z~ = (—', )' '[2zo'+3)in zozo —(un)3],
(2.V)

z, z, =2(z,'+Wn Z, ),
and hence

II. LINEARIZING THE NONLINEAR FIELD detU = f. . (2.8)

We begin this section by developing the proper-
ties of the matrix U, and of the functions (dk.
Then, with the aid of these properties, we analyze
the behavior of nonlinear fields under chiral trans-
formations, and show that the linearizing matrix
A is as given in Eq. (1.5). In conclusion we com-
pare the approaches to nonlinear realizations of
Weinberg, ' and Coleman, Wess, and Zumino; we
also discuss the properties of covariant deriva-
tives.

Thus U is a unitary unimodular matrix and so can
always be written in exponential form [see Eq.
(1.3)].

Suppose that the chiral SU(3) group is generated
by operators T, and K, (a, b = 1, 2, . . . , 8) such that

[T„T,] = [K„l&,] =if„,T„
[T„K~]=if,~,K, . (2.9)

The quantities z transform according to the (3, 3)
representation, i.e.,
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[T., z,] =if.a, z„
[T. zo]=o,

[K„z,] =d„,z, +(-', )'"5„z.,
[K., z,]= (-', )'"z„

and so U transforms according to the rules

[T„v]=[v, —,'~.],
[K„v]={v,zx,).

{2.10)

(2.11)

e~'~ with J,:

[J„e'V'z] =Bz [J„y z]e'" z. (2.20)
e'9'~ -I

)'8

lf we set p, =2'„and B~=2A~ in Eq. (2.20) and
then take J, to be successively T, and K„we ob-
tain alternative expressions for the commutators
of V with the generators of SU(3)xSU(3). Com-
paring these expressions with Eq. (2.15), we con-
clude that

Now, because we can write U in the form of a fi-
nite S'U(3) transformation [see Eq. {1.3)], (

e" '~-I
[T„2 z] = (e" '~ -I)y„(2.21a)2(0' F y8

V =exp[i2~, (-,'X,)], (2.12)

and because A., behaves as an octet tensor with re-
spect to SU(3), we find that

~
~

e2i~ F
[K., 2(uz] =(e" 'r+f)~, .2M' F

The first of these equations is equivalent to

(2.21b)

v~ v-'=~ [e'"2 2]

where E, are the 8&8 matrices

[F,],, =-if„, .

{2.13)

(2.14)

Substituting Eq. (2.13) into Eq. (2.11), we obtain
the expressions

[T„&d]z= (id ~ F)z, =if, zz&u~ (2.22)

and it means that ~8 behaves as an octet with re-
spect to SU(3). The second equation gives us an
expression

[T., v] = (-,'~,)[e""~-f]„v,
[K., v] = ( ,'~,)[e" '+-I],.v

(2.15)
[K„~,] = 2;„.r (e2* '~+I)„a& 8 e2c~ F (2.23)

[p B, Bz] =if z~y B~=B~(p F)~z

to rewrite Eq. {2.16) as

(2.17)

for the action of SU(3)x SU(3) operators upon the
matrix U.

We can obtain other expressions for [T„V]and

[K„V]from the Baker-Hausdorff lemma for any
operator J,:

e'~'zJ, e '~'2 =J, +[i@ B,J,]
1

+2,[iy B, [iP B J ]]+~ ~ ~,
(2.16)

where the matrices B„(0=1, 2, . . . , 8) form a rep-
resentation of SU(3), p, (ti =1, 2, . . . , 8) are a set
of functions, and p B=+p,B,. When J, acts on
the functions p, but not on the matrices B„we can
use the commutation rule

for the action of the chiral operator upon ~~; we
shall analyze this expression in a later subsection,
but for the moment we leave it in its symbolic
form.

Although Eq. (2.21) has been derived from the
(3, 3) properties of V in Eq. (2.15) together with
the particular choice B~=2X~ in Eq. (2.20), -the re-
sult it describes does not depend on any particular
SU(3) representation. We may therefore apply it
to the general matrix V(B) =e" 'z in which the B&
form an arbitrary representation {m) of SU(3) [see
Eq (2.17)].. We compute the action of T, and K,
upon V(B) by means of Eq. (2.20), and then, using
Eq. (2.21) plus the octet transformation properties
of Bz [compare Eq. (2.13)], we find that

[T„V(B)]=[V(B), B,],
[K„V(B)]={V(B),B,] .

Therefore the matrix elements of V (B) belong to
the (m, m) representation of SU{3)xSU{3).

where
{2.18)

B. The Matrix A

~

~
eii F f (i)2

=i5yz+ (ii2
~ F) 221

(i)'
+ (p F)' + ~

3 ~
)'8 {2.19)

Multiplying both sides of Eq. (2.18) by e~' we ob-
tain a general expression for the commutator of

Let us now consider a field 0 which transforms
linearly under SU(3) according to the representa-
tion C, (a =1, 2, . . . , 8), and which is nonlinear un-
der chiral transformations. In keeping with the
work of Macfarlane, Sudbery, and Weisz (MSW), '
we describe the action of SU(3) x SU(3) generators
upon the components of C as being
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[T., e ] =q, (c,)...
[K., k (x]

= q
(b (v.b C,)8

(2.25)

where v„ is a function of the meson field n k such
thate

Wa Va~ -0
IIa Vag:—d ak g

xtt'
kW g Vay ~

(2.26)

[Kax Vbc] —[Kbx Vac] =ifabc —V«if«bVbb (2.28)

To convert 4' to the linear realization of SU(3)
x SU(3 } spanned by matrices C, and X„we look for
a matrix A such that

From the Jacobi identity for T„K„and 4, we
find that v,~ is a second -rank tensor with respect
to SU(3):

(2.27)

and from the Jacobi identity for K„K„and 4 we
learn that

C+ =~2 (C, +X,) = B 8)I,

C, =2 (C, -X,) =ISB, ,

(2.35)

where I is a unit matrix, B, are the matrices of
Eq. (2.17), and B, is the negative transpose of B,:

Bt (2 .36 )

The appropriate basis vectors are X',.'g X',. ' where

Because m, and II, are octet v ectors, we can show
from the Baker-Hausdorff lemma [see Eq. (2.16)]
that this form for A satisfies the T, commutator of
Eq. (2.31) for all choices of the functions h, and

h, . Our problem theref ore is to find the choice
that also satisfies the K, commutation rule .

Since Eq. (2.31) must hold for all representations
of SU(3)x SU(3), we consider the special case in
which C, and X, span the (m, m ) representation.
This means that

[T., (eA) c(]
= (q A), (C,},.

[K„(4'A) ] = (O'A) 8 (X,)()
(2.29)

C.'xI' =x' (B.)„, C.xI' = o,

c.'x'; ' =0 C.x'; ' =x', '(B.),; .
(2.37)

wh ere

[C„C ] = [X„X] =if, C„
[C„Xb]=ifabcXc ~

(2.30)

Now the reason for choosing this representation
is that it contains a state

I s}=g x' (8)x'; (2.38)
Z

which behaves as a singlet with respect to SU(3),
x.e.,

From Eqs. (2.25) and (2.29) we see that A must
satisfy the commutation rules c, I s) =0=(sI cb. (2.39)

[T„A]= [A, C,],
[K„A]=AX, —v, b CbA .

(2 .31)

Therefore, if we take matrix elements of Eq. (2.31)
between (SI and

I j,i} -=x',.'(8)x', ', and observe that
the operators T, and K, do not affect these states,
we find from Eqs. (2.37) and (2.39) that

If we multiply Eq. (2.31) by w, and by Il„and then
make use of Eq. (2.26), we get [T„(sI AI j, i) ] = (SI AI j, k) (B,)

[v.K., A] =A (v.x.),
[II,K., A] =A (}I.X.)

(2.32)
—(B,)~b(SI AI k, i)

[K„(S I
A

I j, i& ] = ( S
I AI j, k) (B,)„. (2 ~ 40)

This suggests that A should be of the form

A = exp[i)7, X,], (2.33)

=kg, +h,IIa a (2.34)

where g, is some linear combination of m, and II,:

+ (B.),,(s I AI k, I}
In other words (S I AI j, i) transforms according to
the (m, m ) representation of SU(3 }xSU(3}.

By direct computation, we get from Eqs. (2.33),
(2.35), and (2.37) the result

(sible, ) = Ex(sax', ', e s('e (c: c ))x)eax('). -.-
k

Zx"ax'. , e*s('e c:)x('axe( e c .)x, )-'. .-.-
k

-2 ( xl', xHexs 'es), ) a(x', ', x! 'Iexs(-'e. s )1
g)
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= [exp (iq.B,)]„.g [exp (-iq,B,)]„.

= [exp(2iq, B,)].. . (2.41)

where we have used Eq. (2.36) for B,. Comparing
Eqs. {2.40) and (2.41) with (2.24) we see that

(2.42)

the definition of v to recast this expression in the
form

[K„e'"'~]= —,'le' '~, Fj=,'[e' ~, F'svs, ] . (2.52)

Thus the matrix A is

A =exp(iu, X,) . (2.43)

Substituting Eq. (2.52) into Eq. (2.48) and applying
Eq. (2.50), we obtain

Knowing the general form for A in Eq. {2.43), we
can find the quantities v, b by considering the spe-
cial case of Eqs. (2.31) and (2.33) in which C, and

X» correspond to the {m, 0) representation of SU(3)
&&SU(3), i.e.,

Cg Bg ) Xb Bb )
(2.44)

From these equations we get

[K ei™]-e'~&B v B e'~'& (2.45}

gb iG) P i bg 'e +I (2.46)

The antisymmetry of v.b is a consequence of the
antisymmetry of the matrices E, .

To show that v„satisfies the conditions of Eqs.
(2.27) and (2.28), we treat it as an element of a
matrix v and rewrite Eq. (2.46) as

We evaluate the commutator on the left-hand side
of Eq. (2.45) by means of Eqs. (2.20), (2.23), and
the octet transformation properties of B& [compare
Eq. (2.13)]. Comparing the result with the right-
hand side of Eq. (2.45), we find that

[K„v]= -H[v, FB vs, ] + F, —vF, vj . (2 53)

Equation (2.28) now follows immediately from this
result.

C. Relation Between Different Approaches
to Nonlinear Realizations

[K„&,] =i[f5„+bd„,v, + cd„,11,

+Gn, v +Sw, II, +Tv II, +JII, II ] .

We observed in the Introduction that the lineariz-
ing matrix for the CWZ' theory of nonlinear SU(3)
is a pure chiral transformation with parameters
proportional to the meson fields [see Eq. (1.6)].
In the Weinberg' theory, as we have just shown
[see Eq. (2.43)], these parameters are given by the
octet vector ~» of Eqs. (1.5), (2.21), and (2.22).
Since the latter theory is covariant with respect to
redefinitions of the meson field, we can study the
relation between it and the CWZ theory by defining
F,~, to be the pseudoscalar meson field (F, is the
meson decay constant).

The starting point of the Weinberg theory is an
expression for the action of chiral operators upon
the meson field'.

(I e'+"' )ve= I -e'"' . e (2.47) (2.54)

From this expression we find that

[J„v]= ——,
' (I + v)[J„e' ~] (I+ v)

for any operator J,. When J, =-T„we have

[T„e' ~] = [e' '~, F,]
[see Eq. (2.24)] and so, since

(I + v)e'" =I —v,

it follows that

[T., v] =[v, E,] .

(2.48)

(2.49)

(2.50)

(2.51)

When J, —=K„we use Eq. (2.45) with B, set equal
to F, in order to obtain one expression for the com-
mutator [K„e' '~]. We then use the octet transfor-
mation properties of E, [compare Eq. (2.13}]and

Qf the seven functions f, b, . .., J' of the variables
X = m, w, and Y =d,b, w, wb n „ two are independent
and the remaining five depend on them through ei-
ther algebraic equations or differential ones. In
our earlier work' we expressed the (3, 3) and (3, 3)
quantities z and Zs in terms of the functions f, b,
and c, and so our results apply to all forms of
[K„v»]. If we now identify F,&u» as the meson field,
then by virtue of Eq. (2.23) for [K„&u»], we are re-
stricting ourselves to a particular choice for the
right-hand side of Eq. (2.54).

To see exactly what this choice is we express
[K„mrs] in terms of the projection operators P» as-
sociated with the seven distinct eigenvalues P, of
the matrix (&u ~ F).' Six of these eigenvalues are
nonzero, and their contribution to the commutator
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can be obtained directly from the right-hand side
of Eq. (2.23): It is

the functions f, b, c which correspond to the iden-
tification &ue =v JF, are

(2.55)
e

i-g p, cotp+„.
k'= 1

The contribution from the eigenvalue zero (p, = 0)
is obtained by multiplying both sides of Eq. (2.23)
by (e" '~ -I)/(~ F) and using the known expres-
sion for this matrix as a fifth-order polynomial in

(ru E). The resulting coefficient for P, is

a,x(4a, +cos&) cot(2n, x)
6(2a, +cosg)

y (cosg +3 n, ) cot(2n, x)
x' cos& (2a, + cosg)

(2.58)

Wo = -2i

where'

(sin2xa, ) cosg
3a, (2 a, +cosg) '

l=1
(2.56) (4a, ' cosy + 3 a, --,' cosg) cot(2n, x)

E,x cosg (2 a, + cosg)

a a& ~ dabc a b c&

sing =v 3 y/x',

n, =cos —,
'

[g +2lw], l =1, 2, 3 .

(2.57)

The other functions in Eq. (2.54) depend upon these
three, and are of much less interest.

We can express the matrix v of Eqs. (2.46) and
(2.47) in much the same way:

Since the projection operators are themselves
polynomials in (u& ~ E), and since there are a num-
ber of identities relating powers of (~ E) to the
kinds of tensor appearing in Eq. (2.54), we can now
determine the expressions we want. In particular

v= iQ-tan(-,' P} E, .

The tensor form of this expression is

(2.59)

tan(-,'xn, ) 1 cos'g
Vab Z 4n, +2cosg + (-if„,&o, )3cosf 2n, +cosf x Q11=1

+ ,(4n, +—csog)(-if, ,~, d, „Q„)+,'(if„,P,)x' x' (2.60)

From the properties of f and d coefficients we can
easily show that

(2.61)

where Q, =d,~ ~, cu, .
Further insight into the relation between differ-

ent approaches to nonlinear theory can be gained
by studying the covariant derivative. It is well
known that the space-time derivative 8„4 of a non-
linear field does not follow the same chiral trans-
formation law as does the original field itself; and
so we have to find a function of 8„4 which does fol-
low the same law as C . One way of doing this is to
introduce the covariant derivative D „4, and anoth-
er is to convert 0 to a linear realization. We now
show that they both lead to the same result.

Let us suppose that 4 transforms according to the
representation (l) of SU(3) which is spanned by ma-
trices C, [see Eqs. (2.25) and (2.30)]. We can then
convert 4 to the linear realization (l, 0}of SU(3)
xSU(3) by taking X, = C, and multiplying g by e' ~;
similarly, we can convert 4 to the realization
(0, l) by taking X, —= -C, and multiplying by e '"'
Consequently the space-time derivatives 8„(4e' ~)
and S„(ge ' 'c) transform according to the linear

I

realizations (l, 0) and (0, l), respectively.
Using this result together with Eqs. (2.29), (2.31),

(2.43), and (2.46), we can show in a straightfor-
ward way that the quantities

D 4 =-,([8 (4'e' ~)]e '"~+[a„(4'e ' ~)]e" ~},
(2.62)

E„e=-,'f[S (qe* )]e ' -[S„(qe ' )]e" }
both obey the same chiral transformation law as 4
[see Eq. (2.25)]. Furthermore, if we determine
the derivatives of the exponential functions from
the Baker-Hausdorff lemma [see Eq. (2.18)] we
find that

cosa- C-I
D„'0 = ~~'0+4'Cy 8 8p 8 p

(2.63)
sin(d ~ CE„4' = k(2i)Cy s~ ~g,

CO C

where the sine and cosine functions are determined
in terms of their power series. A comparison of
Eq. (2.63) with the results of Callan, Coleman,
Wess, and Zumino' indicates that the D„4 defined
above is exactly the same as their covariant deriv-
ative of 4 provided that ~8 is identified with the
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meson field.
Since both 4 and E„C follow the same chiral

transformation law, it follows that the expression
multiplying q in Eq. (2.63) must do likewise. If
we consider the special case in which C, =--,'A,„ then
we can define the covariant derivative of ~8
through the equation

Since we have an octet of nonlinear baryon fields,
the basic linear realizations to which we can con-
vert them are the (8, 1) and the (1, 8). In the first
case the SU(3)&&SU(3) matrices of Eq. (2.30) are
given by C, =X, =F~ and the linearized fields are

(8, 1): 4', =e, (e' '
),,

sin-, v ~ X

—,co
(2.64)

(e -IwF)

$, = 4', (e ' '~), ,
(3.1)

Multiplying by A., and taking the trace of both sides,
we obtain

In the second case the appropriate matrices are
C, = -X, = F„and the linearized fields are

(2.65)

Again the result is equivalent to that of Callan,
Coleman, Wess, and Zumino. '

The reason for this equivalence is not hard to
find. In the standard theory we construct covariant
Lagrangians and currents by coupling covariant
derivatives with other fields through the appropri-
ate SU(3) Clebsch-Gordan coefficients. In the lin-
earized theory we first convert 4 to a linear real-
ization, and then couple its space-time derivatives
to other fields using the standard techniques of lin-
ear representation theory. The outcome is that
8 4 always appears in some combination of the
D„%' and E„4' of Eq. (2.62).

(3.2)

The second expressions for g,. and y,. in these equa-
tions follow from the antisymmetry of the F ma-
trices.

A. The Symmetric Lagrangian

It is a simple matter to construct chiral invari-
ants from P, and p, alone, but to construct them
from g, , cp, , and the meson field, we require me-
son currents which belong to the (8, 1) and (1, 8)
representations of the chiral group. In terms of
the (3, 3) matrix U of Eqs. (1.2) and (1.3), these
currents are

III. THE MESON-BARYON LAGRANGIAN J„«(8, 1) =-,' Tr[U~e„UX«],
(3 3)

We are now in a position to construct meson-
baryon Lagrangians with well-defined properties
under chiral transformations. As discussed in the
Introduction, we assume that both the baryon kinet-
ic and the meson-baryon interaction terms are
symmetric, and that the symmetry is broken only
by mass terms. We further assume that the mass
term belongs to an (m, m ) representation of SU(3)
XSU(3) and consists of unitary singlets and octets.
This ensures that the Gell-Mann-Okubo mass for-
mula will be satisfied.

J «(1, 8) = —,
' Tr[Us„Utk«],

where AS„B stands for A(S„B)—(S„A)B. If we use
Eq. (1.2) for U, we can express the currents in
terms of e and z 8, and if we use Eq. (1.3), we
can express them in terms of ~, . The latter ex-
pressions are very much like the operator E„of
Eq. (2.63) with C, =F,.

In order for the chirally invariant Lagrangian to
conserve parity, it must be symmetric with re-
spect to the linearized fields g,. and y, It there-
fore takes the form

-p&Nv =2[/,. (y 8 +ma)(, +p, (y 8. +mo)y, ]+«(if, .«F+d;&«D)[$;y„y«g, J„«(8, I)+ y, y&y«y&& «(I, 8)], (3.4}
where m, denotes the symmetric contribution to the mass of the baryon octet, and F and D are the cou-
pling constants associated with the usual F- and D-type couplings of mesons and baryons. From Eqs.
(3.1) and (3.2), we see that the kinetic terms in the Lagrangian are of the form 4y„D„C where D„ is the
covariant derivative of Eq. (2.63) with C, = F, . Similarly, the meson-baryon interaction is proportional to
4y„E„C.

The right-hand side of Eq. (3.4) is a complicated function of the meson field, but it is sufficient for our
purposes to expand it as a power series in m,. and retain only terms of second or lower order. Since the
Lagrangian is covariant with respect to redefinitions of m, , a simple way of carrying out the expansion is
to identify (d, with the meson field:

~«=v«fFw.
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We then find that up to second order the symmetric Lagrangian is

-ZNv =0 (y„a„+m,)% +2,7,y„(if, , )q if »w, &„wb+ (if—» F+d, „D)C,y„y.bC, a„gib. . (3.6)

B. The Symmetry-Breaking Mass Term

In order to construct the symmetry-breaking
mass term, we find it convenient to express the
SU(3) scalar contained in the (m, m) representation
[see Eqs. (2.24}, (2.40), and (2.41)] as

8 (m, m }= Tr[e
""'a] . (3.7)

The form of s(m, m) as a function of z, and z „and
the leading terms of its expansion as a power se-
ries in n, have been given in our earlier paper. '
From $|m, m) we can generate octets by commuting
it with chiral operators:

M, =[K„S]=2 Tr[e" aB.], '

M, =d, ~[K Mb, ] =4Tr[e" ad, b, BbB,],
(3 8)

and from these octets we obtain second-rank SU(3)
tensors by commuting once or twice again:

N, b
= [K„Mb],

N„= [K„Mb],

L,b =d, „[K,N„b] .

(3.9)

Further commutation gives rise to higher-rank
tensors, but we shall not need them here.

Suppose now that we couple the meson tensors of
Eqs. (3.7)-(3.9) with the linearized (8, 1) fields $,.
and i(i, of Eq. (3.1) in such a way as to form SU(3)
scalars. Altogether there are ten such couplings:

and

S,&»=y, q,. S(m, m),
Sb~'l =$; (Rb);;i)i, M„,

So"= it (Rb), i(,™b

0;[27.bl;, i(,N.b

0;[27.b];,0;L.»
q,.[A.,],,y,.N.„

(3.10a)

(3.10b)

where R, can be either F, or D„, and [A„] repre-
sents the projection operators for the 10, 10, and
27 representations contained in 8 (3)8:

[27,b] =R, b
—v d, bb D, —r' 5,bl,

[10,b] =(F„Db)—d, b, F, + T, b
—Pif, b,F, ,

T,' = —,'(T, +K,) (3.13)

act in general upon both the baryon and meson

[10,b] =(F„Db)—d, b, F, —T,b+ vif, b, F, , (3.11)

(R,q);, = 5,] 5q~+ 5q;5„,

ab)ii 6ai 6bj 6bi6ai

Because they are SU(3) scalars, the terms in Eq.
(3.10) must belong to an SU(3) xSU(3) representa-
tion of the type (l, f ); however, they are already
contained in the Kronecker product

(8, 1) 8 (8, 1) 3 (m, m) —= (8 88 8m, m),

and so the only representation open to them is
(m, m). The fact that there are ten such scalars
corresponds to the general result that the repre-
sentation m occurs ten times in 8 (38 m.

We can form another set of SU(3) scalars by re-
placing the (8, 1) fields P; and i(~, in Eq. (3.10) by
the (1, 8) fields y, and y, of Eq. (3.2). The same
argument as above shows that these y-type scalars
also belong to (m, m). However, since they differ
from the g-type scalars only in the relative signs
of even- and odd-parity terms, they provide us
with no new possibilities for the symmetry-break-
ing Lagrangian.

The ten terms of Eq. (3.10) give rise to ten pos-
sible SU(3) -preserving terms in the Lagrangian,
and from each of them we can obtain two octets by
using the commutators of Eq. (3.8). Thus the most
general symmetry-breaking Lagrangian in our
model contains thirty independent terms. This is
much too large a number for ~ to make meaning-
ful comparisons between theory and experiment,
and so we must reduce it by making further as-
sumptions. We therefore suppose that all baryon
currents and their four divergences belong to
SU(3) octets or singlets. Since these quantities
are derivable from the Lagrangian, our assump-
tion implies that only the five terms of Eq. (3.10a)
and their associated octets can appear in the sym-
metry-breaking Lagrangian.

We denote the eighth components of the octets
derived from the SU(3) singlets of Eq. (3.10a) by

S"=[K S,"],
S,"= d...[K., [K„S",]],

for i =1, 2, 3. Although the chiral operators
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parts of S,", the structure of these terms is such
that the over-all action is upon the meson parts
alone. In S'," the T(); and ()~ fields are combined into
a chiral singlet, and in S, we have

[T, , (gR„g)M„) =(gR„()))[T,, M„], (3.14)

simply because (Ij; and ((), both belong to the (8, 1)
representation; furthermore, we also have

[T, , (T()R„)())M„]= -[T, , (T()R„g}M„]

= -(qR„q)[T.-, M„],

because S(," is an SU(3) scalar. The same argu-
ment holds for S,', and so in all three cases we
obtain the octets of Eq. (3.12) merely by commut-
ing the meson factors S, M„, and M with the ap-
propriate chiral operators.

Another partial simplification occurs when we
reexpress the (8, 1) fields g; and ((, in terms of the
original baryon field 4; [see Eq. (1}]. The factor
gg of S,' reduces to 4'4, and gR„g becomes

erties of B„to reach the third line of Eq. (3.17).
This result also holds for ($R„())M„, and it has the
effect of letting us substitute 4 for g throughout
Eq. (3.10a).

Equation (3.16) can also be applied to the octets
S,' and S,', but it does not lead to as simple a
result as above. For example, in the case of S,'",
we have

S'"=4R,4(e'~ ) „[Z,'-T;, Mr„]

= 4R,4 (e' ) «4 Tr(B8e" B„)

= (4R,4)4 Tr(B,e' B,e' '
) . (3.18)

S,' = (@R,4)8 Tr [B,e' '
B,e' ],

S,') = (4R,4)8 Tr [B,e' B,e' '
],

S,"= (4R (4) 16 Tr [B,e' '
B,e' ' ],

(3.19)

The corresponding expressions for the other octets
are

4R,4(e' '

)«, (3.16)

because R„ transforms as an octet vector. When
we combine this result with the expression for
M, in Eq. (3.8), we find that

(gR„g)M„= (4R,4)(e' ),„2T'r(e""' B„)

=(4R,4)2Tr[e" '
B„(e '"' )„,]

=(4R,4)2Tr [e""'e ' B,e'~ ]''
= (4R,4')2 Tr [e" B,]
= (4R,4)M, , (3.17)

where we have used the octet transformation prop-

where B, = diacBaB, .
As in the case of the symmetric Lagrangian so

in the case of the symmetry-breaking one, we
must expand up to second order in the meson field.
We can do this by identifying co, with the meson
field [see Eq. (3.5)] and evaluating the traces in
Eqs. (3.7), (3.8), (3.18), and (3.19). Alternatively
we can follow the approach of our previous paper'
in which we made use of the differential equations
for S(m, m) and its commutators. We find that the
even-parity terms are proportional to

S~'~ =44 1 —8 m,

S,' =+ ~m, @R,4 (3.20a)

(,) m, (2m, + 3)S = — S
3

S =+ ~m 44' F.' '

(3.20b)

s'" — 's'"
8 m 8

2

and
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(~) ™2(2m2+3) (&)
Ss S8

m3

S(2) S(3)
8 8

S~ '~ = +A~4 +m, (2m, + 3) 5,,+,(-2m, + 3)5,~+ ', (-2m, + 3} + ds~, ', (~m 2+ r')

(3.20c)

j.6 2 X ~8~k 1 d c
3 24' 2 Sk 3F 2 V 8kc P 2

In these expressions the quantities m, and m, are the Casimir eigenvalues

2
—%[pl +i 2 +(I 1 i 2) +6(l I+V.2}])

m, = & (~, —u, )[(u, +2u.)(~.+2m, ) 9+(I, I+, I+)],

associated with the representation (I}=—(g„V.,} of SU(3).

(3.21)

C. Meson-Baryon Scattering

Notice that up to second order there are eight independent terms in Eq. (3.20), three singlets and five
octets. This enables us to write the symmetry-breaking Lagrangian as

-Zs = mo C4 y 1 — ', + y' ', + 4(VD~+ vF~)C
1I p 2

+j(g'D, +v'F, )e 6„1+ a (11 —6mz) + 2d„,II,+,w, w, (-2m, + )
X 1 1

%(w D+ 'V )e"5. 1 ~ *(-2 *"8)) *t-2 *+Sf d. ~ '*(~ * v)

8,' XO„4, , II, (3.22)

The mass term, namely,

m, [y44 +4(g'D, + v'F, )4 +%(iI."D, + v"F,)4] (3.23)

contains two independent octet contributions, and so we determine only the combinations (p, '+ p") and (v'
+ v") from the known mass differences in the Z =-,'' octet. The coefficient y of the singlet term is not de-
termined because the symmetric Lagrangian also contains a mass term [see Eq. (3.6)].

Picking out the terms corresponding to mN and KN elastic scattering we find that

-Zs(slU) = (N ~ Ã)(m ~ m) —&m y+ +y' —& (p —Sv) — (-m + 1)(p' —Sv')
PB

Q 1 1 1

p 2 W3 20 3

and that

Zs(KN) =,(TVÃ)(K K-) —7 m2y ——y'+ @ (V, —3v)+ (m —&X}j,
' —3v')+ (m —~9)(p, "—3v")

104 3 ' 10'' 3

+ ', (NrN) ~ (K 7K) —,'(p+v)+ ~(IJ, '+v')+ ~ '+ —— '
(p, '+v") . (3.25)

w
6&3 2&3 16 4 6m, 2m, +3

These expressions depend upon three more parameters, y', p, , and v, in addition to those already appear-
ing in the mass term. Measurements of the S-wave baryon-meson scattering lengths would provide us with
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four constraints —not enough both to determine the additional parameters, and to remove the uncertainties
in the mass parameters. Thus, even with the maximum amount of data at hand, we would not be able to
determine the precise form of the symmetry-breaking Lagrangian. Add to this the facts that KN scatter-
ing lengths are not well known' and that the N" (1238) resonance also contributes to wN scattering, " "
and it becomes readily apparent that we can say very little about the way in which chiral symmetry is
broken without making even more assumptions than we made already.

One such assumption might be that the breaking occurs in (m, m} with m a triangular representation. In
this case either p. , =0, or p, =0, and the Casimir eigenvalues of Eq. (3.21}are related by

8m, '
(2 3)

= rm2 (3.26)

As a result, the octets S,' and SI," of Eqs. (3.20b) and (3.20c) are proportional to one another, and the pa-
rameters p' and v" in the Lagrangian of Eq. (3.22} become redundant. The particular choice in which (m)
is the (3) representation (g, = 1, g, = 0) has been explored by several authors"' "; our general expression
for cCggv+cCQ reduces to theirs, but the parameters in it cannot be fixed until the experimental scattering
lengths are more certain.

Another approach is to assume that the symmetry-breaking term is even under the Kuo" transforma-
tion. This serves to fix the ratio of SU(3) singlet to octet in the symmetry-breaking Lagrangian; in the
(3, 3) case, for example, it leads to the famous combination u~ —v 2u, of Gell-Mann, Oakes, and Renner. "
%e hope to explore this possibility in a subsequent paper.
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