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A class of inequalities for the pion-pion s and p waves has been discussed in a series of
recent papers. The present work attempts to provide a systematic method for writing such
inequalities. An infinite number of new inequalities for the pion-pion s and p waves are
also derived.

I. INTRODUCTION

In previous work, ' ' several inequalities were
derived for the pion-pion s and P waves using the
analyticity and positivity properties of the z-Tf

scattering amplitude. These derivations were not
all very systematic; in particular, no attempt
was made in Refs. 1-3 to show that the inequalities
were complete and independent or to suggest a
methodical approach to the problem. ' Their merit
consisted in their simplicity. In the present work,
we attempt to develop a general framework for a

systematic derivation of all the independent in-
equalities. The point of view we adopt is in a cer-
tain sense complementary to that of Pennington. '
While we find many useful results, we also feel
that they are far from complete.

In Sec. II, we recall some of the positivity prop-
erties of the n-m partial waves proved by Martin, '
Common, and Yndurain. " The use of these posi-
tivity properties in conjunction with the crossing
symmetry of the system leads to the partial-wave
inequalities of our interest. The general discus-
sion of these inequalities is facilitated by the two-
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II. RESUME OF PREVIOUS WORK

A. Some Results of Martin, Common, and Yndurain

Let A~0&(s, t ) and A&'&(s, t ) denote the scattering
amplitudes which in the s channel describe the re-
actions m w'- m'w' and n'n'- n'm, respectively.
Their partial-wave expansions are

A ' (s, t ) = g (2l +1)a,' (s)Pg (z, )
7=p

= g (2l +1)bI'(i)P, (z,),
7=p

where a, ' (s)=0 if l is odd and a~ (s)=i&I' (s).
The pion mass will be taken to be —,

' so that
s+ t + u = 1. With this choice of units, the vari-
ables z, and z, are given by z, = 1 2t /+(s —1) and
z, =1+2s/(t —1).

The partial waves aI'&(s) fulfill the Froissart-
Gribov representation'

(2.1)

(2.2)

variable expansion of the pion-pion amplitude in-
troduced by Balachandran and Nuyts. " This ex-
pansion and some of its important properties are
also summarized in this section.

In Sec. III, we introduce two classes 6 ') and
8 ' of functions of s and t, one each for m'w

—w's' and v'n —s+s . For each member H~'&(s, t)
66&') of either of these classes, there is asso-
ciated an inequality involving the m-m s and p
waves. The functions H~' (s, t) in 6~' are re-
quired to be antisymmetric in s and t while the
functions H' (s, t) in 6"are required to be lin-
ear in s. The partial waves h~' &(s) of H ' (s, t)
are also required to satisfy certain positivityprop-
erties when l=2, 4, 6, . . . .

In Sec. IV, a well-known theorem on the repre-
sentation of polynomials of one variable which are
non-negative on the interval [0, 1] is stated. This
theorem is useful for the imposition of the positiv-
ity requirements on h ~7').

Section V studies the constraints on h(7' due to
the antisymmetry of H~' . When there is a general
scheme available for the imposition of positivity
requirements on h~'& (perhaps a scheme of the sort
suggested in Sec. IV), this section provides a sys-
tematic (if clumsy) method for treating the anti-
symmetry constraints and for writing the m'n

-m'm' s-wave inequalities. The somewhat com-
plementary nature of our approach and that of
Pennington is also pointed out.

Section VI illustrates the previous considera-
tions in specific examples. In particular some in-
equalities due to Balachandran and Blackmon"
and Pennington' are derived in a simple way.

In Sec. VII, we present some new inequalities
for the pion-pion s and p waves.

4
a&'&(s) = s(1-s) „,

i=0, c; l=2, 4, 6, . . . ; sE[0, 1), (2.3)

where the absorptive parts A", &(s, t') have the pos-
itivity property"

AI'(s, t'}&0, i =0, c; t'& 1; sC [0, 1). (2.4)

As a consequence, one may show that"

(a} a~'&(s)~ 0, l=2, 4, 6, . . . ; sE[0, 1} (2.5)
j. /r (s)

(b) n" (s) =
I 4 (' 0"(s, t),
p

i = 0, c; l = 2, 4, 6, . . . ; sE [0, 1) (2.6)

where

1/2
(2. 'l)

and

y~'(s, $)~ 0 for i =0, c; $E 0, ; sE[0, 1).1
S

Note that (2.6} implies (2.5).

(2.8)

B. A Two-Variable Expansion A' (s,t)

In previous work, "a two-variable expansion
of the scattering amplitudes A~'&(s, t) was intro-
duced. This expansion will play an important role
in our later discussion. We shall, therefore,
briefly summarize a few of its relevant properties
here.

When s and z, are restricted to the Mandelstam
triangle 0 & s & 1, -1 & z, & + 1, the amplitudes
A~' (s, i) are expanded in the series

The basis functions S 7 are given by

S', , (s, i)=(1 —s)'P "+' (2s —1)P,(z, ), (2.10)

where P(""')are Jacobi polynomials. We find
from (2.9) that the partial wa.ves have the expan-
sion

&g'(s) = (1-s)' Q 2(v+1) n~" P~"""(2s —1).
@=7

(2.11)
Further, the orthogonality properties of the Jacobi
and Legendre polynomials lead to the relation

A&'&(s, f)= P Q 2(a+1)(2l+1)u,' 'S', (s, t) .
o=O 7=o

(2.9)
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](J dsdts'„(s, t(s (, 0

1 1-s
ds dt S (s t)S N(s t)

0 0

U, z(s, t)=Q 2 1
Yz(o)S', (s, t). (2.18)

1 =p

The numbers X~(o) and Y z (o) are ca.lculated in
Ref. 11. It follows that

1 ~l
ds(1 —s)—,

' dz, S„'(s, t)S„(s, t)
0

= [2(n+ l + 1)(2l + 1)] '5
( z, 5„„.

(2.12)

L=0

L=p
Y' (o)P((i&

(2.19)

(2.20)

Here a is the Mandelstam triangle. It is easy to
show, by using (2.12}for instance, that u&,'lI can
be expressed in terms of aI'l(s) in the form

~1
=

J
ds(1 —s) P( +~' (2s —1) a(' (s).

(2.13)
The basis functions S', ,(s, t) are diagonal in the

s-channel angular momentum. We may also intro-
duce the basis functions

T', , (s, t) =(1 —t)'P',"(' "(2t—1)P, (z,),
U', , (s, t) = (1 —u)'Pt,","' (2u-1)P, (z„), (2.14)

l=0, 1, 2, . . . , cr; 0=0, 1, 2, . . .
which are diagonal in the t - and u-channel angular
momenta, respectively. [Here z„=1+(2t)/(u-l). j
The expansions of A&'~ in these bases read

A('~(s, t) = Q Q 2(a+1)(2l +1)
a=p i=0

Q 2(o+1)(2l +1)
a=p & =0

x P to'l
I U „',(s, t ), (2.15)

where s, t, u are constrained to be in the tri-
angle 6 (which is invariant under permutations of
s, t, u). We have used the fact that the t and u
channels of At'l(s, t ) are identical in writing (2.15).
The analogs of (2.12) are also valid for T', , and
U', , due to the symmetry of A. The expansion
coefficients in (2.15) are therefore given by

1
P('~'=

J dt(1 —t}'"P("""(2t —1)b'*'(t) .
(2.16)

Now the following identity may be proved be-
tween the three sets of basis functions":

T, z(s, t)=Q Ãz(o)S', (s, t),
, 2t +1 (2.17)

This is a system of crossing relations which con-
nects a finite number of partial waves due to
(2.13) and (2.16). Note that different values of o
are not connected by crossing in (2.19) and (2.20).

We shall have occasion to consider certain func-
tions H&o~(s, t) which are antisymmetric in s and t
(and which enjoy some further properties as well).
Let

III. THE AUXILIARY FUNCTIONS H (s,t) AND B (s,t)
AND THE GENERAL FORM OF THE

s- AND p-WAVE INEQUALITIES

We prove the following: Let H ' (s, t) (i =O, c)
be any function of s and t uith the Partial-wave
exjansions"

Ht'l(s, t) = g (2l +1)ht, 'l(s)P, (z, )
t —p

(3.1)

= g (2l +1)g"(t)P(z, )
t =p

(3.2)

Further let H (s, t) be anti symmetric in s and t
so that g~, ~ (s) = -h, (s), and let H ' (s, t) be at
most linear in s for fixed t so that g~'&(s) =0 for
l ~2. Then the inequality

H&" (s, t}= Q Q 2(o+1)(2l+1)lt', , S', , (s, t)
o=o &=0

(2.21}

be the two-variable expansion of such a function.
The analog of (2.13) for y ', , is, therefore,

I
ds(l —s)'+ P '" l(2s —1)h, (s))

0

(2.22)

where h((o'(s) is the l th s-channel partial wave of
H('l(s, t).

1 1

g (2l +1) ds(1 —s)[g((' (s)b, ' (s)-ht(' (s)a, ' (s}J~ 0
f=p 0

is valid if any one of the following conditions is fulfilled by H ' (s, t):

(3.3)
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(a) hI'&(s)&0, l=2, 4, 6, . . . ; 0&s&1

(b) g (2l + 1)ht, ' (s)$ ' & 0, 0 & $ & 1/r (s}; 0 & s & 1

(3 4)

(3 5)

H" (s, -'(1 —s)(1-y)}—h."(s)
-1

1+sx&; 0& s&1.1-s ' (3.6}

Note that for i =0, only the l =0 term survives in (3.3) and that since gtnnl(s) =-he~0 (s), the two terms in

that equation are equivalent to one term.
For the proof, we note that

1 1
dsdtHt~l(s, t)A 't(ls, t)= ds(1 —s)n dz, H~ l(s, t)A~'l(s, t)

dp -1

~1 t 1
dt(1 —t)n dz, H ' (s, t)At'~(s, t),

w p

(3 't)

due to the symmetry properties of the Mandelstam triangle and of dsdt. The substitution of the partial-
wave expansions of H&' leads to

00
t 1 00 1

g (2l +1) ds(1 —s)h&, '&(s)aI' (s) = g (2l +1)Jt dt(1 —t)gI' (t)bt, ' (t),
l =p

dp l=p

which may be written as
1 ~l e' 1

g (2l +1) ds(1 —s) [gt, '&(s)hs'l(s) —hI'&(s)a ' (s)]= zt'l g (2l +1) ' ds(l —s)ht, 'l(s)a~~'&(s),
l=p Qp l)2 4p

l = even

(3.8}

since a~l ~ =b~l, g~l ~ =-h~l, a~' =0 if l is odd and g~'~ =0 if l ~ 2. Now

s =2; e' =1 (39)

1

g (2l+1)J ds(1 —s)h['&(s)aI'&(s)
l~2

l =even

~ 1 1/r (s)
ds(1 —s) d$

Qp p

(2l+1)h,'(s)]' p' (s t')
- l o 2; l = even

(3.10)

(s tv)
2 '

1 t'dy H ' (s, z(1-s)(1-y)) hn (s)
w 0 a, ' ' 1 —s, [2t'/(1- s) —l]0 —y'

(3.11)
Here (3.10) is a consequence of (2.6) while (3.11) follows from (2.3) and the identities

(2l + 1)h I'l (s)P, (y)
(2l +1)ht, 'l(s)Q, —1 e d i~2:t =even

l = even

—,'(H ' (s, —,'(1-s)(1-y)}+Hi'l(s, —,'(1- s)(1+y))) -ht'l(s)
[2t'/(1- s) —1]-y

1 2t'
1

"'d H ' (s, —,'(1 —s)(1-y)) -hnt'l(s)
2 1-s „, [2t'/(1-s) —1]0-yn

(3.12)

Equations (2.5), (3.4}, and (3.9) imply (3.3)
Similarly, (2.8}, (3.5), and (3.10) as well as (2.4},
(3.6), and (3.11) also imply (3.3). As regards the
latter, note that (2t')/(1 —s) —1 & (1+s)/(1, —s) & 1,

for t'& 1 and 0 & s &1.

Among the three conditions (a), (b), and (c), (b)
leads to better inequalities than (a) while (c) leads
to the best possible results since (2.6)-(2.8) imply
(2.5) and (2.3)-(2.4) imply both (2.5) and (2.6)-(2.8)
while the converses are not true. ' ' It is possible
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to obtain even more refined results by replacing
(2.4) by more detailed unitarity properties of the
imaginary parts of the t-channel partial waves in
the physical region and correspondingly by mod-
ifying the positivity conditions on H~' . Such meth-
ods have been followed in Refs. 4 and 5 which may
be consulted for further details. We should also
mention here that the works of Griss' and t ommon
and Penningtone utilize properties of aI'~ [like
those in (2.6)] which are implied by the Froissart-
Gribov representation and which are more refined
than (2.5).

The determination of the functions H ~'~ can be
broken up into two steps: (1) Determine all those
functions which fulfill one of the stated positivity
properties (2.) Impose the antisymmetry condi-
tion on H~' and the linearity condition on H '. In
Sec. IV, we briefly study the first problem, while
in Sec. V, the implications of the antisymmetry
condition on H~' are analyzed. The linearity con-
dition on H ' however will not be discussed in any
generality in this paper.

IV. A REPRESENTATION THEOREM FOR
NON -NEGATIVE POLYNOMIALS

We shall restrict our considerations hereafter
to functions Ht'l(s, t) which are polynomials in s
and t. This assumption seems permissible due
to the completeness properties of polynomials in
s and t for fairly wide classes of functions de-
fined on the Mandelstam triangle. The partial
waves hI'&(s) of such functions H~'l(s, t) are them-
selves polynomials in s which vanish like constant
x (1 —s) as s-1. The imposition of the positiv-
ity properties of the form (3.4) or (3.5) on these
polynomials is greatly facilitated by the following
well-known theorem" Any po.lynomial R„(x) of
degree n which is non-negative in the interval
[0, I] can be rePresented in the form

R„(x)= x [A (x)] '+ (1 —x) [B (x)] ' (4.1)

if n =2m + I is odd, and in the form

R„(x)=[C (x)]'+ x(1-x)[D,(x)]' (4 2)

if n =2m is even. Here A (x), B (x), C (x), D (x)
are Polynomials of degree m in x with real coef-
fi cients.

This representation theorem has been previously
used in the literature. ' ' Its utility will be-
come evident on consulting Sec. VI or the cited
references.

V. SOME CONSIDERATIONS ON THE
ANTISYMMETRY OF H

We write H~'l(s, t }as

H&'~(s, t}=X(s-t}+G(s,t}, (5.1)

where A. is an arbitrary constant and G(s, t ) is an
antisymmetric function with a two-variable expan-
sion [see Eq. (2.22)] with o~ 2. We write sepa. —

rately the only possible term with 0 & 2, i.e.,
X (s —t), for convenience.

Now suppose we specify partial waves h2&'l(s},

h &o~(s), h &'l(s), . . . consistent with our positivity
requirements. We then calculate, using (2.22),
the coefficients g', , for l =2, 4, 6, . . . ; a ~ 2. It
is therefore of interest to know the answers to the
following questions:

(i) Suppose we are given a set of constants y
'

(l = 2, 4, 6, . . . ; o ~ 2) and suppose that we wish to
find additional constants y 0~, y ~, (l = 1, 3, 5, . . . ;
o ~ 2) such that

10

dsdt H& l(s, t)F'(s, t)=0. (5 3)

Expanding F'(s, t), we obtain

F'(s, I) = Q 2(o+ 1)(2l +1)f",S ', ,(s, t },
l = even (5.4)

G(s, t)= g g 2(o+1)(2l+1) lt', , S,' g (s, t)
a=2 l =0

(5.2)

is antisymmetric in s and t. Under what condi-
tions on the given set y, , is this possible.

(ii) To what extent does the imposition of s-t
antisymmetry on G(s, t }determine y,'(o ~ 2) in
terms of y ', (l = 2, 4, 6, . . . ; o ~ 2)'?

The answers to these questions are contained in
the following results:

(a) In order that there exist constants h
(1, 3, 5, . . . ; @~2) such that G(s, t) is antisym-
metric in s and t, it is necessary and sufficient
that the constants X', , (l = 2, 4, 6, . . . ; 0 ~2) ful-
fill a given set of m, linear equations which are
linearly indePendent. They allow us to determine
uniquely m, members of the set lt', , (l =2, 4,
6, . . . ; cr & 2) in terms of the remainder.

(b) g' for o & 2 is uniquely determined by )t', ,
(l=2, 4, 6, . . . ; 0~+).

The definition of m and the constraint equations
mentioned in (a) will be given during the course of
the proof.

Since an acceptable H~'~(s, t) is antisymmetric
in s and t, then for any function F '(s, I ) which is
totally symmetric in s, t, u, we have
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where l is even due to the symmetry in t and u.
Using (2.21) and (5.4) in (5.3), we find

a&2
l = even

x' if',"i =o (5 5)

h &'&(s) = —,'&i. (3s —1)

Roskies'7 has shown that for each o there are
m, + 1 totally symmetric linearly independent
functions E'(s, t), where

m, + 1=number of integers in

the closed interval [—,'&x, 2o] . (5.6)

Thus (5.5) is a set of m, +1 linearly independent
equations. We can eliminate y', from m, of these
equations and obtain m equations which are con-
straints which must be satisfied by the constants

, (I =2, 4, 6, . . . ; o& 2). The last equation then
solves for &I', uniquely in terms of &(', (I= 2, 4,
6, . . . ; 8&2}.

The method of construction of H & and the in-
equalities begins, therefore, by representing
ht2 (s), h4& &(s), ht, (s), . . . according to the theo-
rems of Sec. IV. This will give &t', , (l =2, 4,
6, . . . ; o& 2). The arbitrary constants defining

, [coming from the polynomials A, B, C
and D, defining hto&(s)] will be made to satisfy
the m constraint equations of (a). Finally, &to can
be constructed using the last equation in (5.5). We
have, therefore, an s wave

which leads to the same inequality (3.3) as given
by H&o&(s, t). One can obtain our results using
functions with the mixed symmetry of X&o&(s, t ),
but we preferred the H ' 's due to their sim-
plicity. '

The relationship of our approach to the s-wave
inequalities and to that of Pennington' may be
pointed out here. Pennington starts with the gen-
eral representation of functions with the sym-
metry of X~' and attempts to impose systemati-
cally the positivity constraints of the type (3.4) on
its partial waves. We, however, start with func-
tions with the right positivity properties and im-
pose the symmetry properties as the second step.
The two methods may thus be regarded as com-
plementary.

VI. DERIVATION OF THE INEQUALITIES DUE
TO BALACHANDRAN AND BLACKMON

AND TO PENNINGTON

In this section, the considerations of the last
two sections will be illustrated by a simple exam-
ple.

We shall assume that H ' (s, t) is a polynomial
in s and t. The series (2.21), therefore, termi-
nates at o = some 0, and the coefficients y ', van-
ish when o exceeds &ro. From (2.22) and the or-
thogonality relations

t 1

ds(l —s)""s"P ""'&(2s-1)=0,

+ g 2(o+I) &t'. I ". "(2S—I) (5.7) v=0, 1, 2, . . . , o —/ —1 (6.1}

and the inequality (3.3) is determined. The term
—,
' X(3s —1) does not contribute due to the identity"

it is readily seen that the termination of the series
at o =0, is equivalent to the following form for the
partial waves:

dsdt(s-t)A& &(s, t)

I
ds (1 —s)(3s -1)ato&(s)

0

=0. (5.8}

3Ct &(s, t)A& &(s, t) =0,

Notice that h o&'&(s) depends only on h, ' (s), l even
[see Eq. (5.5)]. We might have anticipated that
the odd-l partial waves would not play any role in
the following way. The function

X ' (s, t)=--,' [Ht' (s, t)+H ' (s, u)]

has the same even s-channel partial waves as
H&'&(s, t ) but has no odd s-channel partial waves.
Moreover,

h ti'& (s) = (1 —s) ' x polynomial

of degree (o, —l), I ~o,
=—0, l&0, . (6.2)

The number of constraints m, on &t
', (l =2, 4,

6, . . . }due to the antisymmetry of Hto& is zero for
0 ~5, one for 0=6, zero for 0=7, and so on. For
algebraic simplicity, we shall consider only such
H ~' for which g ', = 0 for 0 ~ 4. Then the anti-
symmetry of H imposes no constraints on h, ~

(l =2, 4, 6, . . . }. The positivity conditions we shall
impose on h tio& will be those stated in (3.4).

When y ', , =0, for 0 ~ 4, the general form of h,"
consistent with positivity is [cf. Sec. IV and Eq.
(6.2)l

h, ' (s}= (1 —s)'[$(1 —s)+»s], $, i& o- 0

= (5 —»)(I —s)'+ n(I —s)', 4, » - o (6.3)
while h, ' = h 6~' =h 8&' = ~ ~ ~ = 0. Now we know that
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there exists an H!'&(s, I ) antisymmetric in s and t
with d and higher waves as given above. Further,
two such H~' will lead to inequalities which are
equivalent modulo the sum rule (5.8). It is thus
sufficient to find one such H~'~. We shall now in-
dicate a method for writing down such an H ~ & by
direct inspection.

The following formula can be derived by ele-
mentar y manipulations":

and of Common and Pennington. '
Let

N(s, t)=M(s, t}+A~, M(s, t),
where

t~
M(s, t}=-

(7 1)

So let

1
dz, t'P, (z, ) = (1 —s)'¹,,

-1

(-1) (v! )
(v+I+1)!(v-I}!

(6.4)

= g (2l +1)m, (s)P, (z,),
ta

M(s, f)=

= Q (2l + 1}m, (s) P, (z, ) .
l =0

(7.2)

(7.3}

H &!( st)= N, (t' —s3)+ —
2 (t' —s') . (6.5)

2 2

Here P and q are integers and

p& q&2. (7 4)
This H!' (s, f) is antisymmetric in s and f, has an
h 2&'! as given in (6.3), and has I!!0!= 0 for l ~ 4.
Thus (6.5) is an acceptable H!". Its s wave is

h!'!(s) = —,[N,'(1 —s)' —s']
2

The dependence of M and M onP and q has been
suppressed. Our method will consist in first ad-
justing the constant A,~, such that

(2l + 1)[m, (s) +!!~,m, (s) ] g
' ~ 0,

+!I —,{N,'(1 —s)' —s'].

——,(N', (I —s) —s') $, !7~ 0.
2

0&s&l; 0&)&1. (7.5)

[Note that r(s) in (3.5) is & 1 for 0 & s & 1.] We
shall then set

(6.6)

Thus, we find the two independent inequalities' ' '
H !'!(s, t) = sN(s, t) —tN(t, s),

H!'!(s, t) =sN(s, t)
(7.6}

t 1

ds(1 —s) [N', (1 —s)' —s' J a!o"(s) ~ 0,
0

1

ds(1 —s) —
2 (NQ(1 —s) —s )

0 N2

(6 7) and

H!'!(s, t)=(1 —s)N(s, t) —(1 —t)N(t, s),
(7.7)

H! &(s, f) =(1 —s)N(s, t) .
——,[N,'(I —s)' —s') 0 . (6.8)

The inequalities for the case g', , =0 for o & 5
are given in Eqs. (18}-(21}of Ref. l., (A6)-(A9)
of Ref. 2, and by Pennington. ' Although Refs. 1 and
2 do not give our derivation of the inequalities, we
will not do so here in view of the fact that Common
and Pennington' have already given a similar der-
ivation.

VII. DERIVATION OF SOME NEW INEQUALITIES

Here we derive some new s- and p-wave in-
equalities where we impose (3.5) rather than (3.4)
as the positivity conditions on h ~' . The method
used will be one of direct inspection and will not
utilize the general results of the previous sec-
tions. In connection with the work of this section,
we would also like to refer to the papers of Griss'

~ ~(~)+2
l = even

(7.8}

m, (s)+ X~, m, (s) ~ 0, 0 & s & 1; / = 2, 4, 6, . . . , (q) .
(7.9)

We have denoted by (q) the largest even integer
which does not exceed q. To prove the sufficiency

The terms -tN(t, s) and -(I -t)N(f, s) in H!o!(s,t)
do not contribute to h!!'l(s) for I ~ 2. Thus, these
functions H ~'~ fulfill all the necessary constraints
and lead to the required inequalities.

The following conditions are sufficient for the
validity of (7.5):

(~)
(2l + 1)[m, (s) + X~, m, (s) J

go 2
1 =even

(2l +1)[-m, (s)], 0 & s & 1
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of ('!.8) and (7.9), note that m, (s) & 0 for l =even
and 0&s&1 due to (6.4). Also since $ &$8 for
cy& P & 0 and 0&) &1, we can write, for 0& s &1
and 0&) &1,

(2l +1)[-m, (s)] $'
g={a&"

g =even

s=0, we thus find

(P —1) q'(q+1) '

(q —1) P '(P+1)! '

Similarly, (7.9) is equivalent to

(q+l+1) '(q —l) t

(P+l+1}'(P—l) t '

(7.13)

g «{a)+~
l = even

(2l +1)[-m, (s)]

{a)
& $&'~+' Q (2l +1)[m,(s)+ a~, m, (s)], by (V.6}

g&2
g = even

{a)
(2l+1)[m, (s)+X~,m, (s)]g', by (7.9)

g~2
g = even

(V. 10)

which proves the required result.
Now ('l. 6) is the same as

,' [N(s, t)+—N(s,u) ] ~, „—[m,(s}+X,m, (s}]- 0,

0 & s & 1 . (7.11)

This gives, on using (6.4),

as a consequence of

(7.15)

8 1
&0, p=1, 2, 3, . . . .el (q+ l + 1+p)(q —l +p)

Thus (V.14) is the same as

('!.14)

The maximum of the right-hand side is reached
when l = (q} since

e (q+l +1)!(q —l)!
el (p+l +1}!(p —l)!

a 1
el (q+ l +2)(q+ l + 3)(q+ l +4) ~ ~ ~ (p+ l +1)

X
1

&0
(q —l+1)(q —l+2)(q-l+3) (p —l)

(q -1)
(1 ), , (P -1)

~' q! (q+1}! p! (p+1}!'

0 & s& 1. (7.12)

[q+(q)+1]' [q- (q)J'
[P+(q)+1]' [P -(q)]! (7.16}

Since the maximum of the right-hand side is at Putting (7.13) and ('l.16) together, we finally have

(P —1) q'(q+1) -'[q+(q)+1]![q-(q)]!"™x(q-1) P!(P+1) ' ' [P+(q)+1]! [P-(q)]!
=&ga ~

(7.1'!}

It is sufficient to consider the equality sign here
since the inequality when A~, = p~, +

~
e

~
is a linear

combination with positive coefficients of the in-
equalities with A, ~, = p~, and one of the inequalities
stated in Refs. 1 and 2."

Finally with A.~
= p, ~, where P and q are integers

which fulfill (V.4), the inequalities may be written
down using (6.4) to project the s and P waves from
(V.6}and (V.V}. We will leave it to the interested
reader to write down the corresponding formulas.

The inequalities of this section can be general-
ized in at least two different ways. The first gen-
eralization is effective only for the inequalities
involving u{~ &. It is sufficient to illustrate it here
by an example. The principle of the method
should then become clear if the discussion in Sec.
IV of Ref. 2 is also consulted where such gen-

eralizations are studied in detail when the posi-
tivity condition is (3.4). Consider

(P!)* "(q! )'

pit S g S
(p! )' "(q t)'

A.Pa [t s'-'-s t'']-
+ ' [st' '-ts' '].&ga

(q ')' (7.16)

Here A~, is given by (7.1V) and we shall assume
for purposes of illustration that q& 3 and that m
is an integer & 2. This function is clearly anti-
symmetric in s and t. The contribution of th8'
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term in the first bracket to h P fulfills (3.5) by
construction. The contribution of t s ~/(P ! ) also
fulfills (3.5) since in fact it fulfills (3.4) due to
(6.4). The contribution of X~-, t s'/(q! )' has the
wrong sign by (6.4), but the sum

(7.19)
clearly contributes with the correct sign. Simi-
larly,

t~ ' st~ ' s(1 —s" ~)t' ~

Pa ( f)2 Pa
( /)2 Pe

( ))2
(7.20)

contributes with the right sign while the last term
-&~, ts' '/(q! )' makes zero contribution to h!,'!

for l ~ 2. Thus (7.18) may be used to construct an
inequality for a(0 ~.

The second generalization of the considerations
of this section is effective for both processes
m'm —n'm and m'n'- n 'm and consists in re-
placing the discrete variables of the sort q, P, and
m in ('l. 6), (7.7), and (7.18) by continuous vari-
ables restricted to suitable intervals. This meth-
od has been explained in previous work' ' and will
not be pursued further here.
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