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sfo{na) =—f d) e ' ufo{A/s)

f"(a,a) -f"g(ns) —s 'f2(ns) ~ ~ ~,

so that
1

5 da e'u~s f0{us) =f{X,s) +0 {e ~)

= f0{X/s) +O(s g{X/s)).

There is no problem from u =0 since small n's will be
seen to be excluded from our integrals.

We expect from smooth threshold behavior (Ref. 1)
that l o3.

We might also comment, in this connection, on the
recent paper by R. Jaffe I.Phys. Letters 37B, 517 (1971)],
who claims that the matrix element for massive p -pair
production is not LC dominated in the parton model.
Although we are certainly not using the parton model,
we would like to point out that, even though no LC singu-

larity is present in the parton-model matrix element,

(J(x) J(0))z, the LC does dominate even here in the
sense that substitution of x (J(x) J(0))~ for (J(x) J(0))~
gives a less leading contribution. Our approach does not,
in fact, differ from that of the parton model in the ques-
tion of LC dominance (Factors like e ~" ' would be nec-
essary to ruin LC dominance. The parton model gives no

such factor), but rather because the parton model does
not exhibit the Regge behavior (19) at the five-point func-
tion level.

2The result is somewhat dependent on the specific form
{31)chosen for p. Writing g{p,p') =4(p+p', {pp') ~ ), the
general statement is de/dx-C({s) ft, {s)~ t) and da/ds
-C(s, {s) ). Thus the requirement that the sum variable
P+P' be at least as important as the product variable
(PP') gives the result stated in the text. More general-
ly the powers of f(: in the exponentials can be left as free
parameters and fit to the data.

R. Brandt, A. Kaufman, and G. Preparata (unpublished).

P HYSIC AL RE VIE W D VOLUME 6, NUM BE R 2 15 JULY 1972

Scale and Conformal Transformations of Currents and Tensor-Meson Dominance

H. Genz
Institut fur Theoretische KernPhysik, Universita't Karlsruhe, Karlsruhe, Germany

and

J. Katz and L. R. Ram Mohan*
Institut fu'r Theoretische Physi@, Freie Universita't Berlin, Berlin, Germany

{Received 9 March 1972)

We use the infinite-momentum limit and single-particle saturation to investigate conse-
quences for baryon matrix elements of equal-time commutators of the generators of scale
and conformal transformations with currents and their divergences. We show that the root-
mean-square tensor mass radii are the same for a11 members of the baryon octet. We use
Regge theory to show the validity of the procedure in this case. The result implies that some
of the baryon gravitational form factors F

& {q ) or F2 {q ) must be subtracted. On demanding
the subtractions to be SU(3)-symmetric we obtain Gz{f/N)/G&(fNR) =-1, and find the f/d
ratios to be the same for the two couplings. This is in agreement with the phenomenological
analyses of Schlaile and of Strauss.

I. INTRODUCTION

In this paper we investigate consequences for
baryon matrix elements of the behavior of currents
and their divergences under scale and conformal
transformations. ' We make use of the infinite-
momentum limit' (IML) and single-particle satu-
ration of the commutation relations of scale and
conformal generators QD and Kp with currents
and their divergences to show that the root-mean-
square tensor mass radii are the same for all
members of the nucleon octet. When combined
with the usual tensor-meson-dominance (TMD)
assumptions' ' these relations require some of

the baryon gravitational form factors F, (q ) and
Fs(q') to be subtracted. On demanding the sub-
tractions to be SU(3)-symmetric we obtain

G,(fNN)IG, (fNN) =-1, and find the f/d ratios in
the two couplings to be the same.

In deriving our results we make use of the fact
that the dimension of the time component of the
currents 8'„, which are the vector V'„or the axial-
vector currents A'„, is three. As is well known
this follows from Gell-Mann's charge algebra if
cJp has a dimension. Alternatively the same result
holds if a state ~A) exists such that (A ~

J (A) e0
and if under conformal transformations
[Ko(0), S„d„(0)]=0. The proof' makes use of the
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connection' between the first-order Schwinger
term in the equal-time commutator [iT&& (x), J,(0)]
and the second-order Schwinger term in
[iT«(x), &)„J„(0)]for any symmetric energy-mo-
mentum tensor T„„, i.e.,

reliable. In Sec. III we study the consequences
for TMD of the tensor mass radii being the same
for all members of the baryon octet. Section IV
is devoted to discussion and conclusions.

x c ETQ x y Jp

= ——'~l d 'x x x„[iT&&0(x), S„d„(0))

+f& „d,(0)+s„S„„(0). (1.1)

In the above S„„denotes possible second-order
Schwinger terms in i[T„(x),J„(0)]. The result
now follows on choosing T„, to be the new and im-
proved energy-momentum tensor' and on using
the definition of QD and K, given in Eqs. (2.5) and
(2.6).

With resonance saturation alone our method im-
plies that the dimension of the space components
of the currents is 3 and that of B„J„is 2. In con-
trast to our other results, Regge arguments do
indicate the invalidity of our procedure in this
case. Indeed, even in free-field theories & dia-
grams give a contribution' in the evaluation of
baryon matrix elements of [i (I)D, s J„] in the IML.

In Sec. II we evaluate Eqs. (2,1)-(2.4) for bary-
on matrix elements in the IML. We use Regge
theory to show the validity of the IML applied to
the baryon matrix element of Eqs. (2.3), (2.4),
and (2.1}for g =0. In other words, Regge argu-
ments confirm our result regarding the tensor
mass radii of the baryon octet mentioned above,
whereas the conclusions that the dimensions of
J, and of B„J„are3 and 2, respectively, are less

11. SCALE AND CONFORMAL TRANSFORMATIONS

OF CURRENTS AND THEIR DIVERGENCES

i[CD(0) ~;(0}]=d())d~

j[q (0), s„d'„(0)]=de„J'„,
i[K (0) yl'„(0)] = 0

z[K,(0), s„d'„(0)]=0 .

(2.1)

(2.2)

(2.3)

(2.4)

In the above equations QD and K„denote the scale
and conformal charges defined in terms of the new
and improved energy-momentum tensor' T„, by

QD —— d xx T x (2.5)

and

Kp d x + Tpp x 2g
p x Tp + ~ (2.6)

The dimensions of J„and B„J„aredenoted by d~„~
and d, respectively. Here, d~ p~

= 3 as required by
Gell-Mann's charge algebra or the considerations
of Sec. I.

The baryon matrix elements of the currents J„
may be written as

The transformation properties of currents and
their divergences under scale and conformal trans-
formations are given' by the equal-time commuta-
tors

and

&P(y')Iy;IP(P))= (P')(&y, fl(y*) ~
2

—" fi(&')) (y) (2.7)

(B(p') ~A' (B(p)}=u(p')[iy„y, g', (q') + q„y,g,'(q'}]u(p},
where P„=(p' p)+„, q„=(p' —p)„, and a is an SU(3) index.

Using covariant normalization for the states we define

(2.3)

(2.9)

(2.1Oa)

and

(p(p)ly„(o)IP(p»=;(p')(-, '.(y„p 'y p ) P(q) ~p" "p',"(y) ~ (y„q„—(), „e*)P',"(q')) (i),
B

where the gravitational mass form factors are normalized, by the energy and the angular momentum of
the states, to be

F,&)(0) = 1

F',*')(o) =o .

We evaluate Eqs. (1)-(4) in the IML between baryon states (B,.) and ~B,.) . We write

CI =&»~('@z) d(]-d())d(;]~)B }

(2.10b)

(2.11)
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C ' =(B I{([Q,s„J'„]—ds„J'„)IB;&

C'„"=& B, I[K., J'„]IB(&,

C =&B(l[K, sq Jq) IB,&

With single-particle saturation in the IML we obtain

f&B1 l[Q„II(0)]IB, &
=-g' '

(B,(p') IT, (0) IB„(k)&&B„(k}IQ( ) IB,(p)&j gy 2g g Ofll ll n
k =p'

(2.12)

(2.13)

(2.14)

and

+, , & B,(p'} ill(0) IB.(k)&& B.(k) IT..(o) IB, (p}&
m 0 k =p-

a'
&B, I[K,(o), fl(0)] IB &

=-Q, (B;(p') IT..(0) IB„(k)&&B.(k) Ill(0) IB;(p)&
k &p'

(2.15)

&B,(p') Ill(0) IB.(X)&&B.(k) IT.D(o) IB((p)&
&k ' 2ko k &p

(2.16)

where Q(0) is either J'„(0) or B„J'„(0)and the prime on the summation over n indicates that the integration
over the momentum k has already been performed.

With baryon octet intermediate states the commutators can be easily evaluated in the IML and we obtain

[& B,(p') l[(Q„J'„(0)]IB,(p)&] 3& B((p) I J'„(0) IB,(p)&,

[&B,(p') l[(Qo, S„J'„(0)]IB((p)&ls„~ 2(B,(p} IS„J'„(0)IB,(p)&," Ipl-

[(B,(p ) l[KD Jq(0)] IB((P)&](( ~ 8 lpl& B, I J'„(o) IB(& [F,'4'(0}-F("'(0&+F2""(0&-Fl'"(0&] ~

p ~oo

(2.17)

(2.18)

(2.19)

[& Bq(p') l[K„s„J'„(0)]IB,.(p)&], 8 Ip I(B, le„J'„(0)IB,& [F'i(i(0) —F'i" (0)+F'i" (0) -F,'"(0)] . (2.20}
p ~on

For estimating the contribution of higher intermediate states we use the manipulations suggested in Refs.
2, 6, and 10 to write

& B((k) I Q(( I B,(p}& =
& B,(k) I Tq „(0) I B,(p)& 5'(k - p},

0 PO
(2.21)

( B,(k) IK. I B((p)&=,& B,(k) I T„„(o)I B((p)& 5'(k - p),
0 Po

(2.22)

&B,.(k}IJ;IB,(p)) = &B,(k) ls, J;(0) IB,.(p)& 5 (k —p) .
0 PO

(2.23)

We note that B„A'„, T„„,and s„, Vt (for b v 1, 2, 3, 8) are suitable interpolating fields for the pseudoscalar
mesons NP, the scalar meson e(750) and the scalar (( mesons, respectively. It is now straightforward to
relate the contributions from higher-mass states to the scattering amplitudes for the reactions

M'
+ b BJ+

K

We write

p'(g', e') = g «li"- m. ')&B((p}IT,„(0)IB.(p)&&B.(p) le J'(0) IB((p)&
fl +S,J

and

(2.24)

(2.25)

(2.26)p (w, q ) = Q 5(w' —M„')&B,.(p) Is J'(0) IB (p))(B„(p)IT„„(0)IB (p)&
ll&i, j

where p are proportional to the discontinuities in the forward amplitudes for massless mesons at total
c.m. energy W in the reactions (2.24} and the corresponding u-channel reactions.
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Using Regge arguments for the reactions (2.24) it is possible to state whether the contribution to the
commutators (2.11)-(2.14) from intermediate states with ntasses higher than M& or M,. are finite in the
IML. With E=(W'+p')' ' we have

, p'(W', q') —p (W', q')
2E(E p,)-(E p,')-

dW P' '-P' '
(w'-M, .')(w'-M, .') ' (2.27)

.)(dq" q &qq', q') q &qq, q'))
2E E —Po E —Po

p'(w') p-(w')
W2 ~ 2 +72 I 2Ipl--

qE &q q')*&q q.)-&q q'-)&E q.)*)--

(2.28)

dW' p'(W') p (W')
(W' t&d '}(W' m-') . W'--M' W'-tif ' ' (2.29)

t dW' p'(W', q') p (W', q')
2E (E p.)' (-E- p.)'

dwa p'(W') p (W')
')*) (2.30)

C*'"- dW' W' -"0

Cg(2) dW2 gP -0.5

C*~ ~- dW2 W2

Cg(e) dW2 W2 -x.5

(2.31)

(2.32)

(2.33)

(2.34)

Thus the interchange of the limit ~p)- ~ with the
integral over W' is justified for C,* ', C0 ", and
C*' . The fact that C* ' does not converge for
W'-~ indicates that conclusions we may draw
about the dimension d from the saturation proce-
dure for the commutator [iQD, S„J„]=de„J„would

In Eqs. (2.27)-(2.30} the C* are the contributions
of higher-mass states to the commutators in Eqs.
(2.11)-(2.14). Also we have interchanged the limit
~p j- ~ with the integral over W' in obtaining the

final expressions. Now Regge theory indicates
that in the limit W'-~ the asymptotic behavior of
p'(W') is W' ' ') where u, (0) are the intercepts of
the highest Regge trajectories contributing to the
t channel in the reactions (2.24). The experimen-
tally determined" values of o. (0) for the pseudo-
scalar, the vector-meson and the axial-vector-
meson octet trajectories which contribute in the
t channel in these reactions range from 0 ~o.(0)
&0.5. In the limit W'-~, with a(0) &0.5, we have

be unreliable. In fact an evaluation of z diagrams'
shows that they do contribute in the IML to this
matrix element.

For the space components of currents, C,* ' is
expected" to have the asymptotic behavior of
C* ", and C„* " that of C* '~; hence conclusions on
d[,~

which we may draw from the saturation proce-
dure for [iQD, J),] =d&~) J, would be unreliable.

The most important contributions to the C*'s
will come from states with masses nearest to the
nucleon octet. " Furthermore, the conformal and
dilatation charges are isoscalars. Thus the Roper
resonance N'(1470) with 8 = —,'', the Yo~(1405) with
d~= —,', the Y,*(1385) and the =*(1530}belonging
to the J = —,

"decuplet could give important contri-
butions. In other words, we allow for one reso-
nance in each channel of definite isospin and
strangeness. While this is an acceptable approx-
imation in the case of the strange-particle chan-
nels due to the next resonance being -300 MeV
higher in mass, it is less so in the nucleon chan-
nel since N(1520) with J = —,

' and N(1535) with J
are close in mass to the Roper resonance

N(1470). We shall later return to this point.
Consider the commutators [K„A;]=0 and

[K„&„A'„]= 0 for a = I, 2, 3, and 8. For external
baryon states )&B&) = )B,. ) we note from Eqs. (2.19)
and (2.20) that the baryon octet contributions to
these commutators vanish. This implies that the
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sum of resonance contributions to the integrals
C,*' and C*' should be zero.

We thus obtain with one resonance in each iso-
spin- strangeness channel

(2.35)

2 (NIT„„ IN(&(N(l()„&'„ IN) =0
3, SP19

for a =1,2, 3, 8 (2.43)

together with Eqs. (2.40), (2.41), and (2.42) as be-
fore. We can also make use of the commutator
[iQD, J&&]=3JO for IB(& = IN& and IB,&

= I» or I»
to obtain

p'(w')- p-(w')
0

(()f,'-M, ')'

Hence'4

p'(w') =o

or

(2.36)

(2.37)

and

Q (N &T„„&lv, (&N, B„A„( ))=0
5 & SP1B

(2.44)

(2.45)

G(N'Ne) =0,

G(e Y(~)A} =0,

G(z Y,*Z) =0,

(2.39)

(2.40)

(2.41)

& B I T„p(0) IB*)&B*la„A'„ IB ) = 0

Since the resonances B*, are experimentally" ob-
served to decay into ((B, and G(rB(B~) are non-
vanishing we conclude that the off-diagonal matrix
elements of T„„are zero in our saturation
scheme. Thus

The Eqs. (2.43}-(2.45) evidently have the solution
(N IT„„IN, ) = 0. In order to argue that this solu-
tion is unique we note that Eqs. (2.43)-(2.45) are
6 linear relations for the three unknowns

(NIT» IN,.) with nonvanishing and otherwise un-
known coefficients (N, Ia„J'„ IB& . Excluding the
possibility that all the relevant determinants van-
ish we then obtain the desired result, i.e.,
( NiT„„ iN; ) =0.

From Eqs. (2.17), (2.18), (2.27), and (2.28),
with p'=0 in our saturation scheme, we have for
the dimension of J~ and of ~„J'„

G(~=*=}= o . (2.42)
and

d(A)= 3 (2.46)

The vanishing of the baryon off-diagonal matrix
elements of T„„is not unexpected since, for ex-
ample, it also usually follows in Lagrangian
models. The same result also follows if we con-
sider a saturation scheme in which only states
belonging to the 56-dimensional representation
(viz. the Jr=-,"octet and the Jr=- decuplet) are
included. Thus the resonance contribution to Eqs.
(2.27)-(2.30) is expected to be negligible for all
currents J'„.

In the above saturation scheme the resonance
contributions to the integral C,*" vanish and the
commutation relation [iQ» J;)=3J', is verified for
all currents.

An alternative way of deriving Eqs. (2.39)-(2.42)
would be to use commutation relations (2.1) and
(2.3).

We now wish to discuss the possibility of includ-
ing not only N, = N(1470) but also N, = N(1520) and
N, =N(1535) resonances in the saturation scheme.
Since the mass differences among these reso-
nances are less than their individual widths we
may consider them to be degenerate in mass with
the effective mass at -1510 MeV. With this as-
sumption, for IB,.) = IB,&, from Eqs. (2.13) and
(2.14) we obtain

d=2 (2.47)

respectively Furth. ermore from Eqs. (2.19),
(2.20), (2.29), and (2.30) we obtain

P (&)(P) F (f)(P) F (~)(P)+F&(j)(0) (2.48)

This result states that the mean square tensor
mass radii,

F,'(0) + F,'(0)
F,(0) F,(0) ' (2.49)

III. CONSEQUENCES FOR TENSOR-MESON
DOMINANCE

Equation (2.48) provides restrictions on tensor-
meson dominance' ' of the tensor mass form fac-
tors E,((I') and E,(q') of Eq. (2.9).

We define

&f I T„„IO& =z, e„„,
(f '

I T„„lo) =z~.e„, ,

(3 1)

(3.2}

are the same for all members of the baryon octet.
It should be noted that Regge theory supports our
derivation of Eq. (2.48), but not of Eqs. (2.46) and
(2.47).



SCALE AND CONFORMAL TRANSFORMATIONS OF CURRENTS AND. . . 629

where the f(1260) and f '(1514) are the tensor me-
sons with singlet and octet components given by

Here 8 is the mixing angle and

tan8= I—/vT . (3.8)

f, =f cos 8-f ' sin8,

f, =f sin 9+ f ' cos 8 .

(3.3)

(3.4)
Ne define the tensor-meson coupling constants

by

1'
(mz ~ q ) B(p') —T „"„B(p) = c„, (p') i(y„P„y„P„)G~ G } (p)

-q ~ rnf f B
(3.6)

with a similar expression for the f' meson coupling. For the coupling constants G~», for i=1, 2, we as-
sume SU(3) symmetry in the form

QmrG; BBT=—G, g C,. BBT
B,T B,T

=G((f[(2$))EZ+(2p, —
3 b,. )A A +(3p( —Ei()NN+(y( —b, )--]

Wf'[(q-, , —b, )ZZ+(@, + —,'b, )X'A'+(2y, )==]], (3.7)

where g,. and b, = 1 —g, are the SU(3}-antisymmetric and -symmetric coupling parameters
The f-f mixing has been chosen such that, as required by experiment and in agreement with the quark

model, the f' decouples from the nucleons.
In the TMD approximation, allowing for at most constant subtractions we write

B IB
F; (q ) =A, +G; zt ——,—,—+C] zf Cg

mt(gy +q ) zymt mt +q

The normalization conditions F,(0) = 1 and F,(0) =0 now read

GZ
1 3 1 1

mf Zf mf ~

and

(3 8)

(3.9)

3
Q=AB+2+ 3 2+ 2

mf Zf mf ~

In addition, we have our results in Eq. (2.48):

2fC» i& z &™f iz
5

5 1 5 2 5 Cl C,' +1—2
mf mf mf zf mf I

(3.10)

I

5 Ci + C,' +(1—2)
G 1zf Ao Zf ' mf
mf zf mf &

5

mf Zf mf ~ J (3.11)

Using Eqs. (3.7)-(3.11}we first show that not
both F, (q'} and F2s(q') can obey unsubtracted dis-
persion relations for all B. Suppose both A, and
A, are zero. Then from Eq. (3.9) we obtain

41= 4'2 ~ (3.14)

On the other hand, from Eq. (3.10) with A, =0, we
note that either

(3.i2) or

G, =O (3.i5)

and

G =-G
2 (3.13)

and when (3.12) is substituted in Eq. (3.11) we ob-
tain

142= ~ ~ (3.18)

When the relation (3.15) or (3.16) is combined with
Eqs. (3.13}and (3.14) it implies that G,(fNN) =0,
i.e., that the f meson decouples from the nucleons.
This is however not acceptable and A, =A, =0
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should be excluded.
We now investigate the possibilities that either

(i) A s = 0 or (ii) A,' = 0.
(i) With A, = 0 we obtain from Eq. (3.10) that

either G, =0 or alternatively Eq. (3.12) holds and
The latter possibility is again not allowed

since together with Eqs. (3.11) it implies that the

f meson decouples from the nucleons. If G, =0 we

get from Eqs. (3.11) that

tane, (3.17)

and hence Eq. (3.9) implies that A, must be pres-
ent and that it depends on the SU(3) index B.

(ii) When Az = 0 we first note that Eq. (3.12} holds
and hence Eqs. (3.11) can be solved to obtain G,
=-G, and p, = p, . In order to avoid the earlier
contradiction that the f decouples from the nucle-
ons, these relations imply that A, is present and
is SU(3)-symmetric. In particular, we have

GfNN GfNN
2 1 (3.18)

Actually Eqs. (3.13), (3.14), and (3.18) follow from
the weaker assumption that A, is SU(3)-symmetric.
They also follow if we allow for arbitrary poly-
nomial subtraction in F, (q'), whose first two co-
efficients are SU(3)-symmetric.

In comparing the two alternatives the one leading
to Eq. (3.18} is the more attractive one since in
this case the subtraction constants for both F, (q')
and F, (q') are SU(3}-symmetric whereas the first
possibility requires A, to be SU(3)-dependent. The
phenomenological analysis" for the ratio of the
coupling constants G~2""/G~~"" is inconclusive. It
however partially supports the result [Eq. (3.18)]
that this ratio is -1. In the literature, an unsub-
tracted form of F,"has been assumed to obtain G~2""

=0. Some authors have viewed this formula as a
possible explanation of s-channel helicity conserva-
tion. " It is clear that the data by themselves nei-
ther completely exclude nor support G~2" =0. The
reader should also notice that our present results
in Eq. (3.11) allow for both F," and F," to be unsub-
tracted if SU(3}-dependent subtractions are pres-
ent in both F, and F, .

We should also compare our present results with
the analogous ones for mesons. ' To this end notice
that the power of (eppes, /mz) in the ratio (zz /zz) in
Eqs. (3.12) and (3.17}depends on the SU(3) assump-
tions made in Eq. (3.7}. With our choice [Eq. (3.7)]
for the definition of the SU(3)-symmetric coupling
constants we obtain Eq. (3.12). This together with
the results of Ref. 6 implies a particular form of
SU(3} for the meson coupling constants or SU(3)-
dependent subtractions of second order in the me-
son mass form factor F",(q'). If these subtractions

are absent, we need G»&/mr', in the notation of
Ref. 8, to be SU(3)-symmetric.

IV. CONCLUSIONS

We have shown that single-particle saturation of
the equal-time commutators of QD and Ko with J~
and B„J„in the IML leads to relations for the ten-
sor mass form factors. The analogy with the
traditional calculations of Adler and of Weisberger
for current algebra is apparent. "

We have used the standard relations that the time
components of currents have dimension d(p) 3 and
the result that baryon octet intermediate states
alone saturate the matrix elements of the commuta-
tor [IQD, J,] =3J„ to estimate the contributions of
the higher resonances. With the inclusion of only
the next highest resonances we show that the cou-
plings of the nucleon octet through the e meson to
these higher resonances should vanish. It may be
noted that this result is not unexpected since, for
example, it also follows in usual generalizations
of the 0 model. "

We have shown that the IML is valid for the com-
mutators (2.3), (2.4), and (2.1) for p =0. We have
done this by using Regge theory for the reactions
B,+("„,)- B~+ e, to show that the forward "scatter-
ing amplitudes" for B, + J,—B,+ Q~ and B,+ (~ ~ )
-B~+Ko are convergent in the Regge limit. this
is not the case for the commutators (2.2) and (2.1)
for p. = i = 1, 2, 3. Thus we expect the results that
d~, ~=3 and d =2 to be less reliable than the one for
the tensor mass form factors (2.48)." Within our
saturation scheme we have shown that Eq. (2.48)
follows from either [Ko, Jo] = 0 or [Ko, S„J„]= 0.
The Eq. (2.48) states that all members of the bary-
on octet have the same tensor mass radius. In the
TMD approximation this then requires the presence
of subtractions in some of the form factors F~z(q')
or F, (q'). With the assumption that these subtrac-
tions are SU(3)-symmetric we have then obtained
G,(fNN)/G, (fNIVAL=-l, in agreement with the
phenomenological analyses of Schlaile and of
Strauss, and have found the f/d ratios in the two
couplings to be the same.
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A class of inequalities for the pion-pion s and p waves has been discussed in a series of
recent papers. The present work attempts to provide a systematic method for writing such
inequalities. An infinite number of new inequalities for the pion-pion s and p waves are
also derived.

I. INTRODUCTION

In previous work, ' ' several inequalities were
derived for the pion-pion s and P waves using the
analyticity and positivity properties of the z-Tf

scattering amplitude. These derivations were not
all very systematic; in particular, no attempt
was made in Refs. 1-3 to show that the inequalities
were complete and independent or to suggest a
methodical approach to the problem. ' Their merit
consisted in their simplicity. In the present work,
we attempt to develop a general framework for a

systematic derivation of all the independent in-
equalities. The point of view we adopt is in a cer-
tain sense complementary to that of Pennington. '
While we find many useful results, we also feel
that they are far from complete.

In Sec. II, we recall some of the positivity prop-
erties of the n-m partial waves proved by Martin, '
Common, and Yndurain. " The use of these posi-
tivity properties in conjunction with the crossing
symmetry of the system leads to the partial-wave
inequalities of our interest. The general discus-
sion of these inequalities is facilitated by the two-


