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The combined assumptions of strongly convergent operator-product expansions near the
light cone (LC) and pure multi-Regge theory are used to study the inclusive process o(P)
+o{P')-y(q) +anything, where cr and y are scalar particles, in the limit of large s =(p +P')~,
v = p q, v'= p' q, and K =q . The leading LC singularity is used to obtain the behavior for
K oo, with s/K, v/K, and v'/K fixed. The results are not changed by including nonleading
LC contributions. The result for large s/K, v/K, v'/K with fixed ratio g = vv'/sK is made to
agree with the large-K fixed-g behavior of the Regge (pionization) limit of large s, v, v' and
fixed q and K. We find that the cross section dv/dK is a sum of two different exponentially
falling terms, one being the pionization contribution and the other being the fragmentation
contribution.

The kinematical relevance of the light cone (LC)
to the description of a class of inclusive processes
at large mass follows from the general analysis of
LC dominance we have previously given. ' The pro-
cesses in question are of the form I-J(q)+anything,
where I is some (in general multiparticle) initial
state and J'(q) is a current of mass x—= q'(x&0 when
the current is in the final state) Choo. sing at most
three (and at least one) independent momenta p,
from I to define the energy variables v, =q ~ P,. and
s, , = (p,. +p,.)', LC dominance is kinematically
present in the A-limit y-~; v, /x, s,, /x fixed. ' In
order to conclude from this kinematical dominance
an actual "physical" dominance in the multiparticle
cases, a certain amount of "smoothness" in the
many-variable functional dependencies is required.
It is our purpose here to study such questions for
the simplest two-particle case by incorporating
some conventional dynamical assumptions (mainly
multi-Regge theory) into the LC formalism. Our
analysis supports the existence of the necessary
smoothness and therefore the physical relevance
of the LC. The present work extends and corrects
a similar investigation carried out last year.

For simplicity, we will consider here in detail
only the spinless (or spin-averaged) case. We thus
take J(x) to be a scalar current of dimension (as-
sumed canonical) two. The amplitude for the above
general process is then

W(K, s;, , v;) = J( d x e"",„(I~J(x)J(0)~I}„,.

Kinema. tically, in the A limit, we have W(x, s, , , v)
—W~(x, s... v), where W~ is obtained by substituting

in (1}the matrix element of the leading LC singu-
larity

W2(K, v) ~ V |3(K).
R

(4)

There are strong theoretical reasons' to expect
these two limits to commute in the sense that the
A limit for large v/x is the same as the R limit
for large K:

1
lim —F, (2v/~) = lim v 'P(g}.

1I/ K K —+ an

This seems to be confirmed experimentally. ' Sim-
ilar commutativity relations are expected to hold
in the many-variable cases. ' In this paper, o. will
always be the Pomeranchukon intercept at t =0

J(x)J(0) ~ —,g x "& x""0 . ..„(0). (2)
x2~ O X

Notice that R~ need not have the scale-invariant
form (1/x)F(w/s, v/s). Light-cone dominance is
more subtle and the actual form of W~ depends on
more involved dynamics, including non-scale-in-
variant purely hadronic effects.

The simplest, and first measured, ' inclusive
process of the above type is deep-inelastic elec-
tron-proton scattering: p+y(q) —anything. Here
the only energy variable is v=q P and the canoni-
cal LC analysis' implies the simple Bjorken' scal-
ing behavior

W, (~, v}~ —F,(2v/x).
1

A P

The Regge limit (R-limit: v-~, y fixed) is also
expected to be simple:
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(presumably a = 1).
The amplitude for the process [p+ p'-y(q)

+ anything] of interest to us is

W(K, s, v, v')=
Jl

d'xe"'*;.(pp'(J(x}/(0)~pp') . (6)

The variables are

W~ Jt d xe"*—
2 f (x ~ P, x.P'; s},

where f is given by the power series
n

F(X, I '; s) =g Q f,„(s)Z'X '" '
n i= 1

determined by the matrix elements

(13)

(14)

K=q', s=(p+p'}',

v=P ~ g, v =P
(7)

v&0, v' &0,

V+V + 2(S+K), VV + ASK,

the last one following from the relation

VV = S(K+K~), Kj =q~ +q2

(6)

valid in the c.m. (or lab) system. We will also use
the scaling variables

and we have taken p'= p" =1. This is the simplest
off-shell multiparticle inclusive process and there
is even some experimental information' [for pro-
tons into (spin-1} photons] which we shall comment
on later. The physical region is given by the in-
equalities

Taking the A limit of the right-hand side of (13)
gives the behavior 5'Aof Win this limit:

(16)W~WgK S, V, V}.
A

The form of W„will be determined below.
We can now state our commutativity assumption

which connects the limits (11) and (16). We as-
sume that the limit of (11) for large» and fixed q
= vv'/s» is the same as the limit of (16) for large
s/», v/K, and v'/K and fixed ratio q:

»m s p(q, »)= lim W„(», s, v, v'}. (lV)

,.(pp'IO. , „(0)I
pp') ~

n

=g f;„(s)p, .p, p„' . p' +g s terms.

u = »/2v, tu' = K/2v', q= vv'/s». (10}
K~~

7} fixed
g/K, V/K, V /K~~

I} fixed

Let us first consider the Regge limits of (6).
Last year' we suggested an analysis in terms of
double-Regge-pole exchange. Motivated by this,
Muellere has recently given a double O(2, 1) anal-
ysis of (6). To state his results, we must distin-
guish between two Regge limits:

Pionization Limit (P): v, v', s-~; vv'/s fixed,
Fragmentation Limit (E): v, s-~; v/s, v' fixed.

There is also the I' limit, which is the same as
the I' limit but with v and v' interchanged. The be-
havior of (6) in these limits is

W~ S P(VV/SK~ K)
P

W~ s p(v/s, v, K).
F

(12)

These will be our R limits which generalize (4} to
the present process. Note the exhibited scaling in
the sense that in (11) P depends on only the ratio
vv'/s and in (12) P depends on only v/s. In (11) we
have used the dimensionless variable vv'/sK='g
which is constant in both the P and A limits. The
power z is expected to be the same as occurs in
the 2-body process. s

We consider next the A limit.
Asymptotic Limit (A): K, v, v', s-~; v/K, v'/K, s/K

fixed.
The behavior of (6) in this limit is determined by
(3) to be

Notice that, because of the multiple-variable de-
pendence of W„, many different asymptotic limits
can be taken. It is the particular form of (11)
which dictates which such limit is to be taken on
W„. If the scaling behavior of (11) were not pres-
ent, then the appropriate cornmutativity relation
would be more complicated than (17}. As justifica-
tion for (1V), we note the following: (i) Equation (17)
follows from the integral representation for 5' in
which the behaviors (11) and (16) are implemented
by nice spectral functions. (ii) We will see that W„- s . Thus the contribution of the leading LC singu-
larity to W for large s has the same behavior as
does the complete Wfor large s and so should
dominate for large x since it is the piece of W
which falls least fast for large K. ' (iii) The espe-
cially simple (scaling) form of (11) suggests the
connection with the LC. (iv} The precocious-as-
ymptopia principle' implies that the LC is relevant
already for K-2.5 GeV' and so the P and A limits
are really not very different. For these reasons,
we believe (17) to be a natural assumption. As we
shall see, the importance of (17) is that it greatly
simplifies and makes physically relevant the A
limit.

Let us now return to analyze the A limit in de-
tail. Our main dynamical assumption is that the
in-out production amplitudes;„(pp'~O ... (0}~pp'),„,
have pure Regge-pole behavior for large s.' It
then follows that our in-in amplitudes have the
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same behavior. To see this, one simply considers
these amplitudes slightly away from the forward
direction by giving to Oa small momentum k (to be
taken to zero in the end). Then one can define two

energy variables s, and s, in terms of which the
in-in amplitude is the boundary value A(s, + fe, s,
—i e) and the in-out amplitude is the boundary value
A(s, +ie, s +fe}of an analytic function A(z„z,).
Thus the in-in and in-out amplitudes only differ by
a discontinuity and so, if Regge behavior is cor-
rect, have the same asymptotic behavior. It fol-
lows from the usual helicity formalism that this
behavior is (we ignore all possible logs factors)

F(X/s', Z'/s' ';a)= t dadn'e '" '~ 's's' '
S

x P(as', a' s' '; a). (21)

4(P, P'; a)=4(P', P; I -a).
We will further take

(22}

q(P, P'; a) = p(a)q(P, P'),

with

C(J3, lI') =CQ', ~)

(23)

(24)

In order to have Wsymmetric under v —v', we

take

(18)
p(a) = p(1 —a). (26)

We note that here, the integration over a corre-
sponds to the various ways of having the subener-
gies E=p ~ k/(k')'"-s'and E'=p' ~ k/(k')'" s' '
comprise the total energy s- EE'.

It follows from (18) that (14) satisfies

The factorization (23) is made for notational sim-
plicity. It is true in models and, in any case, is
unimportant since g will turn out to be indepen-
dent of a.

With (19) and (21), (13) becomes

1

f (X, A'; s) ~ s" da F(X/s', X'/s' '; a),
S~ oo 0

where

F(f, g'; a}=-Q Qo,.„(a)l'0'" '.

(19)

(20)

1

W~ (const)s dap(a) t dndn's' 'g(os', n's' ')
A 0 ja

x5(~ —2ov —2n' ' vo+o's) 8(oo.' —~/s)

=Wg(K, s, v, v)~
(26)

n s=j.

Clearly I' exists at ( or ('=0. Last year' we took
this to imply that only a=0 or 1 contributes in (14).
We will see below, however, that, because of
spectral restrictions, all a's can be important.
Nonleading LC contributions are still negligible
since they behave like, e.g. ,

1

K 's daG(X/s', x'/s' ';a).
0

The principle of precocious asymptopia tells us
that we need only keep the leading LC contribution
even at I(."-2.5 GeV'.

The next matter to be discussed is the support
properties of the Fourier transform

WL =W+W. (27)

The pionization piece is from a's satisfying e(s)
& a & 1 —e(s), with e(s) such that s' ' =N = 2 GeV'
is the energy at which Regge behavior is expected.
Thus e(s) = (InN)/(Ins). The fragmentation piece
comes from 0 & a & e(s) and 1 —e(s) & a & 1. We
write the corresponding decomposition of p(a) as

where the 6} function comes from writing
8(-q, +nP, + n'P,') =-8(v, ) in a covariant way
8(v ~ (nP+ o.'P')) We h.ave changed integration re-
gions from the square S to the diamond D—= (n, n'.
~a+a'~ & Ij since 8(v (P+P')) can be inserted in
the integrand and, in view of (8), this gives

~
n+ n'~ & 1. We decompose Wz into a "pionization"

piece W and a "fragmentation" piece W:

" dA. dA, ';(g~, ~ ~ )f(a, a';s)=
)

— e'" '~ 'f(X, X';s) p(a) = p (a) + p(a). (28)

of f. The usual analyticity requires that f vanishes
outside of the square S = ( o, o.':

~
n

~

& 1,
~

a'
~

& I) .
This exact support property is not possible for the
Fourier transform sP(as', a' s' '; a) of F(X/s',
A'/s", a) but it follows from the asymptotic nature
of the limit (19) and the analyticity of (14) that F is
the Fourier transform of g over S apart from non-
leading terms and that g(P, P'; a) is of fast decrease
in P and P'.' We can therefore write

We consider first W. We use the 5 function in
(26) to do the a' integration and then change inte-
gration variables from a to P =- s'a. Thus

K —2vs 'p
2 r

P
1-a (29)

In the A limit, since g(p, p') is exponentially
damped for large P, and since 0&a, we have ap-
proximately o.'- tc/2v' = e'. We emphasize that
this simplification is a consequence of the exponen-
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Both of the arguments P and P' = s' 'u' in g in

(30) are large and so for explicitness we take

pe) -H( S+8')r2 (31)

consistent with (24). Our analysis and results are
insensitive to reasonable modifications of (31).
Equation (30) then becomes

tial damping of P —a reflection of the analyticity of

(14). We thus obtain

fX s~( g- ur')

W~ (const), t dap(a) t dps' '
A 2v s (2v'/s)

xrcr(p, s' 'ar'). (30)

s, v, v » K, with vv'/sK fixed, in particular, in

either the P limit for large K and fixed g or the A

limit for large s/K and fixed r).
Note, incidentally, that the form (34) explicitly

vanishes in the fragmentation limits (s/K, v'/K

-~; q, v/K fixed or v —v') since p(0) =p (1) =0.
This shows that the decomposition (27) is correct.

We next consider the F limits. We write

W W(o) + W(i) (37)

corresponding to the contributions from a near 0
and near 1, respectively. For W ', we still have
o'-ar' in the A limit [see Eq. (29)] and so approxi-
mately

W ~ (const)», dy p
A lns

SIX
S(y- ur')

W"'~ (const) —, dP c(Prr, ar'),
A 2 v' 2v'

(38)

x exp ——,'H(K)'" y+—

(32)
where w —= (K)'"/2v', and we have changed integra. —

tion variables from a to y=ws'. In the A limit,
w-0 and ws-~ so that (32) gives

The next step is to incorporate the behavior (11)
via the relation (17). Taking v'- s, (34) gives

1/2
(const)s"K ""e " " p(b)

S/KyV/KyV /K~ o

7) fixed (35)

Since this must be independent of b (i.e. , a function
of only vv'/s), we learn that p(a) = const. This re-
sult is, of course, already clear from (34). Since
p is a function of v' and s but not of vv'/s, it must
be a constant function. Thus the final result is

Wg(K, s, v, v)=As K e (36)

for some constants A and H which have not been
determined by our analysis. Note that (36) is in-
dependent of v and v'. From our derivation and
assumptions, it is clear that (36) should be a good
representation of W everywhere in the region

fX l ' —l

A (K)
r/2 -r lns

(33)
where we have used the exponential damping to
ignore lny compared to lns and where K,(z) is the
modified Hankel function. Notice that, contrary to
its appearance, as a consequence of (25) and the
fact that q = vv'/sK is fixed, (33) is symmetric under
v —v'. The final form of (33) is obtained from the
asymptotic behavior of K,(z):

3/4H(K)$/2 lnv' —2lnK
1

ce (cc et) '"e "" c )A lns

=W„(K, s, v, v'). (34)

where we have absorbed p(1) into const. In (38)
only P is large whereas P'=co' is fixed. We there-
fore take

rCr(P, ar') 0(~'-)e "" (39)

For w' near 1, we expect the usual threshold be-
havior"

1|(ar')- (1 —ar')', ar' -1.
Equation (38) thus becomes

(40)

s CXW'"~ (const} —y(ar' )e K",
A K

where y(ar') = ar'g(ar'). Actually performing the a
integration over 1 & a& 1 —s(s) changes this to

(41)

sW'"~ (const) —y(ar' )e
A K

The behavior of W'" is the same as (42) with
v ~v'. Thus

(42)

W~ Bs K '(7r(ar' )e ''"+y(ar)e "'"]
=—W„(K, s, , '). (43)

WA —WA+ 8'A (44)

should provide a good representation of Wevery-
where in the region s» Ka 2. WA dominates for v

This expression automatically satisfies the scaling
(12) in the limits s/K, v/K-~, s/v fixed, and v—v'.
Again the scaling is satisfied in the trivial sense
that W„ is independent of v (or v') in the v-~
(Kv'-~) limit. The commutativity assumption is
nevertheless not empty since it says that the form
(43) is valid when s, v-~ with v/s, v', and K fixed
first and then v' and K-~ with v'/K fixed as well
as when K-~ with s/K, v/K, v'/K fixed, and then
s/K, v/K-~ with v'/K fixed.

Since the minimum allowed value for v or v' is
—,'K, the form [see Eqs. (36) and (43)]
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d'o 4m

dKdvdv' s' (45)

in terms of the few constants A, B, H, K, and l.
For example, integration over v and v' gives the
cross section

and v' both large (pionization region) whereas W„
dominates if only one is large. The very specific
forms (36} and (43) [with (40}]illustrate the
strength of the combined LC and multi-Regge as-sumptions�.

At this point, we can inquire about the validity
of our use of the leading LC singularity. Actually,
the contribution of a nonleading singularity [e.g. ,
(x')' Inx'] will be more important than that of (2)
if the associated spectral function $„(I3,P') falls
(exponentially) sufficiently slowly. This is obvious-
ly no problem since inclusion of this, or any sim-
ilar term will not change the basic form of (44}.
We expect, however, on the basis of the general
kinematical analysis and of the obtained Regge be-
havior [plus commutativity (17}], that the leading
singularity will, in fact, dominate. One easily
sees, moreover, that replacing J(x)Z(0} in (6} by
x'J(x)Z(0) gives a less leading contribution pro-
vided g(p, p') falls slower than exp[-(t)+ p')2]." It
is interesting that the requirement of LC dominance
can place such a strong restriction on g.

Let us conclude by briefly discussing some of
the consequences of (44). We can compute various
quantities of interest from the triple-differential
cross section

—& -j, -EfcjN—-K
dK

(48)

where we have taken now ~= 1. The result for the
total cross section

v(s) =v(s) +v(s) (48)

is

v(s) —s, v(s) - (const) (50)

for large s. We can similarly easily compute
dv/dP~ (P~ = photon longitudinal momentum in lab),
dv/dK, and dv/d 8 (8 = angle between photon and

beam).
A similar analysis can obviously be carried out

for the physically interesting case' in which J(x)
is replaced by the dimension three electromag-
netic current j„(x). The expressions obtained for
the various scalar amplitudes encountered do not
differ essentially from the above results (36) and
(43). Thus dv/dz will be given essentially by (46}-
(48). Since (48) dominates for small v and (47)
dominates for large z, the experimentally observed
shoulder is naturally explained by the interference
of these two terms. " This and the other observed
features of the results, including the data for v(s),
dv/dp~, dv/d~„and dv/d6, can all be accurately
described by our expressions. A detailed theoret-
ical 'development and comparison with experiment
will be given elsewhere. "

do' do' do'—= —+-
dK dK dK

The result is

3/y H(K)~/2
dK

(46)

(47)
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~This can be simply understood by noting that the non-
leading terms in the asymptotic light-cone expansion can
be written in a form analogous to the leading one but with
c-number functions of milder singularities. The Regge
analysis we perform in the following holds for the local
operators O~ ... (0) of the nonleading ones as well. The

CXg
' ~ CX n

uniform bound s~ (n =1) for such amplitudes excludes the
occurrence of an expansion in the dimensionless quantity

which would make the nonleading LC singularities as
important as the leading one for these processes.

In particular, we assume there are no fixed poles.
Fixed poles are not expected in such amplitudes.

The argument, which we give for a function of one
variable, is the following. If f(A, s) =g (A, /s)
+ s f& (A,/s) +", with all derivatives f;" (0) existing
[so that the Fourier transforms f;(() are of fast decrease
for ( —~], and if f(~, s) has support ng[0, 1], then
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sfo{na) =—f d) e ' ufo{A/s)

f"(a,a) -f"g(ns) —s 'f2(ns) ~ ~ ~,

so that
1

5 da e'u~s f0{us) =f{X,s) +0 {e ~)

= f0{X/s) +O(s g{X/s)).

There is no problem from u =0 since small n's will be
seen to be excluded from our integrals.

We expect from smooth threshold behavior (Ref. 1)
that l o3.

We might also comment, in this connection, on the
recent paper by R. Jaffe I.Phys. Letters 37B, 517 (1971)],
who claims that the matrix element for massive p -pair
production is not LC dominated in the parton model.
Although we are certainly not using the parton model,
we would like to point out that, even though no LC singu-

larity is present in the parton-model matrix element,

(J(x) J(0))z, the LC does dominate even here in the
sense that substitution of x (J(x) J(0))~ for (J(x) J(0))~
gives a less leading contribution. Our approach does not,
in fact, differ from that of the parton model in the ques-
tion of LC dominance (Factors like e ~" ' would be nec-
essary to ruin LC dominance. The parton model gives no

such factor), but rather because the parton model does
not exhibit the Regge behavior (19) at the five-point func-
tion level.

2The result is somewhat dependent on the specific form
{31)chosen for p. Writing g{p,p') =4(p+p', {pp') ~ ), the
general statement is de/dx-C({s) ft, {s)~ t) and da/ds
-C(s, {s) ). Thus the requirement that the sum variable
P+P' be at least as important as the product variable
(PP') gives the result stated in the text. More general-
ly the powers of f(: in the exponentials can be left as free
parameters and fit to the data.
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We use the infinite-momentum limit and single-particle saturation to investigate conse-
quences for baryon matrix elements of equal-time commutators of the generators of scale
and conformal transformations with currents and their divergences. We show that the root-
mean-square tensor mass radii are the same for a11 members of the baryon octet. We use
Regge theory to show the validity of the procedure in this case. The result implies that some
of the baryon gravitational form factors F

& {q ) or F2 {q ) must be subtracted. On demanding
the subtractions to be SU(3)-symmetric we obtain Gz{f/N)/G&(fNR) =-1, and find the f/d
ratios to be the same for the two couplings. This is in agreement with the phenomenological
analyses of Schlaile and of Strauss.

I. INTRODUCTION

In this paper we investigate consequences for
baryon matrix elements of the behavior of currents
and their divergences under scale and conformal
transformations. ' We make use of the infinite-
momentum limit' (IML) and single-particle satu-
ration of the commutation relations of scale and
conformal generators QD and Kp with currents
and their divergences to show that the root-mean-
square tensor mass radii are the same for all
members of the nucleon octet. When combined
with the usual tensor-meson-dominance (TMD)
assumptions' ' these relations require some of

the baryon gravitational form factors F, (q ) and
Fs(q') to be subtracted. On demanding the sub-
tractions to be SU(3)-symmetric we obtain

G,(fNN)IG, (fNN) =-1, and find the f/d ratios in
the two couplings to be the same.

In deriving our results we make use of the fact
that the dimension of the time component of the
currents 8'„, which are the vector V'„or the axial-
vector currents A'„, is three. As is well known
this follows from Gell-Mann's charge algebra if
cJp has a dimension. Alternatively the same result
holds if a state ~A) exists such that (A ~

J (A) e0
and if under conformal transformations
[Ko(0), S„d„(0)]=0. The proof' makes use of the


