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44, 2107 (1963) [Sov. Phys. — JETP 17, 1417 (1963)],
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Continuing our exposition of a nonpolynomial theory of higher-order weak interactions, we
examine the neutral E system, with particular emphasis on the CP-invariance-violating am-
plitudes. These first appear in second order in the weak interactions. We use the free-quark
model to estimate the short-distance singularity of products of hadronic currents, and we find
that with appropriate choices of the minor coupling constants our theory is consistent with the
known experimental results In particu. lar, we find ~e~ =10 3, and we give an argument lead-
ing to q =

happ. The neutron dipole moment is a third-order weak effect in our theory and is
estimated to be about 10 e cm. We calculate the production cross section for the superprop-
agating particles, and find it to be too small for the particles to have yet been observed.

I. INTRODUCTION

In the preceding paper' we have treated leptonic
processes in higher -order weak interactions, us-
ing a particular nonpolynomial modification of the
usual current && current interaction Lagrangian. In

this paper, using the same Lagrangian as in I, we
turn to two somewhat more speculative subjects:
(i) the effect of our modification on hadronic weak
processes (with special attention to CP noninvari-
ance) and (ii) the production of the qr particles that
are coupled nonpolynomially to the usual weak cur-
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rents. We shall not repeat the derivation of our
basic results here; rather, the reader is referred
to Sec. II of paper I before continuing with the re-
mainder of this paper.

II. THE E MASS MATRIX

The formula (2.9} of paper I for a second-order
amplitude remains valid even when the external
states or the interaction Lagrangians contain had-
ronic pieces. The main difference, of course, is
that we can now no longer evaluate the matrix ele-
ments explicitly, as we did in paper I, so that even
in principle we cannot calculate our second-order
hadronic amplitudes exactly unless we solve the
problem of the strong interactions first, a task
that is considerably beyond the scope of the pres-
ent work.

However, one of the lessons learned in I was
that the strength of the singularity of the relevant
matrix element as x- 0 is of crucial importance
in estimating the size of the amplitude. In order
to make progress, therefore, we must find some
method of calculating the degree of singularity of
two hadronic operators (currents or Lagrangians)
at short distances between the appropriate states.

We have chosen for this purpose to adopt the
free-quark model for the hadronic weak currents.
In our view, such a procedure amounts to deriving
an upper bound for the degree of singularity of
any given matrix element. In other words, cur-
rents built up of free, pointlike objects will exhib-
it a singularity structure at least as severe as
that of the real currents; the effect of the strong
interactions, we assume, will be possibly to
smooth out some of the short-distance behavior,
but never to make it worse. We remark in passing
that the use of the free-quark currents to describe
short-distance behavior is consistent with recent
ideas about scaling in deep-inelastic scattering.

To be specific, our discussion of hadron pro-
cesses will focus on the neutral K system, with
particular emphasis on CP-violating effects. We
shall show, in fact, that with reasonable choices
of the parameters in our theory, and reasonable
arguments about the relative magnitudes of various
amplitudes, it is possible to explain CP violation
naturally as a second- (and higher-) order weak
effect. '

Let us begin with a standard formula from the
phenomenological description of CP violation'.

Here T„. is the T-matrix element connecting the

CP eigenstates K, and K„

IK,& =~~(IK'&+ IK'&) = —cf'IK,&,

(2 2)

and y& (y&) and m~ (m~) are the lifetime and mass
of the short- (long-) lived K meson, respectively.
In terms of c,

IK, i&
-=IK, ,&+ e IK, ,& . (2.3)

Experimentally, of course, I le=10 '.
In our theory, there is no contribution to T12 in

first-order G, while in second order we have

= —' fat d'x(K
I T{g, (x) 2, (0)) IK &

1 1

,1 f„'n.'(x) —1 f„'r '(x) -' (2.4)

As was discussed in paper I, we assume that
unless f» is purely real it has an infinitesimal
imaginary part, so that the difference of super-
propagators in (2.4) becomes proportional to a 6
function. Following the philosophy outlined above,
we now use the quark model to estimate the behav-
ior of

M»(x) = (K I T(g, (x—) g, (0)) IK & (2.5)

as x- 0. Assuming that each hadronic weak cur-
rent is of the form

f'„'(x) = 2e(x) y„(1—y, ) ~Jf(x), (2.6)

we obtain the diagrams shown in Fig. 1. Diagrams
1(a}and 1(b) each have two quark propagators be-
tween the weak vertices, and the relevant contri-
butions of the matrix element in (2.4) therefore
behave as 1/x' for small x. Diagram 1(c) has no
such propagators, and its contribution is therefore
nonsingular.

We may now draw the following conclusions:
(i} From (2.1), we see that T» is of order

E' mgpgg .
(ii) From (2.4} and the quark-model result that

Z„(x)Z„(0) behaves like 1/x' we deduce

62 sin26}M4
12

01

-T12

t( 22

(2.1)
imrolyz —y~ +2i(m~ —m~)]

+terms of order G'sin'6) M'. (2.7a)

Here 6) is the Cabibbo angle, and M is a mass char-
acteristic of the process under consideration; in
this case, a reasonable choice would seem to be
M=mxo. The first term in (2.7a) expresses the
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10 '2
+10 "m„'.

01
(2.7b)

If we assume that the two terms in (2.7b) do not
somehow miraculously cancel, then the best we
can do is to choose r» large enough so that the
first term in (2.7b) is negligible. This still leaves
us with Ty2 of order 10 "m~', i.e. four orders of
magnitude bigger than the experimental value
given by (i).

There seem to be essentially only two ways to
circumvent this dilemma:

(a) We can go back on our reasonability argu-
ments that led to (2.7b} and claim that because of
some unexpected property of strong-interaction

dependence of T» on the cutoff length r„rdefined
such that

~ f»&(r„) ~

= 1j necessitated by the singu-
larity in the integral as roy 0 The other terms
are only weakly dependent on x„, and are there-
fore assumed to have the magnitude of a typical
strangeness-changing second-order weak ampli-
tude.

These assumptions, while they seem reasonable,
lead us into difficulty. From (i}we have T»--10 "
&&m»', while from (ii) we see

dynamics the purely nonleptonic amplitudes, such
as those appearing in (2.4), are suppressed; in
the case at hand, this suppression is supposed to
be roughly four orders of magnitude beyond what
naive estimates would give.

(b) Looking at the superpropagator in (2.4), we
see that the nonvanishing of T» depends on fog'
=f,*,' having an imaginary part. (It is a general
property of all CP-violating amplitudes that they
vanish if the relevant minor coupling constant is
a pro~i real. ) It is therefore tempting to postu-
late that f» is purely real; T» as given by (2.4)
then vanishes, and we must go to order G' to cal-
culate c. Without going into detail, we present in
Fig. 2 a typical diagram that will contribute. For
~x, —x, ~-0, we see that this diagram is expected
to have the cutoff dependence T~»'~= (G'm„' sin'8)
&&(I/r, '), with r, defined by ~ f» f„n,'(r, ) ~

= 1. Thus
by choosing r, about 5 GeV ' we have the desired
result: T",, '= 10 "m~'. This estimate of the cut-
off may vary by an order of magnitude or so, since
our knowledge of third order is naturally even
cruder than our knowledge of second.

At the level that we have been making these es-
timates, there is little to distinguish option (a)
from option (b}. One important piece of evidence,
however, comes from another well-known formula, '
this time for a CP-conserving amplitude:

i m»o[yz —2iem] = T„—T„

X
K

X g) k

(b)

K

9E

(c)

Ko

(2.8)

Notice that in our formalism, the essential differ-
ence between a CP-conserving amplitude and a CP-
violating one in second order is the appearance of
the principal value prescription instead of the dif-
ference of two superpropagators (which becomes a
6 function} that occurs in (2.4).

The left-hand side of (2.8} is of order 10 "m»',
which is typical for a second-order weak argpli-
tude. Thus there is no evidence here for the sup-
posed suppression of nonleptonic amplitudes in
second order that we invoked in option (a).

III. THE DECAYS Ks p-+@7'

FIG. 1. The transition amplitude K -K in the quark
model, due to second-order nonleptonic processes.
Shaded blobs indicate strong vertices. The heavy line
is the superpropagator. The various species of quarks
are indicated explicitly in each diagram.

We turn now to the two-pion decay modes of the
and K~ mesons to see which, if any, of the

lines of thinking begun in Sec. II will prove suc-
cessful. Specifically, we shall construct the tran-
sition amplitudes needed for the evaluation of the
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K Ko

heuristic argument that the experimental result
=—g~ is satisfied in our model.

Let lww) denote any of the states lw'w ), lw'w'),

I2w, I=O& or I2 w1=2&. From Eq. (2.3),

(«I & IK,&
-'

(3.2)

Xg

&w'w Ir IK,&-
( '~ I&1K,&'

(w'w'I C K, &

&w'w'I q K,&

'

(3.1}

Then we use the quark model to estimate the size
of these amplitudes. Finally, we shall give an

FIG. 2. A third-order diagram contributing to K K~
in the quark model. Shaded blobs are strong vertices.
The three weak vertices are labeled explicitly, and the
lines connecting them are labeled according to the type
of particle. The third-order superpropagator, while not
drawn explicitly, should be thought of as connecting all
the weak vertices in all possible ways.

quantities

In our model, the lowest nonvanishing contribution
to (wwl I IK,) is first-order in G, while (wwl 0 IK)
is at least second-order in G. Thus, since the
currents have transformation properties consis-
tent with CP conservation, we can approximate
(ww ICIK, ,) by the following expressions:

&wwl&IK, ) =~2&wwl&„IK'&

= G sin8cos&(wwl j(~" (0) jfg"(0}IK'&,
(3.3)

and, with (sl) and (nl) denoting the double action of
the semileptonic and nonleptonic interactions, re-
spectively

&ww I &I K& -=(ww l~'""IK,&+&ww I&'" 'IK, & (3 4)

Here

(«I& 'IK,) = —Q Jl d'x(wwlT(ZO((x}Z. .(0))IK'&[[I-f„f„n,'(x)J ' —[1-f„f a'(x}J-')
ft =0.1

(3.5)

&wwl&'*"IK.& =~& g Jl d'x&wwlr(Z„(x) Z«(O}}IK'&[[I-f„fo,~'(x}J ' —[I—f„f(oz'(x}J-'J (3.6)

Equation (3.5) tells us that (wwl+ IK,) is negligible according to either of the possibilities (a) or (b) dis-
cussed in Sec. II. In case (a) we simply assume the suppression of nonleptonic amplitudes. Essentially
this point of view was taken in an earlier paper; however, this is difficult to justify in the quark model,
where the diagrams are very similar to those representing (wwlg

~*
~IK~& (see Fig. 3). According to case

(b), in which fo, = f,o, the nonleptonic contribution vanishes identically in O(G ). In view of our argument
below that the result q, = goo can be understood in our model by retaining only the semileptonic part, Eq.(3.6), we shall therefore invoke the condition f» = f» to remove (wwl&(""IK,

& from further consideration.
Turning now to Eq. (3.6), extracting the leptonic factors and evaluating them as in paper I, we find for

the K, - nm transition amplitude

( Ie'Iee)=e*'*o*e;,eee e I ]fe'*( *',*" -o,„)e,(;m, (o,(;ol(„1(',"'( (e'„"(o)(ceo
l=eoP

&&([I f„fo(n (r)] ' -[I—f»-f»A'(r}] 'j. (3. t}

Here we have paid attention to the fact that this
integral is to be evaluated in the Euclidean region
by expressing the propagators 4 and 6, as func-
tions of the Euclidean length r =(-x')' ' and by
deleting any time-ordering instruction from the r = r, =—

If„f«/16 w' I' "- (10GeV} ', (3 6)

product of hadronic currents.
Since the difference of superpropagators in Eq.

(3.7) is effectively a 6 function requiring
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x (P g 7P

(a)

To summarize, based on the structure of dia-
grams in Fig. 3, we assume that once renormali-
zation of various masses and coupling constants
is carried out, the effect of the matrix element
(wwI T(Z»(x)Z»(0))IK ) is an r -singularity on
the light cone. With the superpropagator
I I —f»f»4'] ' no further removal of divergences
is necessary, and we deduce that Eq. (3.7) takes
the form

(b)

X

Ko
l

X 7r

9t X

(c)
FIG. 3. Second-order semileptonic diagrams contri-

buting to the process A —27r in the quark model. Shaded
blobs are strong vertices. The heavy line is the super-
propagator. The lepton and quark lines are explicitly
labeled.

the magnitude of (ww Iy'IK, ) is largely governed by
the short-distance behavior of the integrand in
that equation. To determine this, we first recall
that the leptonic factor behaves as r ' for r-0.
To estimate the small-r dependence of the hadronic
factor (wwI j(~2'(x) j~„~(0)IK ), we appeal to the
quark-model diagrams in Fig. 3.

Apart from superpropagator corrections, dia-
gram 3(a) exhibits the r ' singularity due to lepton
propagators, and no other. Diagrams 3(b) and 3(c)
each have, in addition, a quark propagator, so
that the total singularity for these contributions to
the matrix element is r n (actually r ' when sym-
metric integration is taken into account). How-
ever, we notice that the weak-interaction parts
of Figs. 3(b) and 3(c) have exactly the same struc-
ture as the lepton self-energy diagram considered
in Sec. III of paper I. It is therefore reasonable to
interpret them as generalized self-energy dia-
grams for the quarks (analogous to the Kn mass
matrix discussed above), or, in other words, as
renormalization diagrams for the hadronic weak
currents. After renormalization has been properly
carried out, we would expect the level of singular-
ity to be reduced from r ' to r ', as it was in the
lepton case.

(wwICIK, ) = 2wi M, —,sgnIm( f„f„). (3.9)
G

t=e, p
' rl

Here M, is a constant which might depend on the
lepton masses and on the charge state of the two
pions, but only weakly (say, logarithmically) or
not at all on the cutoff lengths r, . Furthermore,
Mt should have approximately the magnitude of the
CP-conserving amplitude (ww IV'IK,) in Eq. (3.3).
It follows that

(ww IY IK,) 10 ' for r, ' -10GeV
(wwI&IK, ) 10 ' for r, '-1GeV.

We now address ourselves to the question of
whether our model is compatible with the result

Following the notation in Ref. 4, we
define amplitudes Ao and A, by

(3.10)

v 2 e'"nReAn=(nw; I = 0 I&IK),

v 2 e' ' ReA, = (n w; I = 2
I

O'I K2),

iy2 e'"oImAn=(WW;I=OIt IK2),

iVY e'"I A, =(ww;I =2IrIK2).

(3.11)

Here 5o and 5, are the strong-interaction mw phase
shifts in the I =0 and I =2 channels, respectively.
We further introduce two parameters a and P:

ImA, = (2w + p) ReA„

ImA2 = n ReA2.
(3.12a)

ru =(ReA, /ReA, ) e"'2 "&&'. (3.12b)

Using the branching ratio of Rs- v' v to K~ - m z
(Ref. 7) and the fact that' I5, —OnI=—45, we obtain

I2dI =—0.032 . (3.13)

From the usual phenomenological expressions4
for g, and goo, we may write

oo t~ 1 1

2, 2, 2 —W2 2 ~ /W2)

If the CP-violating amplitudes ImA, and ImA, were
governed by the bJ = —,

' rule to the same extent as
the CP-conserving ones, then P would be zero.
We have chosen to use n and P, rather than the
more usual c and ~', for later convenience.

We define one more parameter:
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This expression is exact. In view of the smallness
of (d, it is nearly the same as

(3.14)

Clearly, the value of q«/q, predicted by our

model rests on the calculation of P.
In order to estimate P, we begin by noting that

from the definition of AI, and using Eq. (3.7), we

have (after continuation of the right-hand side to
physical kaon and pion momenta)

"'( A, =2('e' ecose F d'*, —g ") d(;,)a(r 0)(;I~j(P~(x) j~ '(0)(K') F(f'a'),
l=e, P"

where we have abbreviated

F (f 'n. ') = 2(n 6(1—fo, f„A'(r; M)}sgn(Im fo,f„).

(3.15)

We have already used the free-quark model to deduce the singularity structure of the matrix element of
current products in Eq. (3.15}. Following Fritzsch and Gell-Mann' and Gross and Treiman, ' who have
discussed such products at short and lightlike distances, we shall further assume that the correct SU(3)
3SU(3) and tensor structure of j~q' ~ (x) j~~~(y) in the limit r = —(x-y)'-0' is obtained by using free-quark
fields to construct these currents. Therefore we shall adopt the following simple, phenomenological form
for this product:

jg" (x) j "(y) = -2i a((r; m~) j'(x
l y) [g g,g„, + g) ~gj„-gg„g„+i e g„„]+ Mg„(x l y) .r (3.16)

In the free-quark model, the bilocal operators j,(xl y) and Mq„(xl y) would be given in terms of quark
fields by

j,(xl y) =:A(x) y, (l-r, ) &(y):,

M ~„(xl y) =:A(x) y)(1 —y, ) P(x) P(y) r( (I —y, ) &(y):

=:j'l"( ) j' (y):.
Based on these identifications, we assume the bilocal operators have the following properties:

(3.17a)

(3.17b)

(i) j, (xly) has the same quantum numbers as the (6-i7}vector-axial-vector current; in particular, it
satisfies

l
M

l
= —,'.

(ii} j, (xly} is expandable in terms of local operators about x=y [the leading term ought to be
j(,' '"(-,'(x+y)), but this is not crucial to our discussionJ; hence, we shall write

(f»lj, (xly)lK') =(»;Il j," '"(-,'(x+y))lK')+g (»;IIO,„.... (-'(x+y)&l&') . (3 18)
n= 1 I

(iii}M~„(xl y) is similarly expandable about x = y,
and the leading term satisfies

M~„( lxl = r, l0) =—Mq„(0l0). The integral can then be
done explicitly, and we get, using (3.3) and (3.19),

~ sin& cos8g "Mg„(xlx) = Z„(x) . (3.19) ' =(x —= —(2'i'(() ' Q —,sgn(Im f,j;,).
2 p

(3.20)
As we shall see, the integral involving M),„will
contribute equally to ImAO/ReAO and ImA, /ReA,
and will determine a. The j, term will contribute
only to ImAO, and will provide the value of P.

To evaluate n, we make the by-now-standard
assumption that the 5 function in I' fixes r at a
small enough value so that we may make the
small-distance approximation in the b, functions;
furthermore, we need keep only the leading term,

We turn now to the more troublesome term in-
volving j,. We notice that by symmetric integra-
tion, only the odd terms in the series (3.18) sur-
vive. The n= 1 term is logarithmically divergent,
the others are finite. As we discussed above, this
divergence, illustrated diagrammatically for the
quark model in Figs. 3(b) and 3(c), corresponds
to the need for renormalization. We shall assume,
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in order to obtain an order-of-magnitude estimate
for 13, that the effect of renormalization is to re-
move the n = 1 term from the series (3.18). The
terms in the series become rapidly smaller with

s (since they involve higher powers of x where ~x ~

is small) so we shall consider only the s = 3 term
to estimate p. If there were a finite residue from
the n = 1 term after renormalization, we would

expect it to be of the same order as the n=3 term,
so in any case we expect the n = 3 term to provide
a fair indication of the magnitude of P.

The n = 3 term is of the form
II X P

G sin8 cos8 g ~)
d'~ "" " [~,(r; o)]'

l=e, P

where we have already made the small-distance
approximation for b, The matrix element is in-
dependent of x; when we do the x integral, the fac-
tor x„x,x&xp becomes

2g r (gpvgzp+gpxkvp+gppgpx) ~

Thus we must evaluate expressions such as

g"'g "(vv; I = 0l O„„»IK'}.
We know the phase of this matrix element is
We let its magnitude be m', where m has the
mensions of mass. The calculation is then
straightforward; putting it together with our
er result (3.20) we obtain

(3.22)

ie"p.
di-

earli-

ImA, =—[(24w') 'Gm' sin8 cos8 5I,, —(2'I'v) 'ReA, ]

l = e.p
Gr, 'sgn(Im f„f„). (3.23}

3lP(d/W2 gp = happ/tJp
—I' (3.25}

for various values of m. The results are displayed
in Table I, in which we assume m to be a mass
characteristic of the strong interactions. Now,
even with the various assumptions we have made,
the value of m is unknown. Furthermore, the value
of P depends on m', and thus is quite sensitive to

Thus P is given by

1 GrrP sin6} cos8
24 ' eA

Gr, ' sgn(Im f» f„).
W R p l e p

(3.24)

The value of ~ReA, ~
is obtained from K~ —vv (I = 0)

and is given by 0.346 &10 ' GeV." Furthermore,
on the basis of our previous arguments, we know
that Gr, '= 10 '. Finally, using the value g,
=—1.95 ~10 ',"we can calculate the magnitude of
the correction term

TABLE I. Magnitude of the correction term (3.25),
using Eq. (3.24) for various values of m.

0.5
m (GeV)

1.0 5.0 10.0

1.27 x lp l.pl x lp 5 1.27 x 10-' l.pl x lp '

~"" —1 4.4xlp-' 3.5xlp-
Q +

0.044 0.35

variations in m, as Table I demonstrates. Never-
theless, we see that the correction term, (3.25),
is of order 10~ for m= 0.5 GeV, and reaches 0.35
when m is 10 GeV. Thus for "reasonable" values
of m we can easily have (q~[= )q+ [, as is cur-
rently favored by experiment. ""

This is, of course, not a derivation; we have
presented the discussion for two reasons: first,
to give the reader an idea of how far one can pro-
ceed before ignorance of the strong interactions
begins to dominate the calculation, and second, to
show that, without invoking any unusual or hither-
to unexpected properties of the strong interactions,
the result g, = happ is compatible with our me+el.
To summarize: We have assumed that the ob-
served CP violation occurs via higher-order weak
interactions. By examining the K -K mass ma-
trix and the process K - 2m under this assumption,
we have found that our theory is indeed compatible
with experiment, subject to the following condi-
tions: (a) We choose fo, = ,'( f, + f, ) r—e—al, so that
CP-violating effects occur only at leptonic or
semileptonic vertices, in our case via the combin-
ation f» f„of minor coupling constants; e is then
given by a third-order-weak matrix element. (b)
The effective cutoff lengths rpj and r, are estimated
to be approximately ~0 GeV ' (to within an order of
magnitude); this choice gives reasonable agree-
ment with experiment, and furthermore predicts
fairly sizeable CP violation in other processes,
such as possibly p. decay and neutron P decay.

Note added in Proof One of us. (K.L.) has calcu-
lated the second-order weak CP-violating ampli-
tude for KI, - p, 'p. , using the above choice of pa-
rameters. It is found to be large enough to inter-
fere with the dominant absorptive amplitude (viz. ,
that for KI, -zy- p'p ), thereby reducing the ex-
pected rate for K~- p. 'p, . Further, the theory is
not in conflict with experimental upper bounds on
the rates for K~- p p, or K'- w'l'l

We close this section with a few remarks about
the induced electric dipole moment of the neutron.
In Nth order the appropriate matrix elements are
of two types:
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M~,"'=(n(p2)
I T[2, , (x)Z, , (x ) 2, ~ (x„)j"(0)]fn(p })(OIT[:exp(f, , p &p(x})::exp(f, , p y(xN)):]IO)

and

M,"'=(n(p, ) I T[X, , (x, ) ~ ~ 2, ~ (x„)Jln(p, ))(OI T[:exp(f, , pter(x)): ~ ~ ~: exp(f, , y cp(x„)):z"(0)JIO) .

Here ln(P)) denotes a neutron state of momentum

P, and j" is the electromagnetic current. In M„
the photon couples to the hadrons or keptons de-
scribed by 2,» while inM, it couples to one of
the charged y particles.

We can dispose of M, very quickly by noting that
&p cp(x), and hence exp' y(x), is even under
charge conjugation, while j" is odd. Therefore,
the second factor in M, vanishes and lip, =0 for all
N.

Presumably an electric dipole moment term
will be generated by the appearance of CP viola-
tion in M,"'. We now show that there is no CP vio-
lation for N=1 or 2.

For N= 1, it is trivial, because the second fac-
tor inM, is just

(Ol T:exp( f„&p p(x)): IO) = 1,
i.e., there is no superpropagator, and hence no
CP violation.

For N =2, we must enumerate various cases.
First we notice that, since there are no external
leptons, if 2, , (x,) has a lepton current,

Z...,(x,) =R...(x,),

then there must be a compensating current in
Z(x, ),

2, , (x,}=X;,,(x,).
Then, since there is also no strangeness change
between the initial and final states, if a, =0, 1 or
l' we must have b, =0, 1 or l'. Thus the effective
minor coupling constant f,,b, fa2g has a, =b, and

a, = b„so it is of the form
I
f„l' and no CP viola-

tion can occur. If there is no lepton current, then,
inasmuch as we have already assumed f» is real,
there can be no CP violation. Even if we drop
that assumption, however, we can readily see that
the only purely hadronic possibilities consistent
with the quantum numbers of the external states
are f„f» (a, b =0 or 1) and f» f», both of these
are purely real, and there is therefore no CP vio-
lation.

Having exhausted all possibilities, we conclude
that M,"will produce no electric dipole term. In
third order, we manifestly can have CP violation,
e.g. , from the product S,g»Z» Because .of the
lepton propagators, we estimate the magnitude of
a term from this product to be

(3.26a)

where d, is a dipole moment that would be induced
in first-order weak processes (say, by a theory
where T violation occurs in j"). This latter is
estimated to be"

dx-10 '9 ecm,

so that, based on our theory, we would predict a
dipole moment for the neutron of order

(10 5) x(10 3)d, = 10 "e cm, (3.26b)

which is orders of magnitude below present exper-
imental limits. "

IV. PRODUCTION OF 4 PARTICLES

We now turn to possibly an even more specula-
tive subject than the preceding, namely, a calcu-
lation of the production cross section for the
superpropagating y particles. Here the specula-
tion arises not so much in the details of the calcu-
lation itself, which is fairly straightforward, but
rather because we must commit ourselves to a
particular view of the true nature of the y parti-
cles.

There are at least three viewpoints as to the
meaning of the y particles:

(i) The y's are conventional particles which,
once produced, should have the usual properties
of scalar charged particles of mass M.

(ii) They represent some kind of average over
the already observed particles, which can be ex-
changed in higher-order weak processes; in other
words, in choosing a nonpolynomial factor and
calculating to O(G') we are really performing an
effective sum over many processes which occur
to all orders in G. The idea that such a selective
summation procedure might produce a finite theo-
ry has been suggested in the past. "

(iii) The y's are a manifestation of the short-
distance nature of space-time, and do not repre-
sent any particles, averaged over or otherwise.

In what follows we shall assume that (i) is the
correct choice, and calculate y-particle produc-
tion on that basis. It then remains to be under-
stood why the y particle, which otherwise behaves
normally, has the distinction of being coupled
nonpolynomially; we shall not attempt an expla-
nation here, and shall cease further speculation
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at this point.
Proceeding with the calculation, we note that if

the amplitude

(4.1)

occurs in order G, then so does the amplitude

In reaction (4.2), we let the momentum of state
A be p„, and that of state B be p~. We denote the
momenta of the N y' particles by k„.. . , k„, and
those of the N y particles by q„. . . , q„. Further-
more, we let Q,". , (k; + q, ) = Q„. Then the relevant
matrix element in first order is

A —B+N(rp'y ). (4.2)
I

G
&Pa, k„,4,q„,q3 I &(o) I p~& = 2 & k„.. . , k„, q„.. . , q„ I: exp f„qtq (0): I o& ~ & p, I:f ~'&f '&'&t:

I p„&

G
=

~2 Z(f.3)"&Ps I:f'~f""':
I p~&.

a, b
(4.3)

We note the following features: First, due to the appearance of only y~y in Z, the y particles can be
created only in pairs. Similarly, in an annihilation amplitude, the fd()'s must decay in pairs. A single y
particle would be stable. Second, in (4.3), note that the matrix element does not depend on the momenta
k,. or q;; it is simply proportional to that for reaction (4.1). This suggests the attractive possibility of
using the basic process A-B to select out the various minor coupling constants f„. I For example, v, + e
—v, +e+N(cp'q3 ) measures f„, n+p- p+A+N(y'y ) measures f„, etc. ] Furthermore, by varying N,
one can test whether the coefficient in (4.3) is really (f„)", thereby checking whether the exponential we
have used is correct, or whether perhaps a different nonpolynomial function is preferred.

However, this type of analysis depends on the N (pair) cross section o~"s' for reaction (4.2) being reason-
ably large so that the indicated experiments can be done. We continue our calculation to see if this is so.
From now on, we specialize to the reaction

P(P, ) n+(P ) 3n(P3-)+P(P4)+Ny'(k„. . . , k„)+¹p(q„. . . , q„). (4.2')

We choose hadrons because (in the absence of colliding electron-neutrino beams) only with hadrons can
one achieve fairly large center-of-mass energies, which are necessary in the first place simply to reach
the production threshold for N y'y pairs, and in the second place because the cross sections described
by (4.3) will in general grow significantly with increasing center-of-mass energy.

We make the following two approximations: (i) The reaction (4.2') measures both f«and f»,' however,
we shall drop the f» term for simplicity (it is expected to be smaller in any case by a factor of sin 8);
(ii) we shall replace the basic hadronic amplitude in (4.3) by the equivalent high-energy form of a typical
first-order leptonic amplitude, in order to have a definite form for our cross section.

The cross section is

4E, E3!v,-v31 (2v)'4E3E4;=, (2v) 4k;q;.5'(P, +p -p. p. —Q.)15M'!-Z
I &p., p, lf'"'f'" lp„p&l'.

SPlflS
(4.4)

Here M is the nucleon mass. According to the second approximation above, we make the replacement

ISM'-'Zl &.,PPl '"~' '"fI „p.pl'&= 46( pp. )(p, p, ), (4.5)
spms

which is the result for l+ v- l+ v.
The rest of the calculation is "just" phase space.

In order to make some headway, we go to the lab-
oratory frame and let the total momentum be
P -=p, +p, . Since the incident proton is taken to be
extremely relativistic, we have, to a good approx-
imation, "

p =P,
1

P3 P4 I ql (2N 2) 7

i.e. , all the particles are produced forward, and
all share approximately equally in the incident mo-

mentum. It follows that

1 N

Furthermore,

2p~'p2=s —2M s
and

2p3 p4 1
P' —2M

1
, ls -2(N+I)'M].

Also, the incident flux factor is given by
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2E&E&~v& —vz~ 2P&'p& s.
Thus, in this approximation, the matrix element
(4.5) is independent of the integration variables,
and we may write

o'"'(s) = 8vG'f '" 0+'(s) (4.6)
s —2(N + 1}'M'

fit 00
(N + 1)2

where 0'"'(s) is the phase space for 2N+2 scalar
particles:

once they are produced.
In summary, we see that when we make the most

"down to earth" choice and treat the y's as conven-
tional particles, they turn out to be very difficult
to produce and perhaps even more difficult to de-
tect, so that the question of their existence, even
granting the validity of our theory, becomes a,

slippery one indeed.

V. SUMMARY AND CONCLUSIONS

x 5'(p —p, —p, —Q„). (4.7)

~hen 2N+2»1 and s»4(N+1}'M', (4.7) can be ap-
proximated by'

s2N
g( )(s)

(2n')'"+'r(4N + 4)(4N +4)'" (4.8)

so that, with the help of Stirling's approximation,
the cross section becomes

~(~) s)
G2s f 2g e4 1 Ps 2N

00
2v 4v 128m (N+1) 16(N+1)

(4.9)
The first factor in (4.9) is the pn- pn elastic cross
section at high energies, a~~~(s}; the second factor
explicitly demonstrates the dependence on the cut-
off length

ro=
1/2foo

4m

and the third factor contains the rest of the depen-
dence on s and N.

With the order-of-magnitude estimates of ro and
the mass of the y particle which we have made pre-
viously,

ro= ~ GeV ',
M= 1 GeV, (4.10)

the cross sections (4.9) turn out to be quite small,
even at very high energies. For example, with the
numerical values (4.10), and with s = 2 x10' (GeV)
(corresponding to a lab energy of 10' GeV), we ob-
tain cr' =0.16, o =0.29, v' =0.17, and o =0.042,
in units of 10 ' mb; v+ for N &4 continues to de-
crease.

Thus it is extremely unlikely that the y particles
will have any immediate experimental consequences.
This is especially true since it is also not clear
that they are electrically charged. They obviously
carry a quantum number which is conserved, but
nothing in the formalism requires this to be elec-
tric charge; if it is not, then the y's will behave
like massive neutrinos, and will hardly interact

In this and the preceding paper, we have begun
an attempt to resolve two of the outstanding prob-
lems of weak-interaction physics, namely, the di-
vergence difficulties in higher orders of perturba-
tion theory and the observation of CP-violating ef-
fects in the neutral K-meson system. We have em-
ployed rather unconventional means to carry out
this attempt, namely, the multiplication of the usu-
al currents current Lagrangian by a nonpolynomial
function of the field of a hitherto undetected parti-
cle y. However, if we insist on working in the con-
text of a currentxcurrent theory in order to retain
the experimental successes of the lowest-order
theory, then something like the "good" short-dis-
tance properties of nonpolynomial field theory is
needed to overcome the divergences introduced by
the current products. As we have seen, the par-
ticular choice of nonpolynomial modification made
by us goes a long way toward solving these prob-
lems, since the divergences of the theory are now
similar to those of quantum electrodynamics and
since CP violation emerges in a very natural way.

The weak interactions of leptons in O(G') were
discussed in I ~ There we found that lepton-lepton
scattering is finite, while the lepton self-energy is
only logarithmically divergent. We showed that,
in general, the finite part of any amplitude went in-
versely as the square of the naturally appearing
cutoff length ro. Further, any amplitude could be
written as the sum of two terms, the first an entire
function of the relevant invariant energies, and the
second a dispersion integral over products of first-
order weak amplitudes, as required by unitarity.
Since the major thrust of our work so far has been
to develop the tools needed to discuss renormaliza-
tion of the weak interactions in all orders of pertur-
bation in G, we have left undone many interesting
calculations of second-order weak processes.
These include especially situations which might in-
volve time-reversal violation in leptonic processes.
Apart from (possibly important) hadronic effects,
these may be studied using the techniques of Secs.
II and III of paper I.

As far as higher orders in G are concerned, we
derived expressions for the time-ordered products,
5), of any number N ~ 2 of nonpolynomial factors,
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:exp[fyty], :. It was then a simple matter to show

that the short-distance behavior of F "~ was exactly
what was needed to make the naive degree of diver-
gence independent of the order ¹

There remain the

difficult problems of showing that the theory is uni-
tary-analytic and renormalizable.

In this second paper, we turned our attention to
the problem of CP-invariance violation in the neu-
tral K-meson system. Here we were guided by
the idea that CP violation is a higher-order weak
effect, intimately connected with the short-dis-
tance behavior of the theory and with the structure
of the superpropagator. Having realized that physi-
cal amplitudes have a. definite analytic structure in
the minor coupling constants f„f,~, we identified
CP-noninvariant terms with the discontinuity
across the cut in the complex f,~f,„plane. Although
we are severely limited in our ability to make hard
calculations of quantities involving hadronic cur-
rents, estimates based on the light-cone structure
of quark currents led us to some definite relation-
ships among fe, f„ f„and f„. Specifically, in or-
der to obtain estimates for g, , goo, and the K
mass matrix elements that were consistent among
themselves and with experiment, it was necessary
to choose fe, real and f« f» complex, with

~f„f»/16v4~ "'&10 GeV. This choice of the f's
gives K, - ~~ as a second-order weak process,
while T»=—-s(ye+2tam)m~ is a third-order weak
quantity.

Finally, we calculated the production crops sec-
tion for y'y pairs, and found results of (at most)
10 ' mb when incident energies are in the TeV
range, thus making it unlikely that the y-particles,
if they exist, will be detected in the near future.

We have obviously left many problems unsolved.
In addition to the T-violating leptonic processes
mentioned above, there are many other second-
order amplitudes which will attract new interest as
high-energy weak-interaction experiments begin to
be done. Qn a more fundamental level there is also
the formidable problem of proving that our theory
is renormalizable, and therefore worthy of serious
consideration as a complete and consistent descrip-
tion of the weak interactions.
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