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In order to cure the divergence difficulties of higher-order weak interactions, we propose
a theory in which the usual current X current Lagrangian is modified by inserting the non-
polynomial factor explf oTox)], where ¢ is a charged scalar field. We show that, as a re-
sult, the usual first-order weak amplitudes are unchanged, while second-order leptonic
scattering amplitudes are finite. Explicit formulas are given for lepton-lepton scattering
and the logarithmically divergent lepton self-mass. A discussion of Nth order is presented,
in which it is shown that the naive degree of divergence is independent of order, and the
superpropagator to all orders is derived. The groundwork is laid for the discussion in a
following paper of hadronic processes and the appearance of CP violation as a higher-order

weak effect.

I. INTRODUCTION

Of the many unsolved problems in weak interac-
tions, two stand out as having no natural explana-
tion within any of the usual formulations of the the-
ory. The first of these is how to cure the diver-
gence difficulties encountered in higher orders of
perturbation theory; the second is how to under-
stand the origin of CP-invariance violation as ob-
served in neutral-K decay.

In the past, attempts to solve these problems
have generally treated them as unrelated. The
various approaches taken in the case of diver-
gences have been summarized by Segr2® and by
Gell-Mann ef al.?> One may identify two main cate-
gories of proposed solutions: (i) those in which
the usual current X current theory is considered as
a low-energy approximation to a more complicated
theory in which various numbers and kinds of in-
termediate particles are exchanged,® and (ii)
those in which selected sets of divergent Feynman
diagrams are summed to all orders in the weak
coupling constant.* In addition, there are the ap-
proaches of Lee and Wick,* who introduce an in-
definite metric, and of Gell-Mann et al.,? in which
the divergence problems are contained only in the
so-called diagonal interactions which respect all
strong-interaction symmetries.

In the case of CP-invariance violation, the num-
ber and variety of explanations has been so large
that we cannot hope to review them all here. The
source of this effect has been placed anywhere
from the electromagnetic interactions, to the weak
interactions themselves, to a new, “superweak”
interaction that only shows up in the neutral-x
system.® That such a wide range of theoretical
possibilities exists is certainly a reflection of the

s

fact that the effect has so far been observed only
in decays of the long-lived K °.

In this series of papers, we construct a theory
of the weak interactions whose primary aim is the
removal of divergences in perturbation theory, but
which also has the virtue that CP-invariance viola-
tion emerges naturally as a higher-order weak ef-
fect. Furthermore, the magnitude of the CP-non-
conserving effect in any process is intimately re-
lated to the degree of divergence of that process
in the usual currentXcurrent theory. This type of
mechanism for CP-invariance violation was first
described phenomenologically by Wolfenstein.”
Here we present a theory which not only provides
a concrete realization of his suggestion, but which
may also cure the divergence problem of higher-
order weak interactions as well.

To accomplish these ends, we shall use the tech-
niques of nonpolynomial Lagrangian field theory
(NLFT) of type II, as described in a previous
paper.®~'° The first application of NLFT to weak-
interaction theory was made by Fivel and Mitter.!!
While we have benefited from their work in a va-
riety of ways, our approach is fundamentally dif-
ferent from theirs in a number of respects. They
used a nonpolynomial of type I, which is more
cumbersome and more ambiguous than our type
II, and they chose to begin with an intermediate
vector boson theory, so that the second-order
weak corrections (in the Fermi constant, G =1.02
X107° Myo10,"%) to the usual amplitudes are repre-
sented by complicated fourth-order diagrams. We
avoid this difficulty by beginning with the Fermi
currentX current formulation. Furthermore, Fivel
and Mitter made no attempt to relate CP-invari-
ance violation to the divergence problem, whereas
this relationship is one of the interesting conse-
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quences of our approach.

The general question of the application of NLFT
to physical problems has aroused increasing in-
terest during the last few years. At a fundamental
level, it has been proved that certain types of
NLFT are mathematically at least as well defined
as the usual polynomial theories.!? On the other
hand, it has been stressed, especially by Salam
and co-workers,'® that quantum gravity neces-
sarily introduces nonpolynomial effects, and that
gravity-induced NLFT can be used to provide rea-
sonable cutoffs for the divergent quantities in
quantum electrodynamics. Our point of view is
neither to worry overly much about mathematical
rigor nor to speculate at length on the fundamental
physical significance of the nonpolynomial that we
introduce. Rather, we modify the weak interac-
tions in a way that is as simple and as natural as
possible, consistent with the objectives we hope
to achieve, namely, to generate an S matrix that
is unitary and which provides unambiguous expres-
sions for the relevant amplitudes. At this level,
the following two papers are relatively self-con-
tained; the interested reader is referred to our
previous paper ® and the general literature for
further details.'*

The remainder of this first paper is divided into
two parts. Section II contains a general descrip-
tion of our theory, and presents an overview of
some of the important features of the second-order
amplitudes. It is shown that the usual first-order
amplitudes remain unchanged, and guidelines for
estimating the magnitude of second-order correc-
tions are laid down.

Sections III and IV are devoted to higher-order
purely leptonic processes. We given explicit
rules for calculating the physical amplitudes, and
show that those describing lepton-lepton scattering
are finite in second order. A brief treatment is
given of the lepton self-mass, and we sketch the
procedure for removing the infinities. We then go
on to give the basic formulas needed for calculat-
ing amplitudes in higher orders, and prove that
the naive degree of divergence of a diagram is in-
dependent of order (as it is in quantum electrody-
namics). The general problem of proving renor-
malizability is not attempted here, although it is
under investigation at the present time.

In paper II, we focus on the neutral K-meson
system, and derive expressions for the usual CP-
violating parameters in terms of the fundamental
quantities of our theory. The discussion is largely
only qualitative, because of our ignorance of the
short-distance behavior of hadronic current ma-
trix elements; however, we are able to use the
free-quark model as a guide in providing reasona-
ble estimates for the size of CP-invariance-vio-

lating effects. In particular, we find that the re-
sults |€|= 1073 and 7, _= n,, fit comfortably within
the framework of our theory, although we cannot
derive them unambiguously. We give a brief dis-
cussion of the induced neutron dipole moment,
and estimate its magnitude to be of order 10-?7
ecm.

We devote one section of II to the discussion of
the production of the particles associated with our
nonpolynomial coupling, and find that the cross
section is probably too small to have any imme-
diate experimental consequences. In the last sec-
tion of IT we present some conclusions.

II. GENERAL DISCUSSION

The remarkable successes of the usual form of
the weak Lagrangian, when one calculates only to
order G, place severe restrictions on any at-
tempted modification. On the other hand, the even
worse divergences encountered in higher orders
of perturbation theory suggest that some funda-
mental alteration must indeed be made.

We shall show that a suitably chosen nonpolyno-
mial modification of the currentx current weak
Lagrangian fulfills these requirements, in that no
change whatever is wrought on first-order ampli-
tudes, and second-order leptonic scattering and
decay amplitudes are all finite. The degree to
which our objectives have been achieved is less
clear for second-order amplitudes involving had-
rons, because of our ignorance of the short-dis-
tance behavior of products of hadronic weak cur-
rents. This problem will be discussed at length
in II. As far as third and higher orders in G are
concerned, we present some of the relevant for-
mulas in Sec. IV. The question of whether the
theory is fully renormalizable and the proof of
unitarity to all orders in G are currently under
investigation by us.

In the remainder of this section, we outline the
general features of our proposed modification, up
to order G®. Our starting point is to multiply each
of the positively charged vector-axial-vector weak
currents, j{®’(x), by a nonpolynomial function of a
charged scalar field ¢(x). Here

a=e, | for leptonic currents;
a=0 for AS=0
and
a=1 for AS=+1 hadronic currents.

Specifically,!®
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JPE) =T, ) ya(l =y 1x) =7 P (x) exp[3 f,0'(x) @ (x)]
JBH2 (x) = j O (x) exp[3 fo' ) @ (x)],
JEA (x) - 7§V (x) exp[3 f,07(x) @ ()]

(o)(x) J(1+i2)(x) -
(1)(x) J(4+is)(x)

The particle represented by the field ¢ (x) is as-
sumed not to interact strongly with the known par-
ticles. The four minor coupling constants f, are
a priovi all different and complex; the f, and the
mass M of the ¢ particles are to be determined
by experiment.

Denoting by j {*’ the modified currents in Eq.
(2.1), we then form the (symmetrized) current
Xcurrent Lagrangian

£,)=2"12G: [ (x) 52T,

a,b

=28, (x): exp[f,,¢'(x) o ()] :, @2.2)
a,b

where
£,,00)=2"Y2G[ 52 (x) § 2 (x)], - 2.3)
In Egs. (2.2) and (2.3), [AB],=3(AB+BA) and
Ju=s(fa+ F)=14. 2.4)

Also, the nonpolynomial function of ¢'p is under-
stood to mean

xpl /() 9 ()] : 2 (W], @.5)

It is at once clear that any first-order weak pro-
cess not involving the emission or absorption of ¢

Tap= [ d% D AIT{: L0ple) expl 1y eI ()] :

cd

cd (0 eXp[fcqu
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(=e, p),
@.1)

—
particles is unchanged, since the relevant matrix
elements will be of the form

E (Al£ab : exp[fab(pT(p] : |B>9 (2-6)

a,b

and if |A) and | B) contain no ¢ particles, then the
change in (2.6) is the factor

(| : exp f,,¢0]:[0y=1. @7
Also, from formula (2.5), we see that if, for ex-

ample, the state |A) contains »n (¢'¢~) pairs,
A=C+n(p*e),

then the first-order amplitude takes the form
E<Cl£ab| B> (n ((p+(p-)i : exp[fa,,(pT(p] : IO>

a,b
= Zb (fab)"<cl=cnb(x)l B> eiP-x ’
" 2.8)

where P =total momentum of the » pairs. We note
that the ¢’s are always produced in pairs, and that
moreover we have made no provision for the decay
of individual ¢ particles. A more detailed discus-
sion of the production of ¢ particles will be given
in paper II.

In second order, a contribution to a typical am-
plitude with no external ¢’s will look like

0)¢(0)]:}|B)

- f a’x Z) A|T{L,,(x)L,0)}| B (0| T{: exp[ f,,0"(x)¢ (x)] : : exp[ £,,0T(0)¢(0)] :}|0)

f dx E<A|T{,c,,<x)£,,¢ O} BY[1 = fo fog A2(x)]

In the second step of (2.9) we assumed that |A) and
| B) contain no ¢ particles, and in the third we
evaluated the ¢ “superpropagator” straightfor-
wardly using Wick’s theorem and summing the in-
finite series in f,, f,,A°. Here we see one of the
basic features of NLFT; we sum to all orders in
the minor coupling constants f, but do perturba-
tion theory in the major coupling constant G. For
more detail on the superpropagator and other two-
point functions involving exp(fo'p), the reader is
referred to Appendix A.

We remark that, according to the usual rules of

(2.9)

r

NLFT, 8-!° we are adopting the Euclidicity postu-
late, whereby all momenta in the states |A) and

| By are assumed to first lie in the Euclidean or
Symanzik region, so that (by Wick rotation) the
integration over Minkowski space-time can be
converted to integration over a Euclidean one.
After performing all auxiliary integrations, am-
plitudes are then analytically continued to the
physical region of the external momenta. The un-
initiated reader should not be too distressed by
this procedure. Computations in ordinary poly-
nomial field theories may be carried out in the
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same way; for example, the renormalization pro-
gram in quantum electrodynamics is most easily
carried out with momenta in the Euclidean domain.
This point is discussed further in Sec. Ill, where
some explicit examples are given.

A particular consequence of this is that the prop-
agator function A appearing in Eq. (2.9) assumes
the form A (x ;M )= MK,(Mvr)/4n?r, where »
=(-x?)"2>0 is the Euclidean length and K,(M7) is
the usual modified Bessel function. We note that
as -0, A(r)~1/4n%7% so that the superpropaga-
tor 1/[1 - f2A%(r)] provides a convergence factor
of »* at the origin. This damping of ultraviolet
divergences is the main motivation for introducing
a nonpolynomial Lagrangian. Let us perform the
Euclidean integration over angles in (2.9) defining

F,pr)= f a*Q (A|T{L,,(x)£,0)}|B).  (2.10)
F,5(r) will be a function of the Euclidean length »
and the various momenta and spins of the particles
in states A and B. The amplitude in (2.9) is then

TAB(f2)=fr3dr—FAB—")— @.11)

1- f2A%(r) ’
where we have abbreviated f,,f.,= f%>. We assume,
of course, that the integral (2.11) exists. In the
case of purely leptonic scattering amplitudes,
where F,,(r) can be evaluated explicitly, we shall
see in Sec. III that all such amplitudes are indeed
finite. In the case of processes where hadronic
currents are involved, additional assumptions
must be made .(see paper II).

Equation (2.11) displays T,(f?) as an analytic
function in the f? plane, with a cut running from
f?=0 to infinity. Since we have assumed that the
f. are arbitrary complex numbers, in general the
f? appearing in (2.11) will also be an arbitrary
complex number, so that there is little more we
can say. However, certain special cases are
worthy of particular attention.

First, we consider the case of f? real (case I).
This must necessarily happen in “diagonal” pro-
cesses, where b=cand a=d in f,,f,,, and may
happen in other processes as well. Then, for
some value 7 =7, we must have f2A%(r;)=1 [re-
call that A(») decreases monotonically from in-
finity to zero as » increases from zero to infinity],
so that there is a singularity in the region of in-
tegration in (2.11). When this happens, then the
integral by definition is taken to be the principal
value. This is the same rule we employed in Ref.
8 as the simplest prescription consistent with uni-
tarity. We show in Appendix A that, for M =0, the
principal value also provides the best-behaved
superpropagator in momentum space.!®

|

The second case we condider (case II) occurs
when f? has an infinitesimal (positive or negative)
imaginary part. We are not forced to consider
this case; however, at present there is no way of
determining all nine parameters in our theory
(the real and imaginary parts of the four f,, and
the mass M of the ¢ particle), and since the ef-
fects of the Im f, do not go away as Imf,~ 0 (be-
cause of the cut in the f? plane) we find it conve-
nient to assume that indeed each Imf, is infini-
tesimal. We shall see that this causes us no trou-
ble, and in fact introduces a certain elegance into
the formulation of the theory. We bear in mind,
however, that this assumption may have to be re-
vised at a later date.

When f? has an infinitesimal imaginary part, we
obtain a d-function term in addition to the princi-
pal value of case I. Thus, we may combine cases
I and II into a single formula:

T .5 (f2) =T () +T E(f3), (2.12)
with
Tf:,;(fz)=PJ: rsdrl -}fefz(:)z(‘r) 2.13)
and
T@(F2) =inn(72) O“ f—f(% FAB(r)G(#) —Ref"’) .
(2.14)

Here
n(f?) =0 if f? is purely real

=sgn(Imf?) if f2 has an infinitesimal
imaginary part.

As we shall see in paper II, the occurrence of
terms like T ¢} (and its analogs in higher orders)
is responsible for the CP-violating effects in our
theory.

Let us assume that F,,(r) behaves as c¢/7" for
small 7. Without the superpropagator, of course,
T ,5 would be singular if n >4. The degree of
singularity could then be expressed in terms of a
cutoff 1/A at the lower limit:

T = — At (2.15)
(For n =4 this should read T ,,;=cInA.)

Replacing F,, by ¢/r" in (2.13) and (2.14), and
making the further approximation for small »

1
A(T)zébrzrz R (2.16)
we obtain
T(F2)= (=) "V 25 cm frp) - (2.17a)
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for n odd (the prinicpal value vanishes in our ap-
proximation for n even), and

T (fA)=sicn(ry)*™, 2.17b)
with
2
1’04 = Ref

Of course, (2.17) holds only for n <7, since the
integral (2.13) diverges if n > 8. We see that the
effect of the superpropagator is to regularize any
diagram for which the ultraviolet behavior of the
matrix element is no worse than »-7. By compar-
ing (2.17) with (2.15) we deduce that r,~! plays the
role of a covariant cutoff,

-1
Yo ~A.

From various estimates of the magnitude of
weak-interaction cutoffs,!” we should expect the
parameters 7, to be of order & GeV~!. Further-
more, since the small-» approximation (2.16) is
valid only when M»<< 1, we find it convenient to
assume that M»,<«< 1, or, to be specific, that
M=1GeV.

As a particular example of the estimates (2.17),
consider a second-order amplitude with two inter-
mediate leptons. Since each lepton propagator be-
haves as 1/7° for small », we expectx =6, so that

T 355G/ 7r2=G (G/7,2)=10-3G, (2.18)

the last approximate equality being valid when
7,=7 GeV~!. Thus many second-order amplitudes
will be about a thousand times smaller than first
order, and not down by a factor of 10° as a naive
O(G?) argument might suggest. This enhancement
is directly traceable to the divergence that T,
would have without the superpropagator, and will

J

have important consequences when we discuss CP-
violation in paper II.

III. LEPTONIC PROCESSES

As a first application of the formalism developed
in Sec. II, we investigate purely leptonic process-
es in order G2. For simplicity, we shall ignore
the contributions to such processes from interme-
diate hadron states due to the repeated action of
the semileptonic weak interaction.

The major portion of this section is devoted to
calculating the scattering amplitude for v, te”
—-v,+e”. This prototype calculation will be car-
ried out in detail so that we may achieve the fol-
lowing objectives: (i) to show that all leptonic
scattering and decay amplitudes are finite in O(G?)
and that they have the analytic structure (in energy-
momentum variables) dictated by unitarity, (ii) to
illustrate the calculation procedure which is im-
posed on us by NLFT and which is embodied in the
Euclidicity postulate, and (iii) to take advantage of
an instance in which we can compute exactly (since
only lepton currents are involved) in order to de-
velop intuition about second-order weak ampli-
tudes modified by our superpropagator. This in-
tuition will serve us well when we study processes
involving hadronic currents in which exact calcu-
lation is impossible.

Following this study, we present a brief discus-
sion of the electron self-energy. This quantity is
logarithmically divergent in our theory, and we
indicate how it might be separated into infinite re-
normalizations and finite propagator corrections.

The scattering v,+e~—v +e” first occurs in
O(G?) and is represented in our model by the Feyn-
man diagram of Fig. 1. The amplitude describing
this process is

Vulbo)e™ (pITlv ,(p e (p,)) =i f d*x(v,(po)e” (P 1L, ()2, O} v, (p1)e™ (p2))

x 0| T{: exp[ £, 0 (x)o(x)]: : exp| £,,.¢(0)p (0)]: }|0) . 3.1)

At this point, all momenta and the variable x in
Eq. (3.1) are assumed to lie in the Euclidean re-
gion. Accordingly, the T instruction in this equa-
tion is really irrelevant. [If we were to take Eq.
(3.1) seriously for momenta in the physical region
and derive a Low equation from it by insertion of
a complete set of states, the result would be badly
divergent. This shows that the Euclidicity postu-
late is a necessity, not just a convenience.] This
means that, in carrying out the contractions of
lepton fields in Eq. (3.1), we may effectively use
expressions of the form

FIG. 1. Elastic vye” scattering in second order.
Heavy line indicates the superpropagator.
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YAl =¥)OIT{16c) T ()} 0y v, (1 = 75)
=2y (y-d)Alx;m)y, (1 =)
==2i yxy?7,(1 =vs) frE A, (r;my),
(3.2a)
where 7 = (-x?)*/2> 0 is the Euclidean length and

A(r;m,)=4—:;1;K1(m,r),

A,(r;m,)sd%A(r;m,)

= =m?K, m,r)/ 4n’r

- —@2r%3)"! for m,-0. (3.2b)

Remembering also that one of the rules of our
theory is that the principal-value integral is un-
derstood whenever the product f,,f., of minor cou-
pling constants is a priori real, we find

e lg® v ey =4G/V2 P MPF o (ps+ pay foy fue)s

3.3)
where

MP° =, (p,) Y vy H(1 = v5)u, (p,)
X @, (pa)var°r,(l =ve)u,(p,) @3 .4)
and, with py =(ps+p4),

Foo(p; fou fuo)=1° Pfd"xe""‘

Xpx, A (r;m)a, (r;0)
v 1 =fo, f.0%r;m)
3.5)
All O(G?) leptonic scattering or decay amplitudes
can be written in the form of Eq. (3.3), with inte-
grals having the same structure as F,,. Thus,
the basic problem of the theory is the definition
and calculation of such integrals. Part of this de-
fining process is embodied in the principal-value
prescription already imposed. The rest of the def-
inition is based on the Euclidicity postulate, ac-
cording to which we assume p2<0 in Eq. (3.5) and
then cast F,; in a form suitable for continuation
to the physical region (in the present case, p?
>m,?).
To this end, we first introduce the Euclidean
momentum g = (=p®)'? = —ip >0 and write F,, in the
form

1 1 d\2
R T el e

~ 1d 1 d\? .

_[—gpogd—q'i'pppo(EEE)]F(qZ_-pz’fgufue)

= 8o FL @5 fou fu) + Dp 0o F @5 Sy 1)
(3.6)

|o»

Formally, F(g?) is given by

w1 A,0;m)A (r;0)
r’1=f, f,.0%0)

F(g?)=i PI d*xe'

4n2 ° A, (r;m)A, (r;0)
=-—q—-Pj(; erl(qr)——l—“—l—l_feuf“eAz(r) s 3.7

where the integration over Euclidean angles has
been performed in the second step of Eq. (3.7).
While F(g?) diverges, the integrals of physical in-
terest, F, ,(g?), donot. They are given by

1d
2y = = 2
F,@%)= qqu(q)

Ao (7 8, (r;m)a, (r; 0)
= qz PJ; d'rTJz(q’V) 1 "feufueAz(r)

(3.8)
and

Fz(q2)5<

Q-

d 2
E) F(g?)

>
E

A,r;m)A, (r;0)
1 _feufueAz(r)

3.9)

It is easy to see that the form factors F, , are
finite for all ¢>>0. For small », the integrals be-
have as!®

2 w©
< PI drv3iJ,(qr)
0

_Q

1 7 1
2y > ~
F.@) 872 PJ:_,odrr4— Tou® ey

5 (3.10a)

and

,r‘!

1
2)~ —_—
Fz(q) 48172P[,_,0dr1’4—1’eu4 lm'eu, (310b)

where, assuming that M?|f, |« 1, 7,, is given by
7, = | £, |%/167*> 0. (3.11)

The leading dependence of F, and F, on 7,, shown

in Eqgs. (3.10) is a reflection of the fact that these
integrals are, respectively, quadratically and
logarithmically divergent in the absence of the
superpropagator. Thus, the length 7, acts as the
reciprocal of a cutoff mass. In terms of the analyt-
ic structure of F, and F, in the complex variable
Jeu fue» this dependence indicates the degree of

the singularity at the branch point JeuSue=0.

For r -, the integrands in Eqs. (3.8) and (3.9)
behave as ¢~27,(gr)e ™" and q~%J,(gr)e "":", re-
spectively, thereby concluding the proof that F,
and F, are finite for all p?=-¢?<0.

Turning to the continuation of F,,to q% =-p2<0,
we first remark that, since J,(g7)= J,(~ip7)
=i~" (pr) and I,(p7)~e?" as v - =, continuation to
positive p?< m,? is a trivial matter. Atp2= m,?,
one encounters the branch point of a cut (extending
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to infinity) in the p? plane.

Let us assume [¢? =| p?/< m,?. Then, following
the procedure detailed in our earlier paper,® we
write (=1 or 2)

42 © ; A r;m)A, (r; 0
ep/pue

pj+1( J JM)"""' Iy (p7)

A, (rym)A;(r;0)
1-f,, fe0%0)

= A;(p?) +B;(p%). (3.12)

X

In Eq. 3.12), a is any length >7,, . Forr=a>7v,,
|fou fueA%(r;m)|<1, so that the principal-value in-
struction is needed only for the integral A,(p 2) on
the interval »=0 to a. This integral, A,, is an en-
tive function of p?, and is automatically continua-
ble as it stands.

The analytic structure due to unitarity of the
scattering amplitude (v, e~|T®|v,, e") resides in
the integrals B, ,(p?). The rather involved pro-
cess of extending them to P2>mu2 is deferred to
Appendix B. Here we merely quote the results,
which are

1 dk2
B (P ’ Ifep| j 2 k4 2)

x[szz K%K 0 (k3| f,,|?) d |k ( ,gf-)]

mu
(3.13)
and
1d 2
B (P ’ ifeu]z) —5 _P L (0% lfeul )
4
=—5§ y Ifeu‘
1 r dr? 2
n.p 2 k2 pz kz’ |fey|2)d k 2)-
(3.14)
In Egs. (3.13) and (3.14)
0% |l ) =13 1) 2" Bome 2(2), (3.15)
n=0

where §},,, ,(%?) is essentially a phase-space inte-

J

Abs(vu(ps)e‘

Before proceeding, we make two comments on
the meaning of the integrals A ;» entire functions
of p?% and of their magnitude relative to the disper-
sion integrals B,. First, it is clear that A ; is es-
sentially the sum of an infinite number of subtrac-
tions which are needed to make the integrals over

PIIT (e (p)) =2 @) T |we™|L,, : expl £, 00

gral for a muon, an electron-neutrino, and 2» of
the superpropagating ¢ particles, in which this
collection of 27 +2 particles has total center-of-
mass energy k = (k 2)V/2:

1 daqldaq2 ﬁdsp,-
@rPen D ) 4E.E, \;i, 2w,

ﬁzwz(kz) =

2n
Xq,-q, 54(q1+q2+£?p,. —k).

(3.16)
The function
d, (& p?) =kalK (ka)I,(pa) + (k/p) K, (ka)I,(pa)]
(3.17)

has already been discussed in detail in Ref. 8.
While

0(k?; | foul®) ~ eFrer as k* - <o, (3.18a)

nevertheless the integrals in Eqs. (3.13) and (3.14)
exist, since

d (& p*)~e™* (a>7,) as k®—~co. (3.18Db)

Equations (3.12), (3.13), and (3.14) establish
that the form factors F;(p?) are the sum of an en-
tire function of p?, A;, and of a function B; which
is analytic in the p°-plane cut from m,* to ©. The
absorptive parts of F, and F, are given by

AbsF, (p2) = AbsB, (p?)

1 2
= gj:uzdxzkzo(xz; | feul®) (3.19)
and
AbSF,(p?) = AbsB, (p?)
- 2 pz 2,.2 2. 2
= —pBJ;uz dk®k?o (% | £,,|?)
1 2. 2
+ po(p 5 el (3.20)

where we have used the Wronskian relation
d.(p% p®) =1. It is readily verified that these are
identical with the absorptive parts calculated from

Lm0 )26 (py + py = o). (3.21)

r
o (k%) converge. We have no real choice in how
these subtractions are made (apart from the prin-
cipal-value prescriptions); they are naturally de-
termined as a result of the fact that [1-| fel?a2 )]t
is not expandable for r < Yeu

The second remark is based on the observation
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that A, ~7,,~? and A,~ Inr,,, whereas B, and B, re-
main finite as 7,,~0. As we remarked in Sec. II,
and as will be further discussed in our following
paper, we expect reu" <10 GeV, so that for ener-
gies and masses < 7,,”!, we should have |A,|=|B,|.
It is easy to see from Eq. (3.12) that A, is inde-
pendent of the relevant energy variables whenever
they are considerably less than the cutoff length
7., Further, itis difficult to escape the conclu-
sion that the same is true for the corresponding
subtraction integrals arising from hadronic con-
tributions to lepton-lepton scattering (if only we
could calculate them). Thus, while it should be
quite permissible (at low energies) to ignore dis-
persion integrals over the hadronic continuum,
there may be no real justification for assuming
A,(hadron)<<A,(lepton). This feature is, of
course, to be expected in any theory with a rea-
sonably large cutoff, whether put in by hand or
built in automatically as in NLFT. Itis justa
consequence of the fact that the short-distance

(or high-energy) behavior of quantum field the-
ories is essentially mass-independent. The only
conditions we can think of under which the had-
ronic subtraction integrals would be negligible
are if (a) matrix elements of hadron currents,
such as (0|T(j{"(x)j *(0))|0), are less singular
on the light cone than the corresponding ones in-
volving lepton currents, or (b) if the relevant had-
ronic masses are very large —for example, quark
masses = 10 GeV.

We now turn to a brief discussion of the electron
self-energy in O(G?). It is beyond the scope of this
paper to give a detailed account of the renormal-
ization of the electron propagator, since the pres-
ence of parity violation is an essential complica-
tion in the renormalization procedure.!® We shall
therefore be content to show that the effect of the
superpropagator is to reduce a quartic divergence
to a logarithmic one, and to separate the self-en-
ergy into finite and infinite parts. In a proper re-
normalization scheme, the infinities are to be ab-

J

o(p?) —o(m?)= (p* -m,2)A(p?)

AND A. CHODOS

s

sorbed by mass counterterms and by wave-func-
tion and coupling-constant renormalizations.

For simplicity, we consider the contribution to
the electron self-energy, =, due to electrons and
their neutrinos only (see Fig. 2). To O(G?), Z is
to be calculated from the equation

#,(p)Z (p)u, (p)
=GP

where we have put f =f,,. Proceeding exactly as
was done above for v -e scattering, we find that
may be written in the form

e T DIT L () £,,0
1 - f2A%(x; M)

e (p)

(3.22)

Z(p)=po(p®)A -v;), (3.23)

where o is formally given by

22 )
= _1_2%(}_})[ dr v?L,(pr)
o

[a,0r;0)]%A, (r;m,)
1- f2A%(r; M)

(3.24)

Our claim that the superpropagator [1 - f2A2%]"!
reduces the quartic divergence to be expected in
the usual current X current theory to a logarithmic
divergence is at once apparent from Eq. (3.24).
While this equation is valid only for p* <m,?, it
may be continued to p*> m,? just as was done for
the integrals in Eq. (3.12). In any event, the log-
arithmic divergence resides in the “subtraction
integrals” over the interval » =0 to »=a >, [de-
fined by £, ’A%(r,; M)=1].

We follow the conventional procedure *° of sep-
arating ¥ into finite and infinite parts by expand-
ing o(p?) in powers of (f —m,). Thus we first write

po(p?) = fom?) + Blo(p?) - ofm?)]. (3.25)

The second term in Eq. (3.25) is finite, and it is
given (for p* <m,/?) by

a(p?)

= 81°G*(p® -m,?) ijd/r 79,0 0)]°A, r;m,)
o

Next we write

A(p*)=Am>) +[A(p%) = A(m2)] = Am,?) + ( —m,) B(p)

so that, using p* —m,%=2m,(f —m,)+ (§ —m,)?, we finally

3 Gpr)H Gmr P -
1-20%0r; M) ;55 (G+R+1)1(j+k+3)! ° 8.26)
(3.27)
get the self-energy in the form
(3.28)

Z(p) =B o) (1 = vg) + (B =m Y 2m2A m, )| (1 = v5) + (f =m, P (B +2m,) A(p?) + 2m,B(p)](1 = ¥5).
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FIG. 2. Contribution of electron and two-neutrino
intermediate state to the electron propagator. In addition,
there are muonic and hadronic contributions in second
order, which are neglected for simplicity. Heavy line
indicates the superpropagator.

Part of the first, logarithmically divergent term
on the right in Eq. (3.28) is cancelled by self-mass
and kinetic-energy counterterms!® in the “free”
Lagrangian; the remainder is combined with the
second (finite) term into wave-function and cou-
pling-constant renormalization. The third term is
the observable second-order weak correction to
the electron propagator. A glance at Eq. (3.26)
shows that the essential dependence of A and B on
the length 7, is given by

A(p?) =G2a(p?)/7?, (3.29a)
B(p)=G?B(p)1nr,. (3.29b)

Before closing this section, a few remarks are
in order on the possible consequences of assuming
the minor coupling constants f, and J, to be differ-
ent in both magnitude and phase. The first of these
is obviously a breakdown of p-¢ universality.

This difference between f, and f, could be ob-
served, in principle, in first-order weak ¢ pro-
duction. More striking effects might be observed
in second-order processes, however, if a special
situation existed; for example, if |f,|<|f,| or if
fe= =f,, sothat |f, [<|f,| and |f,|, then certain
amplitudes might be anomalously large because of
the smallness of the relevant cutoff length.

Another interesting possibility is that of time-
reversal noninvariance if f,, is not real. As men-
tioned in Sec. II, we expect violation of CP or T
invariance in O(G?) whenever the pertinent cou-
pling constants f,, 1., are complex. In purely lep-
tonic processes, this situation may arise in the
second-order contributions to u decay, v pte”

-~ i~ +v,, and so on. Defining cutoff lengths 7,
and 7, by

Ifeufee Az(yl 7M)| =1,
o2y s M| =1,

the amplitudes for these processes would contain

(3.30)

@m0 (p=pa)BA, O)NTP|AC, @)

= Kiitjd4x" . -d"xN<B(l)I T[f:I.J.’,,,,.,i (x.-)]
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T-violating terms which are down from O(G) by
factors of G/7,%2 and G/7,%. The techniques we
have outlined in this section are easily extended
to include the case in which the minor coupling
constants are complex, so that calculation of the
form of distributions characteristic of time-re-
versal noninvariance is a straightforward matter.
Unfortunately, at present we can take very little
guidance from experiment as to the magnitudes
and phase of f, and f,. In the following paper on
hadronic weak processes, it is shown that a con-
sistent scheme of CP violation in the neutral K-
meson system can be achieved by requiring that
the minor coupling constants satisfy the following
conditions [remember that f,, =3(f,+ /)= f&]:

Jor= fi05 S fin # frofy for l=e and/or i;

foufur/ 167 "/4< 10 GeV., ®.31)

These conditions will place rather broad restric-
tions on the magnitudes of f, and f,, but say noth-
ing about their relative phases.

IV. GENERAL REMARKS ON Nth-ORDER
PERTURBATION THEORY

In the preceding section, we discussed the sim-
plest nontrivial alteration of weak-interaction am-
plitudes, namely, that which is introduced by the
basic superpropagator

O|T{: exp(f,¢}¢,): : exp(fo010,) : }]0)
= [1 ‘flszlzz]—l:
@.1)

where ¢; =@ (x;), A, =A (X, —x,; M). We showed
that lepton-lepton scattering was finite in O(G?),
while lepton self-masses were logarithmically di-
vergent. In this section, we shall generalize these
considerations by writing down the superpropaga-
tors corresponding to emission and absorption of
¢ particles in O(G?¥), paying special attention to
the divergence problem in the weak interactions of
leptons.

Let us consider the weak process

where A(l) and B(I) are the initial and final collec-
tions of leptons, a total of L leptons all together;
A(p) and B(p) are the initial and final collections
of ¢ particles, a total of 2m in all. The O@G?¥) con-
tribution to the amplitude describing the process
(4.2) is given by

A(l><B(¢)’T[ffI:exp(f.,,.b,.wﬁqoi)::”A(cp» 4.3)
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The factor involving the ¢ particles in Eq. (4.3) is a sum over the functions F{{‘;’mi, [for which 33V (1, + m;)

=2m] defined in Appendix A by the equation

[II exp(fi9te,) ]

Here, we have put f“‘_b'_

lj,m;=0

= 24= i ?0y5 244=0 G,j=1,...,N).

Z 051, Im; Fg' m,)(zn) H

Tmy,

gl '(fng LS (4.4)

= f; and introduced the (dimensionless) variables upon which F{", , depends:

In Appendix A, the dependence on the z,, of the Green’s functions Fff" ’,,,i , is found to be given by an

(N —=1)%-fold finite sum:

N N , N N
- . ll +
F(l im; )(ZU) [det(l _Z(N))] Friry l[lk! mk! fk(mk ') 2] Z [H éls.Ekﬂksé”'s-Ek"sk} H
k=

Here, zZ¥’ is the NXN symmetric matrix of the z,,, and ¢{¥’ =¢¥ is the cofactor of (1 -2Z™),;

Two special cases of interest are (i) the Nth-order vacuum superpropagator (I;, m; =0)

FM™(z:) <0|T[II exp(fiofo,) ]|0>

=[det(1 —z®™)]-!
and (ii) the case N =2:

@ EALARA
Limysigmg — (1 _zlzz)llﬂzu

If 7, -m <0, simply use F%, , . =F&), . and
interchange /; and m; in Eq. (4.8). The functions
F® imy) are proportional to the hypergeometric

functlons
T+, my+ 1) 1 =y + 15 2,,%).

The various factors in Eq. (4.6) have a simple
physical interpretation. For example, each term
in det(1 - Z*¥’) corresponds to one of the N ! ways
of constructing a closed loop of propagating ¢ par-
ticles among any subset of the N space-time points
%;. For large distances 7,,°>=—(x; —x,)*> 0,

[det( —2¥)]-! is expandable in a multiple power
series in the z;;, each term of which represents
the circulation of an arbitrary number of ¢ parti-
cles around any collection of these closed loops,
subject only to charge conservation. For short
distances, this series is replaced by the continua-
tion [det(l —=z*)]-, which provides certain con-
vergence properties on the “light cones” »,, =0.
The appearance of the cofactors ¢¥’ whenever
there are external ¢ particles at the points x; and
x; corresponds to the ways of propagating parti-
cles from x; to x,; the Kronecker &’s in Eq. (4.6)
ensure that the ¢{’ appear in a manner consistent
with charge conservation.

There are two important questions to be answered

before the formulas in Eqs. (4.3) and (4.6) can be
used to compute higher-order weak amplitudes for

(M1+my)/2 £ (1g+mg)/2 I1=-m
S flatmelE g hmm

4.5)
3710 A
n; ;=0 |s= i,j=1 nt‘i!
0= 24
(4.7)

min (my,12)

25 2122"[” m,

_ —n) 1l =) +1, =m,) 1]

(for I, =m, >0). (4.8)

—

leptonic processes. First, does a simple gener-
alization of the principal-value prescription used

in O(G?) suffice to handle the singularities of

[det(1 —=z™¥)]-! encountered in the integrals of Eq.
(4.3)? Moreover, can such a prescription be

shown to respect unitarity in the sense that the ab-
sorptive part of a given amplitude can be expressed
as products of appropriate lower-order amplitudes?
The second question is whether or not we have ac-
tually constructed a renormalizable theory of weak
interactions. Both these problems are rather in-
volved and are now being investigated by us.

While we have no definite answers at this writ-
ing, one affirmative indication that the theory
might be renormalizable is easily established.

Let us define the superficial degree of divergence
D(N; L, 2m) of an Nth-order diagram involving L
external leptons and 2m external ¢ particles as
follows: Such a diagram is represented by the am-
plitude in Eq. (4.3); D (N; L, 2m) is defined to be the
power of lx| -1 in the integrand of this amplitude
when all x;;? are assumed small.?® We recall that
lepton propagators ~x~* as x*- 0; furthermore,
inspection of Eq. (4.6) shows that

ngm ~[A-N]El(+l[AN-l]£l‘=A-N—El‘~x2N+2m
i i
as A~!'~x2~0. Then

D(N; L,2m)=4(1-N)+3@4N -L)- (2N +2m)

=4 - 3L -2m, (4.9)



6 THEORY OF HIGHER-ORDER WEAK INTERACTIONS. . .I. .. 591

where 4(1 -N) comes from N -1 integrations,

3[3 4N - L)] from 3 (4N — L) lepton propagators;
and -(2N +2m) from the superpropagator. The ob-
vious point is that D is independent of the order N.
Theories in which D increases with N are nonre-
normalizable —a prime example being the usual
currentX current theory of weak interactions, for
which DIN; L)=4+2N - 3L. Thus the nonpolynomi-
al modification we have introduced is just enough
to remove this factor of 2N. This, of course, is
no proof of renormalizability, but it is a hopeful
first sign.

Finally, we point out that Eq. (4.9) enables us to
isolate the basic divergences in our theory. These
occur whenever D is positive, with the value of D
denoting the type of divergence. (Of course, in
Nth order, a given graph may be more or less di-
vergent than is superficially indicated by D, de-
pending on the value of D for various subgraphs
and on such technicial matters as symmetric in-
tegration.) These basic divergences - excluding
vacuum graphs - are listed below; the correspond-
ing O(G?) graphs are shown in Fig. 3.

L=0, 2m=2: D=2 (¢ self-mass, quadratically divergent);

L=2, 2m=0: D=1 (lepton self-mass, linearly divergent — actually only logarithmically divergent);

(4.10)

L=0, 2m=4: D=0 (¢-¢ scattering, logarithmically divergent).

This concludes the main body of this paper. To
summarize, we have modified the weak current
Xcurrent Lagrangian with a nonpolynomial field
function, exp[fo'y]. In this paper we have con-
centrated on the divergence problem in leptonic
weak interactions, finding that lepton-lepton scat-
tering is finite, while the lepton self-energy is
only logarithmically divergent in O(G2). On the
basis of power-counting arguments, we expect
this feature to persist to all orders in the major
coupling constant G. Along the way, we have de-
veloped a lore for estimating the size of higher-
order weak amplitudes based on the short-distance
behavior of products of leptonic currents. This
lore will be useful to us in paper II, where we dis-
cuss the mechanism of CP-invariance violation.
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APPENDIX A: THE GENERAL Nth-ORDER
SUPERPROPAGATOR

In order G¥, an amplitude describing a process
with a given number of external leptons and had-
rons and any (even) number of external ¢ particles
is constructed just as in the usual Fermi theory,
except that the matrix element of time-ordered
currents is multiplied by certain combinations of
Green’s functions (superpropagators) F,‘f’,,"l I ymy?
defined as follows. Let ¢,=¢(x,), k=1,...,N,
and denote by F¥’ the time-ordered product

W= T{:exp(f,0f0,): - rexp(frofo,):}

@, el ™
= 2 621; Zm; F(l,m, H l

liom;=0

lmk s

(A1)

in which the Kronecker 031,,zm; €DSUTres conserva-
tion of charge. We shall calculate $*’ and identi-
fy F({"'_’m'_, from Eq. (A1).

As in all theories involving nonpolynomial in-
teractions, the calculation of F*’ is most easily
carried out using Hori’s expression ?® of Wick’s

theorem; in our case,

1
=

~fn A
(atl) (a2)
o -
~o -
U - ~.
~£nA ~In A
(b) (c)

FIG. 3. Second-order divergent diagrams: (a) ¢ self-
mass, (b) lepton self-mass, (c) ¢-¢ scattering. There
are additional diagrams which contribute to ¢-¢ scatter-
ing, but they are finite. The degree of divergence as a
function of a cutoff mass A is shown in each case. Heavy
line indicates the superpropagator. Dotted lines are
external ¢ particles. Solid lines are charged leptons or
neutrinos.



592 K. LANE AND

S;(N)z:exp[ EZA,, “a(p :‘

i=j b=1

N__2
X exp [%Ekaqo?’(pﬁ”]: . (A2)
k=1 c=1

In Eq. (A2) we have introduced the Hermitian fields

P =271 + @), P =i27V2(p" —@);  (A3)

also,
Ay =iAR(; —x; ;M)
= T {¢}p;} 10y = 0| T{p P9} 0) (Ada)

is the usual Feynman propagator. According to
the Euclidicity postulate, we assume the coordi-
nates x; to lie in the Euclidean region, so that
V=75 =[—(x,. -x; 2]‘/2> 0, and

= MK, (Mr;)/4n%r; (A4b)
isa positive, decreasing function of 7, ;.

To compute F¥’ from Eq. (A2), we first replace

¢ and A,;, respectively, by the dimensionless

quantities f; 1/2(p(ib) and
Rij =%~ (fifj)”zA‘-j; Z“EO
(iyjzl,...,N). (A5)

For now, we shall assume the f; to be real and
positive (we can always continue in them later on).
Then, Eq. (A4b) implies that the NXN matrix
AR (z4;) is a real, symmetric matrix, and may
be diagonalized by an orthogonal transformation,
A (Ref. 26). Thus, with tilde denoting transpose,

ZW = A AMIA, (A6)

where A¥ is the diagonal matrix whose elements
are the real eigenvalues A, ..., A, of Z,
Letting

(b) — Z;A [f 1/2 (b)]’

we obtain F in the factorized form

S Hnexp[ (dd(b)z]eXp[%( PP]: .
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(X=2]

We now use the formula

(zﬂ)-wa do exp| -a?0? + 0] = (20%) ™% exp (B?/40?),

a>0 (A8)
to write

exp(%p?)=(21r)‘”2de0exp[ap—§oz] (A9a)

and the operator equation

expa(2 = (2m)-12 " arexplrirer L iy
plz ap p ap 2T

(A9b)

The application of the right-hand side of Eq. (A9b)
to that of Eq. (A9a) translates the latter according
to p—p+ Y21, with the result

exp [% 7\(%) ] exp(p?)

= (21r)‘”2jao doexp[op -30%(1 -2)]

= (L= 0)" 2 exp[p?/2(1 ~2)],
1-2>0. (A10)

The conditions 1-2,>0 (¢=1,...,N) (i.e., that
1-2Z" be a positive definite matrix), under which
the integral in Eq. (A10) converges to the quoted
result, are just those conditions under which the
Wick series obtained from Eq. (A2) converges.
Analytic continuation provides the definition of
superpropagators outside this region.

From Egs. (A7) and (A10) we get for §

sz(N) = [det(l _Z(N))]-l

N 2
X: exp [% 2 2(p¢

k=1b=1

2/ (1 —M)} :. (A11)

It now remains only to undo the transformation A
and express everything in terms of the fields
@ @1 This is straightforward, and we find for

kR=1b=1
the Green’s functions the following (N - 1)2-fold
A7) finite sum:
J
N N N LA P AT
F{mp(245) =[det(1 = zW)]=E 1+ D IT (1, 1, ! f,;mwkvz]n;o[snl 5,3,2,!,,“5,"5,%"“]1_11 (el Y ,‘1], ; (A12)
r=1 =Z0Ls= i,j= ij-

where (¥ =W is the cofactor of (1 —Z™)
minor coupling constants f; if desired.

i;- At this point, one may continue to complex values of the

We now turn our attention to the momertum-space behavior of the superpropagator. For the case of a
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massless ¢ particle, we can calculate the Fourier transform of the basic second-order function,

F(x)= FOL(f )20 0)] =[1 = f£0° )],

(A13)

in closed form. Let us suppose that f2=f,f,>0. As noted in Ref. 8, the definition of the Fourier trans-

form of F is ambiguous in this case because of a singularity at f2a%=1.

(2.5) of Ref. 8 by defining (for p?=-¢%<0)

F~“*)(p2) sifd4xei"”F(fAii€)

= 2m)%6% (p) + —‘I;T—zfmdrrchl(qr) F2a2)[1 - fa%(r)Fie]™".

For example, we can follow Eq.

Then a class of Fourier transforms can be defined by writing, for any real constant d,

F(p% ) =3[ (1 =ib) F(p?) + (1 + ib) F© (p?)]

4 i ) 2 2A2 2, 2
:qu; drv?J, (qr) f?A (y)[t-—f%aj +mb 6(f%A _1)],

where we have ignored the contact term (2m)*%5“(p).

We shall see that the “best” superpropagator of
this class is obtained for 4 =0, i.e., by defining
the Fourier transform as the principal-value in-
tegral i‘(pz; 0) whenever f2=f, f, is positive.

Assuming M =0, so that A(»)=(4r%*)"", and de-
fining the length 7»,>0 by

r,2=| f/477,
we get for Eq. (A15)

m3b

F(pz;b)=7703:/l(qro)+ ﬁ‘(pz;O). (A16)

The integral F(p?;0) is treated in the following
way: Write

~ 212y 2 < r2Jd(qr)
F( 2;o)=___4L[pJ; dy 97
b q oy

= Y2 gr)
- | ar Z29Y)
fo e RS
Both integrals in Eq. (A17) may be calculated using

the formula ?”

fdr l:{%:LaK,(qa), Rea>0.
0

With € -~ 0" understood, we have

« 2d, N . .
Pj; dr %%’;):5{(6 —-iry ) K (g (€ =ir,))

+(€+17) K (q(€ + i7,))}

= =3 (17,) Y, (q7,), (A18)

where we have used

(A14)
(A15)
—
Kl(eﬁnlzz):_%Hl(z,l)(Z)
m .
=—§[Jl(z)4=zY1(z)].
"Thus, for ¢*>=-p*<0, we have
F(p2:b)= 4; 5(4) bnsrgs
(p2;0)=2m)*% 6" (p)+ 7 Ji(q7,)
iy, 3 2
-—q°— [Yl(q'ro)+ ;Kl(qro)]. (A19)

As is required by unitarity, F is real below the
threshold at =0, and F dies as Y, @v,)/q as
p%—~ —». The continuation into the timelike region
is obtained by putting g = =ip:

i’(pz,‘b) =@2m% 6 (p)+ iﬂ—zi[ll(pro)+ I (p7,)]

3,.3
_H_pﬁ!- [Yl(pro) + %Kl(pro) -bIl(pro)].
(A20)

The absorptive part of F grows as e?”o as p? - +o.
It is also clear that the dispersive part will grow
as e?o unless we take b =0, in which case it simply
behaves as

1

;Yl(pro)“p'a’z sin(pro —i—”) as p2—+0. (A21)
Thus, from the_point of view of growth of the su-
perpropagator F(p?), the best prescription seems
to be to take 5 =0.

APPENDIX B: ANALYTIC CONTINUATION OF LEPTON-LEPTON SCATTERING AMPLITUDES

In the calculation of lepton-lepton scattering amplitudes in second order in G, it is necessary to con-

tinue integrals of the type
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47® A (r;mA, (r;0)
B,(p2)=p,+lfd'rr’I,+l(pr)l 7220 ; M) » j=1,2 (B1)

from the Euclidean region, p2<0, to p2>0. In Eq. (Bl) we may assume f2 to be complex. The length a is
chosen by

a>r, (| f3a%ry,; M) =1),
so that, in the region a <7 <, |f2A(r; M)|<1 and we can write
Bj(Pz) =Zf2" i+l
no D

The next step is to represent the product A, (»;m)A,(r; 0)[A (v ; M)]*" of Feynman propagators as an inte-
gral over a single propagator function. For this, we use the representations

f arril, (pr)A,(r;m)a,(r;0)ar; M) (B2)

Alr;m)= f(z )szE[e("(’)e"" Y+ 0(=x0)e'¥] (B3a)

and

: . - dsq -iq-x igx
iy aA(x,m)-f(zﬂ)szEy-q[e(xo)e X = f(=xy) et Y]
=—iy-x%A,(r;m) when 72 =-x2>0. (B3b)
From Eqs. (B3) we find

A r;m)A(r; Ofa (r; M)P" =1 Tr{[iy - 8 (x;m)] [iy - 0A (x; 0)] }[A & ; M)

(" d'k ( d3q,d% g%,
_];mzw) (217)3 (2")34E Eg;rli 217)32(.0 91792

2n
X[0(x,) e % + 0 (=x,) et*°%] 6‘“({11 +q,+ 2b; —k)éOe2 -k?)
1

=f( )szZﬁZMZ(KZ)A(’V;K), (B4)
m+2nM.
where §,,,, is given by Eq. (3.16), and

Alr; k) =kK,(kr)/4nr. (B5)

We now have B,(p?) in the form

B,(p*) = :—rfm:dkzo(xz 5 1202, p%), (B6)
where
Ok D) =10 F2 ey (k?), (BT)
n=0
and
2 00
by)(xz’p2)=:;ruj drrllhl(pr)A(r;K). (B8)
Since
B, B 2
(p? pdp 1 (02),

it suffices to calculate b (k% p*). We assume at first that p?<«? < in Eq. (B8). Then, using Eq. (B5) and
the series expansion for I,(pr), we have

b(a“(xz,pz)= P/z")z"f dx 2*™K, (x).

monl(n+2)!

Using (see p. 87 of Ref. 18)



|o

f dx ™K, (x) =22 1n <n+1>'K“[ Ka)E 2"“
we find
B 6%, %) = 55 lK (ka)Bo(k?, p?) + Ko (ka) By (6%, p7)].

Here B, (k% p%) (I=0 or 1) is given by

Z”: (p/K)" _GraPm

8(n —m) n+2 mlm+0)! "’

B, (K%, p?) =

n= =0

Using

niz =2.L e-2<n+2)tdt’

we may rewrite Eq. (B10) as

B, =2J:dt e (/e ) i: 8(n —m)(etp/k)2n-m L2

n,m=0

_K2<E>lfmdt e-a- 12y e HZB a)
b)Jo

KZet - pe

> dR? E\
=K4J;2 A - _'p_z)(;) I (kap/k), 1=0,1.
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" iy ]

—ml(m+1)!

(B9)
(B10)
-t a)]2m+l
ml(m+1)!
(B11)

Putting Eqs. (B9) and (B11) into Eq. (B6), we finally obtain the desired (continuable) expression for B, (p?):

1 © 2 22
Bl(Pz)_ jz k (kdzk ) z(szKz)U(Kz

where

d, (K2, k*p%/k?) = KaI:Kl(Ka Kap/k)+1; O(Ka)Il(Kap/k):l.

For B,(p?), we find
1 d

4 L[ _ar .
== B+ ) e 00 1AL p

; £2)d (2, k2p?/R?), (B12)

(B13)

(B14)

Equations (B12) and (B14) are dispersion relations for the functions B, and B,. The integrals certainly
exist since, even though o(k®; f?)~e*"0 as k=, the functiond,~e~*® in this limit and a>7,. It is obvious
that B, and B, have the analytic properties one would expect on the basis of unitarity.
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Continuing our exposition of a nonpolynomial theory of higher-order weak interactions, we
examine the neutral K system, with particular emphasis on the CP-invariance-violating am-
plitudes. These first appear in second order in the weak interactions. We use the free-quark
model to estimate the short-distance singularity of products of hadronic currents, and we find
that with appropriate choices of the minor coupling constants our theory is consistent with the
known experimental results. In particular, we find |¢|~10-%, and we give an argument lead-
ing to n, _~ngy. The neutron dipole moment is a third-order weak effect in our theory and is
estimated to be about 102" ecm. We calculate the production cross section for the superprop-
agating particles, and find it to be too small for the particles to have yet been observed.

I. INTRODUCTION

In the preceding paper' we have treated leptonic
processes in higher -order weak interactions, us-
ing a particular nonpolynomial modification of the
usual current Xcurrent interaction Lagrangian. In

this paper, using the same Lagrangian as in I, we
turn to two somewhat more speculative subjects:
(i) the effect of our modification on hadronic weak
processes (with special attention to CP noninvari-
ance) and (ii) the production of the ¢ particles that
are coupled nonpolynomially to the usual weak cur-



