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Infinitely many sets of classical solutions of the field equation Qy -hp*yy =0 are given.
Each set forms a nonlinear realization of the invariance group SOD(4, 2) of the field equation.
The problem of scattering is discussed.

I. INTRODUCTION

In this note we shall consider the classical field
equation

metric +++-, A. &0.

This is one of the few physically interesting' wave
equations on which several mathematical papers
have been written. ' Moreover there exists a large
class of symmetry transformations under which

Eq. (1}is invariant. These facts make a more de-
tailed study of the solutions of Eq. (1) rewarding.

The action integral, from which Eq. (1) follows
is not only invariant under the Poincare group,
but also under SOO(4, 2). The SO(4)-invariant solu-
tions are of special interest. In the case of the
hydrogen atom they form the ground state (i.e., the
state with lowest energy), and we expect something
similar for this relativistic field theory. The solu-
tions are physical (finite total energy-momentum),
as they are specified by the eigenvalue 0 of the
generators of the compact subgroup SO(4) (eigen-
solutions for eigenvalues c0 are in general not so-
lutions of the field equation).

We should like to make a further remark. Some
physicists object to the ~y' theory without a mass
term m'y because of the infrared divergences of
the quantum field theory. However, this difficulty
is perhaps of minor importance and of similar na-
ture as the infinite total cross section for the scat-
tering in the case of a —I/r potential.

II. MANIFOLDS OF CLASSICAL SOLUTIONS

The real SO(4)-invariant solutions are given by

xcn[(I+ a')'/'(o. —n, ), k],
where u(t', t'*) is the real amplitude, cn the ellip-
tical cosine,

1
2(1+1/a }

and $" a complex constant vector in the forward
cone:

(Imp'")' (0, Im( &0,

-~ & Im)'& ~, -~&Re)"& +~ .
(2)

(4)

where (u]= (z~(=1. The eigenvalues of the genera-
tor of SO(2) are 2j —1 and+2j+-1, 0&j &~, re-
spectively.

Mathematical comment: The full invariance
group (which is continuously connected with the
identity) of Eq. (1) is the group SO, (4, 2). Corre-
spondingly, the definition of the field y(y) can be
extended to the appropriate conformal compactifi-
cation of Minkowski space, i.e., to the space
SOO(4, 2}/(SOD(3, 1)xDO}E|T~=SBxS,. For each value
ofj and the sign (+) or (-) the parameter manifold
is homeomorphic to the symmetric space

SOD(4, 2)/SO(4)xSO(2) .
Therefore, each set of solutions forms a nonlinear

We shall, however, be interested in SO(4)-invari-
ant solutions, which also form a representation of
SO(2) of the maximal compact subgroup SO(4)
xSO(2) of the symmetry group SOD(4, 2). This
basic set of solutions is given by

.
( ~ 1 x/2

y, = u($, (*)2
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realization of the group SO,(4, 2). For integer and

half-integer j, the center of SOp(4, 2) is repre-
sented by —1 and +1, respectively. The space (2)

is a particular realization of (5). For integer or
half-integer j the solutions (3) and (4) are one-val-
ued functions on $3&&S,. Note the homeomorphism

SO,(4, 2)/SO(4)xSO(2) =[SO,(3, l)xDp]ZT4/SO(3) .

(6)

The Fourier analysis of the solutions (2) shows
that for j an integer, y (y, t', $*) has support in

momentum space only in the domain nz'=0, p'&0,
and 0& m'&~, p'&0. The solutions y (y, $, $*),
correspondingly, have support inthe negative
cone. This result depends essentially on A. & 0 and

j=i, 2, 3, . . . .
For an example we choose j=1 and $"=(0,0, 0, i).

The solution (3) has the following Fourier decom-
position:

rp, =—— g(m2)6( p')e p [(1-2p )5(p }+1]e'p'd p,
w

III. SCATTERING AND ASYMPTOTIC DECAY

To every nonsingular solution' of (1) there exists
a free-field solution yP(y) such that

lim ~cp —yp")d'y =0, Clqrp '=0 .
y4~ po ~

We calculate this incoming wave for the above ex-
ample j= 1, $ = (0, 0, 0, i) with the physical defini-
tion of the in-fields

elsewhere.
We should like to make a few comments concern-

ing Eq. (6}.
(i) It is quite suprising that

gp 4 1 2g 4 g 2 4 . 2

is not SO(4)-invariant, although the interacting
solution and the field equation has this symmetry.
This is due to the noninvariant asymptotic condi-
tion. Therefore the S matrix need not be confor-
mal- invariant.

(ii) The quantum field theory which corresponds
to (1) exhibits the dilatational symmetry of (1) as
long as we restrict ourselves to treegraphs. How-
ever, as the free-field mass-zero Feynman prop-
agator is not conformal-invariant, the correspond-
ing dilatational-invariant S matrix is not confor-
mal-invariant (except in 1st order). The situation
is here similar as for the m =0 Bethe-Salpeter
(B.S.) equation: Although the Wick-rotated B.S.
equation is SO(4)-invariant the nonrotated B.S.
equation is not SO,(3, l)-invariant.

(iii) The result of the conformal-invariant scat-
tering analysis' shows that for two incoming mass-
0 particles there are no inelastic channels.

IV. THE QUANTIZATION OF THE FREE FIELD

X=O

To the sets of Eqs. (3) and (4) there corresponds
in the free case A. =0 the particular solutions

V:(y)=V(y}-&Jt n,.t(y-y')V*vq(y')d'y',
(9}

0, n,.t(y —y') = 5'(y —y'),
where the retarded free Green's function is de-
fined as usual. Solving (7), we obtain

(0 =
(Op + 16

~ [( i)2 ( 4 i)2]2 (6}

It is easy to see that there is no scattering in this
spec ial example

+ fn +OIIt

However, this is not the case in general. The in-
and out-wave, differs by a factor

e4) tr J
t

and as the parameter j represents the total energy
per unit charge, it looks as if there is s-wave scat-
tering. A more detailed analysis will be published

The annihilation and creation operators in this
wave-packet basis are defined by

i " 1 f7

(2 }' ( —p ), a 4 rP(y)d'y,

b~ i 1 8 3
(2v)' ~ ( —(), a 4 y(y)d y .

From Eq. (10) it follows that the operators a($*)
and b*($) obey the equation

Clg4 a($4) =0, Gtb*($) =0 .
From Eq. (10) and the well-known commutation
relations of the free field y(y) we can derive the
nonvanishing commutation relations
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(12)

Note that the SO, (4, 2) symmetry determines (12)
up to a real factor. The Hilbert space is defined
as usual a($*) )0) =0, b($*) ~0) =0. In our further
investigations we shall consider if it is possible to

quantize the nonlinear field Eq. (1) along these
lines.
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The following properties of the dual multiparticle theory with nonlinear trajectories are
presented: (I) the twist relation, {II) the unsymmetric general vertex obtained directly
from third factorization, and (III) the symmetric general vertex.

I. INTRODUCTION

In previous papers, ' the N-point Born terms of
a dual multiparticle theory with nonlinear trajec-
tories' were factorized and the vertex involving
two external particles with nonzero spins was ob-
tained. In this paper, we will obtain the twisted
propagator and the general vertex in the nonlinear
model. These are the two basic ingredients in the
Kikkawa-Sakita-Virasoro unitarization program.
However, further steps in this program have not
yet been carried out for the nonlinear model.

In I, we found it convenient to introduce a six-
dimensional formalism for purposes of proving

factorization. In Sec. II of this paper, we develop
this formalism further by introducing a special
choice of kinematic variables which are particular-
ly suited to the study of duality and factorization.
Using the formalism developed in Sec. II, we go on
to derive the twist relation in Sec. III and the un-
symmetric general vertex and the symmetric ver-
tex in Sec. IV.

II. SIX-DIMENSIONAL FORMALISM

In first factorization, we were naturally led to
consider six-dimensional "vectors. " These "6-
vectors" neither satisfy additivity, nor do they
scale. Therefore, they do not form a linear vec-


