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The Heisenberg equations of the ft}4 model of quantum field theory in one space dimension
are analyzed by a modified perturbation method. The modification focuses on terms with
vanishing and small energy denominators. These terms give rise to operator-valued fre-
quency (mass) renormalization and amplitude (wave-function) renormalization. These re-
normalization effects remain present in the limit of an infinite system because the number
of terms with small energy denominators becomes infinite.

I. INTRODUCTION

The field equations of quantum field theories
describing interacting particles are nonlinear
partial differential equations whose solutions are
operator-valued (i.e., q-number) functions of the
independent (space-time) variables. Both the non-
linear and the operator aspects involve consider-
able complexity. Each by itself has been the ob-
ject of considerable study.

The free-field quantum theory of noninteracting
particles is described by a linear partial differen-
tial equation. The solution of the free-field prob-
lem is found through the introduction of the well-
known creation- and destruction-operator formal-
ism. ' On the other hand, problems involving non-
linearity without the q-number complication (i.e.,
nonlinear c-number differential equations) are by
themselves the object of study of a branch of math-
ematics. ' The method of successive approxima-
tions (perturbation theory) has been found useful
both in connection with problems of existence of
solutions and in deriving approximations for solu-
tions of differential equations whose nonlinearity
is in some sense weak. The approximations ob-
tained by straightforward perturbation theory are
often qualitatively, as well as quantitatively, poor.
For example, approximations to solutions of equa-
tions which can be proved to be periodic are found
to be nonperiodic. Such problems are referred to
as secular behavior of the approximation. ' Signif-
icant progress has been made in modifying pertur-
bation theory to eliminate these difficulties and ob-
tain quantitatively meaningful solutions. It appears
that the nonlinear aspect of quantum field theory
may be a considerable part of the over-all prob-
lem. It is worthwhile noting in this respect that
the principal method used to study the nonlinear
field equations of quantum field theory is straight-
forward perturbation theory. '

It has been shown that secular behavior occurs
in quantum field theory. ' One of the ways that sec-

ular behavior can be avoided is through the intro-
duction of adiabatic switching of the interaction. '
This, however, may be an unfortunate way to han-
dle the problem since the secular behavior of an
approximation is an indication of physically inter-
esting phenomena requiring detailed investigation.
In particular, the switching must be applied selec-
tively; the persistent self-interactions must not be
switched. Adiabatic switching also precludes the
occurrence of bound states. ' The binding of parti-
cles like the self-interactions are persistent ef-
fects and should not be switched. This is the main
objection to the use of adiabatic switching as a
means of avoiding secular behavior. It may be
useful to note that in renormalization theory adia-
batic switching is modified' to account for self-in-
teractions (mass renormalization), but not for
binding essentially because the self-energies are
infinite, whereas the binding energies are not.
The appearance of infinities is apparently a more
serious obstacle to the interpretation of quantum
field theory than the failure to predict binding ef-
fects. The amazing success of quantum electro-
dynamics is in the calculation of the Lamb shift, '
which is a small self-energy effect. However, the
present knowledge of many new strongly interact-
ing particles and resonances gives great impor-
tance to a theory allowing the possibility of bound
states.

The presence of secular behavior is closely con-
nected with the problem of vanishing denominators
(hence the use of adiabatic switching which is de-
signed to keep denominators from vanishing). In
quantum field theory an additional problem arises,
namely the existence of small (but nonvanishing)
denominators. The presence of small denomina-
tors is in conflict with the basic rationale of per-
turbation theory, that higher-order corrections
be small. We refer to terms with small denomi-
nators as quasisecular. It should be noted that
even in those formulations of quantum field theory
where the adiabatic hypothesis is avoided, such as
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the method of reduction formulas, "small denomi-
nators still occur when the fields are actually ex-
panded via perturbation theory.

The object of this paper is to formulate a modi-
fied perturbation theory which avoids the occur-
rence of both vanishing and small denominators.
We call this modification quasisecular perturbation
theory.

Although the formulation is carried out only for
the scalar, one-space-dimension model of quan-
tum field theory" [i.e., the interaction Hamilton-
ian density H, = ——,'AP(x)'] it can be worked out for
other boson field interactions and for the more in-
teresting case of three space dimensions. The ap-
proximation developed in the paper is carried to
the first nontrivial order, which for the ~t}' model
is first order. The P4 interaction was chosen for
this reason, in order to minimize calculational
complications in presenting the essential ideas of
the modified perturbation theory.

The approximate solution obtained is distin-
guished in a number of important ways: The so-
lution exhibits amplitude (analogous to wave func-
tion) and frequency (analogous to mass. ) renormal-
izations; the renormalizations are given by q
numbers rather than c numbers as in conventional
perturbation theory; the renormalized amplitudes
and frequencies are strongly dependent on the den-
sity of two-particle states in energy and momen-
tum. This last result has as a consequence that
field modes (hence particles) of approximately the
same momentum can have an unexpectedly large
coupling of a type somewhat similar to the pairing
of opposite momentum electrons in the BCS theory
of superconductivity. "

We close the introduction with an outline of the
paper. In Sec. II the field equation and commuta-
tion relation are expressed in terms of the Fourier
components of the field on the interval --,'L &x&-,'L.
The resulting array of interacting nonlinear quan-
tum oscillators is used to set up the perturbation
expansion. The first-order approximation is ex-
amined in detail in Sec. III. Quasisecular pertur-
bation theory is introduced there. Particular at-
tention is directed at the secular and quasisecular
terms. The frequency renormalization operator
arising from quasisecular perturbation is studied
in Sec. IV. In Sec. V frequency renormalization is
treated using an averaging or mean-value approx-
imation. The result is expressed in terms of a
density of (two-particle) states factor. The limit
of a large system is investigated in Sec. VI. It is
shown that the properties of the finite system de-
scribed above are retained in that limit. This is
an important distinction of quasisecular perturba-
tion theory when compared with secular perturba-
tion theory, since the number of exactly secular

terms is (relatively) negligible in the limit of an
infinite system, a consequence of which is that ef-
fects resulting from exact secularity vanish in that
limit. ' The density of states factor is studied in
detail in Sec. VII. It is shown there that the den-
sity of states contributes an additional square root
of X (the P' coupling constant) to the first-order
correction to the renormalized frequencies. Thus
the actual correction to the renormalized frequen-
cy varies as A,"'. Section VIII contains concluding
remarks on further consequences of quasisecular
perturbation theory.

II. COUPLED NONLINEAR FIELD OSCILLATORS

The field equation

(O+ m')y = ~y', (2.1)

where 0= s'/et' —a'/ex', is first studied on the
interval -&L & x & &L. Using the Fourier decom-
position

(2.2)P(t, x) = L "'Q a, (t)e"*,
E

where the sum goes over all numbers of the form
l=2&nL ', n=0, +1, +2, . . . , the field equation is
transformed to an infinite array of nonlinearly
coupled nonlinear oscillators. We examine these
nonlinear equations using methods well known in
the applied mathematics literature on nonlinear
oscillator systems. '

The oscillator equations are given by

a, +&a, 'a, =XL ' Q a, a, ,a, , , 5, „„(2.3}
l l~l2~l3

where ~, =(m'+l')'", a, =d'a, /dt', and 5 denotes
the Kronecker function. The oscillator array is
studied with the help of the expansion ansatz

a, = g eaI"'.
n~0

(2 4)

[P(0, x), P(0, x )] = t5(x- x ), (2.5a)

[P(0, x},P(0, x')] = [P(0, x), $(0, x'}]= 0, (2.5b)

and the reality condition

P(t, x) = P*(t, x) . (2.6)

Here * indicates the formal algebraic adjoint op-
eration, which at this point is taken to be an anti-

With the aid of Eq. (2.4) each of the oscillator
equations is converted to an infinite hierarchy of
forced linear oscillator equations. Convergence
considerations are not undertaken. We will in fact
restrict attention to the first nontrivial order of
the expansion and such terms of higher order in
~ as are needed to give physically relevant approx-
imations.

The field equation is further specified through
the commutation relations
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[a,(O), a, (O)] = ib.

[a (0), a, (0)] = [a (0), a, (0)]= 0 .

(2.7a)

(2.7b)

The commutation relations take the role of initial
conditions for the oscillator equations of motion.
The reality condition is restated as

a, (t)*=a a(t).

The equation for al',
(2 3)

linear involution. The adjoint will be further
specified below when the space of states is con-
sidered.

In the oscillator formulation the equivalent com-
mutation relations are given by

has the solution

a&ow(t)=(2& )-'&i(n e &~-/igni e ~i/i)

where

[n„n,*]= b. . .
[n„n, ] = [n +, n,+] = O.

(2.10)

(2.11a)

(2.11b)

The commutation relations are chosen to satisfy
the initial conditions Eqs. (2.7). The initial condi-
tions for a,", n ~ 1, are somewhat simpler:

(2.12)

The equations they satisfy are, however, some-
what more involved.

a',"+~ 'a',"=0, (2 9)

a'+u'a'=L, ' ~ 5 a(0) a(0) a(0)
l1+l2+l3

123
=L' P b (2&g 2&g 2&@ ) [n n n e i i I +n n n e 1i 1i lil, l1+l2+l3 l1 l2 l3 1 2 3 1 l2 l3

+3n* n n e' & i "& '+3n* n* n e' "& '~& "~ ']l2 l3 1 2 3 l3 l2 ll 3 2 1

+3(2L)-'g~ -'a',".
1

(2.13)

The solutions of this equation are studied in Sec. III. In closing this section we note that the last term in
Eq. (2.13) includes the series Q, &o, , which is divergent. The term arises from the P term in Eq. (2.1)
when the products of creation and destruction operators are reexpressed in normal order (creation oper-
ators to the left of destruction operators) as in Eq. (2.13). If P is defined in the first place as being in
normal order the infinity is avoided (i.e., P is replaced by: P:). Alternatively, the last term in Eq.
(2.13) can be treated as an infinite (c-number) mass renormalization term.

This divergent series may also be related to the zero-point energy E, =-,Q, ~, of the system, since

40 =2m
(jE
am. (2.14)

It is assumed here that it makes sense to differentiate a divergent series term by term. It appears from
Eq. (2.14) that the justification for dropping the last term of Eq. (2.13) involves essentially the same rea
soning that permits the (more rapidly divergent series for the) zero-point energy to be set equal to zero.
In the following the last term is dropped.

III. INTEGRATION OF THE FIRST-ORDER EQUATIONS

The terms on the right-hand side of Eq. (2.13) which are solutions of the homogeneous equation require
special consideration. The remaining terms are easily treated. We first consider the solution of the
equation

b+CO 2b =Ce'~', (3.1)

when ~e ~w&v, . In accordance with Eq. (2.12) the initial conditions are taken as b(0) =b(0) =0. The solution
is given by

b, (t)=c(&o,' —m') '[e' ' —2(1+&u&o, ')e' i'-2(1 —u&&u, ')e ' ~'] (~&c ~g&g, ).
When ~ =+~, the solution of Eq. (3.1) takes on a very different form:

(3 2)

b2(t) =~2c&u '[(2u, ) 'e'~&'- (2&g&) 'e '~l -itei~'] ((d = kldi ) . (3 3)

The magnitude of b, grows linearly with t for large t. While this (secular) behavior is clearly unphysical,
the integration is nevertheless correct. In the standard perturbation theory the use of adiabatic switching
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circumvents this problem. However, it is the view of the authors that adiabatic switching is itself drasti-
cally unphysical and that the secular terms require very careful study.

In the limit of increasingly large L there also occur terms on the right-hand side of Eq. (2.13) for which
~ comes very near to either ~, or -~, . This does not give rise to secularity, but it does result in small
denominators in Eq. (3.2).

One of the main justifications for the use of perturbation procedures is that the higher-order contribu-
tions are small. This, however, is not the case for either large values of the time t in the secular terms
or when small denominators are encountered. In the following we refer to the terms giving small denom-
inators as quasisecular terms. (The justification for this terminology will be given below. ) In closing
this discussion of quasisecular terms we note that aI" enters a, [the solution of Eq. (2.3}]multiplied by X.

When the small denominators in the quasisecular terms are of magnitude X, or smaller, we encounter a
first-order correction which instead contributes to a, as if it were of zeroth order. In the case where
~=~, +~, lel ll li~„w«ind

b, (t)= ce -'(2id, +e) 'e' i'(e'" ——,'[I+(&u, +e)v, '] ——,'[1 —(ru, +e)upi ']e " i'}
=b;(t)+eh(t, c),

where b;(t} is the expression in Eq. (3.3) for id =~, and the error term b is given by

b(t, e)=c(2&@,) '(it+ii&, t )e'"i' —c(2&d, ) 'e'"i'+c(2id, ) 'e '"i'+O(e).

(3.4)

(3 6)

(3.6)

We see that the quasisecular solutions are approximately given by the secular solutions b2 so long as t is
sufficiently small [i.e., et(i+&@,t) must be small].

Summarizing to this point we find that the secular and quasisecular solutions are physically reasonable
only for sufficiently small values of the time I, and for such small values of t the quasisecular solutions
are well approximated by the (exactly) secular solutions Eq. (3.3).

All of the terms whose time dependence is of the form e" ~i' i2' i3" are nonsecular and have for their
integral Eq. (3.2). We write the results of integrating these terms as

A, (t)=L Z bi, i,+i +i (8iiii ~i, iLii, ) [~i (~ , i+id+i~ ~)i] &r,&i,o'i~

X (8 i% i2 i3 p[1 —(&di + &0, + id, )u&, ']e' ' ' ——,'[1+ (&d, + &d, + &d )iii ']e '~i '}
(3.7a)

&i (t) L Z bi, ii+i~+is(8+, ,id, &d, ) [&i —(idi, +&i, +idi ) ] a*i a~i a*i
t gJ2l3

&&(e' ii' i2 i3 p[1+(&d, +&, +~i )~, -']e'"i' z'[I (~ +id +~ )~ -&]e-i~ii}

(3.7b)

The terms with time dependence given by e" ii i2 i3" may or may not be secular. The quasisecular
and exactly secular terms will be treated as secular terms and are integrated using Eq. (3.3). As noted
above, this is reasonable so long as t is sufficiently small. But as also noted above the secular terms are
physically unreasonable for t) ikey '&u, . We fix the definition of the quasisecular terms in such a way that
for t ( ikey '&ii, the quasisecular terms are well approximated by the integral of the exactly secular terms
Eq. (3.3). If we let u& = -(&iii, —ii&, , —&ii, ,) and e = v —&u„as above, the condition for the validity of the ap-
proximation is given by

'(it„ + cu, t„'}I- 1,
where t„=iXi m is the maximum time set by the inequality gati(iX( co, . We assume in addition that
iX(«m"', which implies that &u, t„»1. With this the inequality can be restated as

i~i +~i -~i -~il= I~I-I&'1=m 'I~I

(3.8)

(3.9)
This inequality provides the criterion for the quasisecular terms. It is convenient to

The integrals of the nonsecular terms in Eq. (2.13) whose time dependence is given

&i (t) =3L z bi, l +i +i (8~liidig~i } [idi (idl iL'I &i } ] &-i o'I ui
123

X(e" i, i, i&" —-', [I+(e, —&u, , - &ui, }iiii ']e'"i' ——', [1 —(&O,

define ~'= m
by e"~~i, -~r2-~&3)' are

(u, ,)(O, -']e ' i'},
(3.10a)
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~( (t) 3L Z 5(((, (2+( (8~( +(2(d($) I +( (+(( +(g +(g) ] n -(p -(gn((
'1'2'3

x[e ' ( a 3 —2[1 —((d( —(d( —(d( )(d( ]e —2[1+(K( —R( —v( )K( ]e }.
(3.10b)

The prime on the summation signs indicates that the sums are restricted to those values l „L„and l3 for
which the inequality Eq. (3.9) is not satisfied.

The quasisecular (including secular) terms have as their integrals

C, (t) =-—,'((u, L) ' Q" 5, , +, +, (8(d( (d( (d( ) "'n*(,n(,n(, [(2(d() 'e' (' —(2(d() 'e ' (' —ite '"('], (3.11a)
l 1l2l 3

C;(t) =~&((d(L) ' Q 5«+( +, (8(d( &d( (d, )
(( n*, n('( n, [(2(d, ) 'e' (' —(2(d() 'e ' (' —ite'"('].

l 1l2l3
(3.11b)

The double prime on the summation signs indicates that the sums are over the values of l1 l2 and l3 for
which the inequality (3.9) is satisfied.

The solution of Eq. (2.13) subject to the initial conditions Eq. (2.12) is then

~r = A, + At'+Bt +B +& +& ~

The first-order approximation to at is given by at =a, +M, ' . The approximation we have obtained for at
is studied in detail below. Particular attention will be directed to the limit L- ~.

IV. FREQUENCY RENORMALIZATION OPERATOR

The terms in a, =at('~+ hzI" which vary as e'' (' and te" (' are of particular interest, thus Eq. (3.12) is
rewritten to make this dependence more explicit. We write

a, (t) = U, e '"('+ U,'e' ('+iV, te '~(' —iV('te'~((+((V((t).

The quantities U, , U,', V, , and Vt' are defined below:

U( = (2(d() n( —A(2(d(L} Q 5( ( (.( ~( (8(d( (d( (d( ) ((d( —(d( —(d( —(d( ) n( n( n(
l ll2t3

—A(2(d(L) Q 6( ( +( +( (8(d( (d( (d( ) ((d( + (d( + (d( + (d( ) n*( n *( n +(
t ll2l3

—i&3(2(d(L) Q 5( ( (.( +( (8(d( (d( (d( ) ((d( + (d( —(d( —(d( ) n ( n(
12 3

—((3(2(d(L) ' g 5. ..+,,+„(8(d,((u, ,(d, 3) '"((d( —(u, , +(d(2+(d)(3'n, 3n*,2n, ,
t 1l 2l 3

(4.1)

l 1t 2l 3

(23(d)('L ' Q 5(,((+(,+(3(8(d(((d(2(d(, ) "'n (~n*(2n((,
l 1l2l3

(4.2)

(4.3)

l ll 2l 3
(4.4)

(4.5)

Each of the terms in the remainder 8't contains
exponential factors exp[+i((d( +(d( +(d( }t], where

1 2 3
Thus, there is a gap

in the spectrum of Fourier frequencies of S't on
both sides of ~(dt. The gap enables us to extract
for more detailed study the terms whose time de-
pendence is e" " (or te" ('). Since the gap width
is independent of L, the problems connected with

the accumulation of Fourier frequencies with in-
creasing L are avoided. This will facilitate the
study of the limit L-~.

The coefficients U,' are related to the wave-
function renormalization constant occurring in the
standard formulation of quantum field theory. "
We note that in this treatment U,' contain opera, -
tors in contrast to the standard formulation where-
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in the wave-function renormalization constants are
numerically valued.

It is also possible to express Eq. (4.1) with re-
normalized frequencies (essentially mass renor-
malization) and here again operator quantities ap-
pear. The operator U, , like the operator n„does
not have a left inverse (since a( maps the vacuum
state into zero in the standard particle-number
representation), but along with (k( and U, can have
a right inverse. A right inverse exists for an op-
erator which is onto (or surjective). To investi-
gate the existence of the right inverse we write
U, =(2{(((}(/'a(+P. F(. The right inverse of
(2{((() "'{(((is (2(d()"'{(((»({(((»a(+1)'. We seek an
operator R, = (2{(((}(/'n (»(((.(»n( + I) '+ XG( such that
U, R, =I. This condition is satisfied (to order X

inclusive) by solving for G, in

(2{((() "'a(G, +F, (2{((()"'c((»(n(»cr( + I) ' =0.

(4.8)

To facilitate the solution we substitute G, =e,*G,
and, using the existence of an inverse for n, n,*
=((k(»rk(+ I), obtain

R( = (2{d() B( (rk(»Q( + I) —A(2{((()Q(*(Q(»{k(+ 1)

where &F(=U, —(2{d() '"o(r
Similarly, n,* and U,

' have left inverses and we
write R&'U, =I, where

R; =[R (]». (4.8)

Equation (4.1) takes the form

a((t) = U, (I + t R, V, t)e '

+ e'"(' (I —t V,'R,"t)U,
+ + W((t) . (4.9)

The operator nature of the frequency renormal-
ization is apparent in Eq. (4.10).

In Sec. V the frequency (or mass) renormaliza-
tion terms are examined in detail.

The terms enclosed in parentheses can be taken as
(first order in X) approximations to exponentials,
particularly for I Xt

I
small as required above. We

get

(t)= U e ' ( "r r "+e'~( r "( 'U'+W (t)

(4.10)

x F({k(»(a(»rk( +1) '+0(A'), (4.7)

V. SIMPLIFIED FORM OF THE RENORMALIZED FREQUENCY OPERATOR

From Eqs. (4.4), (4.5), (4.7), and (4.8) we have to order X

R( V( =X3(4L) ' Q 5\ 1 +r(+kr(k{l(({d(r{lek{ld)k{k(*((('(*&(+I)'{k*(r{k(k(k(
~ 1~2~3

V(R( = ~3(4L) Z 5(, r(+(k+(k({d({dr({((r,{d(k) &-(p-*r,{k((({(-*({k-(+I)&-( ~

t ll2r 3

The summations in Eq. (5.1) can be written in a symmetric form as

(5.1)

(5.2)

l l ~ ( } + (+l~k ~{k+()lkik ~{k+()lk k) (+( (} +-( +k+{k»((/2+k {k+i)/2 k'-
j), ,p

(5.3)

The restriction on the sums indicated by the double prime is given by (3.9) and, in terms of the new vari-
ables, becomes

(5.5)

I {((r + {((k {(({k+()/k+k {(({k+()/k-k I
- I" I

. (5 4)

The inequality is satisfied for P in sufficiently small neighborhoods of P = sk(k —I). We expand about these
points and approximate Eq. (5.4) by keeping terms to quadratic order.

II»k '-t~( 'I(+p-ll~-tl}+lm'(~k '+~r ')(+p-ill-tl)'l-l&'I.

Here ap denotes that if either +p in both places or
-P in both places satisfies Eq. (5.5) then Eq. (5.4)
is also satisfied. The quadratic approximation
leads to small errors of order A jm' in the limits
on P given by Eq. (5.4). The coefficient of the lin-
ear term vanishes for k = l, hence the left-hand
side increases slowly for k near l. This implies
that many terms contribute to the P summation in

Eq. (5.3) for k near l.
At this point we consider a further simplifying

restriction. In particular, we require that (ex-
pectation values of) uk and {((k» vary continuously
in the parameter k (for all normalizable states).
This is a restriction on the representation space.
With this, assuming that A. and hence IPI —k lk —ll
is sufficiently small [according to (5.5)], we ap-
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proximate Eq. (5.3) by

IR, V, ] =R, V, . (5.8)

Then the renormalized frequency operator de-
fined by Eq. (4.10)

r =mr -Rr Vr (5.9)

is (algebraically) self-adjoint. Thus we replace
Eq. (4.10) by

a, (t) = U, e '") '+e'"-('U,'+W, (t) (5.10)

because V,'R,' = (R, V, )*.
We recall certain properties of the terms ap-

pearing in Eq. (5.10). The Fourier transformation
of W, vanishes in the frequency intervals -(d, —

I
x'I

-(()) +
I
&'

I
and (u) -

I
~'

I
'(d ' ~( + I

&'
I The term

U, e '"r' is the renormalized approximation of
(U, +iV, t)e ' )' whose (singular) Fourier trans-
formation is nonvanishing only at the point &or.

Similarly the term e'"-r 'Ur' is the renormalized
approximation of (U,

' —i V,'t)e'"(' whose Fourier
transformation vanishes except at the point -cur.

We close this section with a change of notation
to facilitate the study of the limit L- ~. Let o&
be the characteristic function of the set of points
((I, k, P)) satisfying the inequality (5.4) or the (ap-
proximate) inequality (5.5). Then we have
o~(l, k, p) =1, if the inequality is satisfied and
o~(l, k, P) =0, otherwise. The double prime on the
summation in Eq. (5.7} may be dropped by using
o& for the renormalized frequency, giving

R, V, = 3A(4L) Z ((d ((d )) (n)*n)) n( a)n)a) ~

k, P

(5.6)

We can simplify by using ~k*nr = ~r ~k* —6k» and
then the operators in the summation become
(n,*n, ) '(n,*a,n,*a,—n,*a,5, ,); however, we have
to be careful in canceling the inverse since
(a,*n, )

' only exists as a mapping on the domain
which is the subspace of the Hilbert space of
states in which there is at least one particle pres-
ent in the momentum state l. In fact, (aPn, ) 'ncaa,
is the unit operator on this subspace, and vanishes
on the orthogonal subsp3ce of states in which no
particle is present in the state l. Therefore,
(nP n, ) 'n,*n, =I —P'„where P,' is the orthogonal
projection operator on the latter subspace, and
Eq. (5.6) becomes

R, V, =»(4L) '2 "(~)~.) '(I -P()(n. a. —5(~) ~

k, P

(5.7)

We see that the approximated operator Rr Vr van-
ishes on all the one-particle states, as was the
case in Eq. (5.6). Note that P', a,"n, =0 so that

0, = (o, —3A.(4u), L) '(I —P,')

x Z~. 'o.(t, k, p)(a,*n, —5, , ,). (5.»)
k, p

We define the phase-space function p& by

Zo~(t, k, p) = Lpi(t, k) (5.12)

Then Lp), (l, k) gives the number of independent
two-particle states (of mass m) with energy E ly-
ing within the range (d, + &a),

—
I

A.
'

I
& E & (()) +(()~+ I

A. 'I
and having total momentum l +k. In the limit of
large L, the phase-space function becomes inde-
pendent of L, and Eq, (5.11) can then be written
as

0( =~, —31(4(d, ) '(I —P', )

x Qto„-'p„(l, k)(n,*,—5, , ).
k

(5.13)

VI. LIMIT OF A LARGE SYSTEM

If the terms with small denominators were not
treated as quasisecular, Eq. (5.6) would include
contributions from only the exactly secular terms.
The function o~ would be replaced by o, (i.e., o~
with A =0) and the summations would include only
two terms in P for each value in k. Then the
right-hand side of Eq. (5.6) would vanish in the
limit L-~, and the operator frequency renormal-
ization would be lost. Thus, the quasisecular
terms play a crucial role in the existence of op-
erator renormalizations.

We start the study of the limit L- ~ with a short
review. " The large L limit involves changes in
the commutation relations as well as the replace-
ment of summations by integrations. The Fourier
decomposition Eq. (2.2) can be written as

1/2

y(t, x) =(2v}-"'g (~l) — a, (t)e"*,
r

where ~1=2&L '. In the limit L-~ we write

(6.1)

(e((e)=(2 )
"'

,f d( (), e)e'", (6.2)

where

1/2

a, (t)- a(l, t). (6.3)

Here both L and n go to infinity in such a way that
2&nL ' tends to l.

The commutation relation Eq. (2.11a) is written
as

(6.4)

If L-~ is taken as above the commutation relation
becomes
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fn(k), o. (l)*] =5(k —I),

where again we take

ar-n l

(6.5)

(6 6)

(7 2)

where

(1+5)"'
(1 —6)"'-1

e„~5. The requirement leads to the condition

Ik —fl- f(1+y)l'+ym'] Ill~

where L and n go to infinity so that 2&nL ' tends
to l . We have used

1=+ 5a, ~
= Q (&k)—6a. ~

L

(6.7)

dk+~ 'p„k, l n*ka k —5k —l

(6.8)

The operator renormalization clearly remains in
the limit L- ~. We take I —P', equal to the iden-
tity in the limit L-~.

VII. PHASE-SPACE FUNCTION

The phase-space function p~(l, k) determines the
renormalized frequency operator through Eq. (6.6),
so it is desirable to have a simple picture of its
behavior. Exact analysis of the inequality (5.5)
which determines p& is very difficult, however,
for fk —I

I
sufficiently small the analysis is made

easy because the linear term in p vanishes ap-
proximately on the left-hand side of (5.5). To see
this, note that the coefficient of the first term in

p is

d
k(o, ' —l(o, '=(k —l)—(q(a, '), (7 1)

where hk=2&L '.
We are ready to treat the L-~ behavior of 0, .

Using (6.6) in Eq. (6.13) we find

0( = (d( —3X(4(d( )

p~(l, k) = ~ 'IA '
I

x' I+ —,
'

Ik —I I']'" . (7.4)

This expression is valid as long as fk —lf
~ 2A '"

I
X' I"', so that in the nonrelativistic re

gion, where A = m ', we require
I
k —l

I

~ 2m'"
I

X' I"'. On the other hand, in the highly
relativistic region fk —I I-2 fh' I"'m 'I"' (pro-
vided that

I

X'I"'«m"'), so that the limit on the
validity of approximation given by (7.2) is reached
before the limit on the validity of the expression
(7.4). This is somewhat unfortunate because (7.4)
indicates that p„(l, k) is monotonically increasing
as fk —I

I
increases from 0 to the limit, and at the

limit p~(l, k) =W2p&, (l, l) =v2 m 'A ' '
I

A.
' I' ' As a

result our approximation is too crude to give a
complete picture of the function p~(l, k) in the rel-
ativistic region.

For fk —l
I
larger than the limit of validity of

(7.4) the parabola cuts the lower boundary
P=-A 'I&'I as well and

In the extreme nonrelativistic limit,
I

l
I
«may,

the condition (7.2) becomes fk —
I I «may, while

in the opposite limit fl f»m&y it becomes fk —I
I

--,'y fl f. The condition fk —l f--, y(u, provides a
simpler form of bound for all l, but it is too re-
strictive in the nonrelativistic region where the
bound is proportional to v y rather than y.

After approximation the inequality (5.5) becomes

I
p' —l fk —ff'I-A 'I&'I,

where A = —,m'(~, '+e, '). For small values of

I
k —I

I
the parabola P' ——,

'
fk —I I' cuts only the up-

per boundary line p = A 'Ix'I and

where q is some point in the closed interval with
end points l and k, by the mean-value theorem of
calculus. The derivative is (d/dq)(q~, ') = m'~, '
and if fk —I

I
is sufficiently small, it can be ap-

proximated by 2(u&, '+to~ ') which is the mean of
the values at the two end points. This approxima-
tion makes the linear term in p vanish. The rela-
tive error in the phase-space function induced by
the approximation is equal to the relative error in
the approximation itself, i.e.,

lu), ' ——,'((u, '+(u, ')
Ie„=

2(~i + &A )

Since q lies between l and k, e„ is less than
f&o,

' —s&, 'I/fco, '+~, 'I, so if we require this
expression to be less than 5 (say 5 =0.1) then also

p, (f, k)=~ '(A 'I~ I+ ,'fk--l I-')"'-
- v-'(-,'

f
k - I I' - A -'

I
~ I), (7.5)

if
I
k —l

I

~ 2A "'
I

A' I"'. As
I
k —I

I
increases from

this value, the function drops down, at first with
infinite slope and then decreases more and more
slowly toward zero. For fk —I

I very large, the
asymptotic behavior is 2& 'A 'I&'Ifk —I

I
', which

is a slowly decreasing tail of magnitude propor-
tional to

I

&'
I, and hence small compared to the

maximum value of the function which is propor-
tional to IX' I"'. The approximation gives a fair
picture of the phase-space function in the nonrel-
ativistic region if IA'fm '«y because at the lim-
it of the approximation fk —I I= may the value of
the function is
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il/2~ 1/2y 1/
p2(i f )

so that it has decreased by a reasonable factor of
(i&'i/my)'" from its value at k = l. However, even
if we choose @=0.1 for a 10% accuracy in p& and if
iX'i=0. 01m which is a rather small coupling con-
stant then (i A. 'i/my)1/2 = 0.31 is still not a very
small factor. This indicates the restrictive nature
of the approximation. We can, however, draw
some conclusions about p„: (1) the maximum of

pi is proportional to
~

A. i"2; (2) the width of p„ is
proportional to iA. i"'; (3) the function first in-
creases as ik —liincreases, and then decreases,
but rather slowly with a long tail.

VIII. CONCLUDING REMARKS

It is shown in the preceding work that the inclu-
sion of quasisecular terms (small energy denom-
inators) is important in renormalization. These
terms contribute a nonvanishing frequency (mass)
and amplitude (wave-function) renormalization in
the limit of an infinite system. The renormalized

frequency operator depends on a certain phase-
space function giving the density of two-particle
states in energy and momentum. The form of the
phase-space function shows that field modes of
nearly the same momentum have a large coupling
to each other. This situation is somewhat analo-
gous to the situation in the BCS theory of super-
conductivity where electrons of opposite momen-
tum are strongly coupled. " However, the BCS
model neglects interaction between electron pairs
of nonzero total momentum. Recently the model
was extended to allow for the interaction of pairs
of total momentum slightly differing from zero. "
It was found that the phase space available for
scattering of pairs is sharply peaked at zero total
momentum, and that repeated interactions (leading
to binding of the pairs) emphasize more and more
the peak of the phase-space function. It is ex-
pected that the phase-space function of Sec. VII
will play a similar role when the two-particle
states of the P4 model are calculated. In that case
the peaking of the phase-space function for modes
of nearly the same momentum could be related to
binding effects between two co-moving particles.
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