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An alternative to Dirac's factorization of the IQein-Gordon equation is demonstrated
which yields two-component, m & 0, equations. Explicit two-component solutions for the
Coulomb field, OZ/r, are given in detail; the bound energy levels are found to be precise-
ly the same as for the Dirac equation, differences in the spectrum are discussed. The
case for general electromagnetic fields is also discussed. The Poincare invariance of this
alternative equation is proved in two distinct ways: (1) by the standard method using Poin-
care generators, and (2) by a group-theoretic analysis based upon Wigner's classic work.
The existence of an invertible 1-1 mapping of Dirac's equation for general electromagnetic
fields into and onto the alternative equation is demonstrated. That the two alternatives are
not necessarily identical (for example, if chirality has a fixed significance) is discussed.

I. INTRODUCTION

The purpose of the present paper is to demon-
strate that Dirac's classic derivation' of his
famous equation for massive, charged, spin--,'
particles admits of an alternative, which leads to
a distinct, and quite remarkable, new equation.
The two alternatives —Dirac's equation (labeled
hereafter A, ) and the new equation (A, ) —appear
as mutually exclusive alternatives in the factoriza-
tion of the Klein-Gordon equation'; we call this the
"Dirac dichotomy" since it appears already in
Dirac's marvelously clear paper. ' (We discuss
this in detail in Sec. II, below. ) The development
of equation A„ including the proof of Poincarb in-
variance, has been given in three brief —and not
overly accessible —letters. ' '

The development of the properties of Dirac's
equation has led to an enormous literature reach-
ing over the past 43 years. Accordingly any claim
to a fundamentally novel development must be
treated with great skepticism. The present paper

is therefore much more explicit and more detailed
than is the current standard in the field. Such
explicitness —including overly detaiLed, even re-
petitive, demonstrations —is especially necessary
because the subject is intrinsically subtle and often
(seemingly) paradoxical. Our aim is to convince
the average reader, and not experts alone, as to
the correctness of our results.

Let us sketch the plan of this paper. In Sec. II,
we repeat Dirac's derivation of A„set up the di-
chotomy, and derive A, —but in a preliminary
fashion, the final version of A, being given in Sec.
IV. In Sec. III, we apply the preliminary version
of A, to an exactly solvable problem: the Coulomb
field aZlr.

This explicit and detailed solution is intended to
show, by example, that alternative 2 does indeed
possess takeo-component solutions to standard prob-
lems in a manner quite i mPossible for alternative
1.

In Sec. IV we return to the more abstract ques-
tion of how to extend our preliminary equation so
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as to allow coupling to an arbitrary electromag-
netic fie1.d and to allow invariance for Poincarb
tr ansf ormations.

Section V approaches the problems from an en-
tirely different point of view and develops both A,
and A, directly from Wigner's celebrated discus-
sion of the unitary irreducible representations
("unirreps") of the Poincar6 group 6'. This reder-
ivation of A, by totally distinct techniques, and
concepts, is very reassuring evidence of the cor-
rectness of our alternative.

Section VI discusses in detail the particular
properties possessed by A„and the interrelation-
ship between the two alternatives. It is shown
that, in the presence of an arbitrary electromag-
netic field, there is an isomorphism between A,
and A, . The isomorphism does ensure that A, and
A, give identical results for a spin--, particle inter-
acting with an electromagnetic field. However, the
isomorphism is of a mathematical nature, and it
need not be true that the physics of our equation
(in the presence of weak interactions for instance)
is the same as that of the Dirac equation. This is
discussed further in the concluding section (Sec.
VII).

Finally, to be precise let us note explicitly that
our entire discussion is at the level of the one-
particle Dirac equation. It is well known that, for
consistency, one requires field quantization. Since
quantization "cures" the two shortcomings of the
one-particle Dirac theory (positive definite charge
and indefinite energy) —shortcomings which A, also
shares —we may reasonably expect a similar cure
by quantizing A, . This, however, is a task for
future work and is not considered here. We will be
quite happy if we convince our colleagues merely
that A, exists and has the properties we claim.

P2= ~

g 0

and

Hence Eq. (2) takes a factorized form, say,

(AP,c, +BP,o, +CP,os+DP, +EP,)'

=A'+B'+C'+D'+E .
(2')

Conventionally one suppresses the fifth unit and
writes Eq. (1) as

(P, +n p+Pm)(p, —n p —pm)g

where

=(po —n p —pm)(p, +n ~ p+ pm)p =0,
(4)

o =p&~, P-=p3

Hence the linear equation

ments of an appropriate C1.ifford algebra. The
most familiar example of a Clifford algebra, the
Pauli spinors (complex quaternions), allows one
to factorize at most a four-term quadratic. It is
thoroughly well known that one must go to the
Dirac algebra to factorize Eq. (1) and/or Eq. (2).
In Dirac's original notation (which is very conven-
ient for our later discussions) one introduces two
independent (= commuting) sets of Pauli spinors,
a and p, and takes the outer product.

The five anticommuting units are then

0
po,. =— ' for i =123,

g,. 0

II. THE DIRAC DICHOTOMY (p —n ~ p —Pm)$ =0

and its conjugate

(5a)

A2+gP +C2 +$72 +E2 =0 (2)

This cannot be done over the field of complex num-
bers, but can easily be done by adjoining the ele-

Let us follow Dirac's method in developing his
relativistic wave equation. In this procedure, the
starting point is the relativistic invariance of the
length of the four-momentum vector: P—:(Po, p);
that is, one asserts the Klein-Gordon operator
equation

4(x) = (Po' - P') l(x) = m'4(x)

For reasons understood rather more fully long
after Dirac's initial work, one seeks to replace
Eq. (1) by equations linear in all components of p.
Algebraically, the problem is to factorize a five-
term quadratic of the form

(p, +n p+Pm)(=0 (Sb)

together imply Eq. (1).
This is all very familiar without a doubt; but how

unique is it? The Dirac-Clifford algebra is well
known to be unique to within unitary equivalence;
there is no freedom here.

That a four component alg-ebra (i.e. , both p and
o) is also necessary is commonly believed. This
belief ue uill nou shou) to be false.

Since it will be essential for later work (Sec.
III), let us digress at this point to develop an alge-
bra' which we shall designate as the algebra. of
"rotationally invariant Pauli spinors. "

First, note that the Pauli spinors suffice to fac-
torize the orbital angular momentum equation.
That is, the four-term quadratic
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L /l/—= (L, +L, +L, )g

= l (l + I) /I/

admits the factorization

(o ~ L —l)(o ~ L+1+ l)$ =0,

which is easily verified upon using the "Dirac
rule":

(o ~ A)(o' ~ B) =A 8+io AxB,
with

[A, o] = [B,o'] = 0.
Let us introduce the operator X defined by

X = —(o ~ L+1)

and the eigenvalue equation

(9a)

0 rX",=-X".

(o r")'=1.
(12)

(13)

It therefore follows that the operators X and
0 ~ r" anticommute.

But if there exist Neo anticommuting operators
then there must exist three (the third being the
product}. Hence we have three anticommuting
rotationally invariant operators: (X,o ~ r", o ~ rX),
with "rotational invariance" being defined precise-
ly as invariance under the specific generator J

1 ~= L+ —,0.
If we normalize our operators to have unit square—

which is always possible since X' is nonvanish-
ing, and v ~ r" is already properly normed —we see
that we have our desired rotationally invariant
Pauli spinors:

XXK(/li/t/) = KX~(8~ /t/) ~ (9b)

The (two-component spinor) eigenbasis X"„has as
sharp quantum numbers the total angular momen-
tum j [defined by 2 =L+ —,'o, S'-j(j +1)], sharp
z component J,—p. , and sharp orbital angular mo-
mentum l. By using the relation that J' =X' ——,',
we see that [j(K)+-,']'=K'. Since a (nonrelativistic)
spin-& particle has angular momentum j =-,', —,', . . .
[with each j occurring twice (parity)] we see that
the spectrum of X runs over all positive and neg-
ative integers, excluding zero. (This last remark
is very important since it shows that X ' exists. )
Defining j(K) to be positive yields the relation

j(K}-=I Kl -2. (10a)

Correlating the orbital angular momentum l
[from Eq. (7)] and the parity [-=(-)'] with the K

eigenvalue shows that

l(K) =
~

K~+ [S(K}—1] (10b)

[where S(K) is defined to be the sign (+I) of K] and

p»fty = (-)' = (-) "
S(K)

( )/(K)+ 1/2S( ) (10c)

The eigenbasis X",(8, y} has the explicit represen-
tation

'g j = 0' ' r q

12 ~ 1103 y

—
( )SKI+1/2S(K)

which obey the relations

/)//)/ =/, e,»q, for (ijk) =1,2, 3,
(q/)' =1

(14a)

(14b)

(14c)

(14d}

(14e)

o p=nd, +(j -.2)(-)' '"n„
where

(15)

[Note the curious phase given in Eq. (14c). As
far as the Pauli properties Eqs. (14d} and (14e) are
concerned, this choice is one of an unlimited num-
ber of equally good possibilities (the possibility of
iephasing every j subspace by + or -). But in or-
der to develop a wave equation for arbitrary elec-
tromagnetic fields, we must require g, to have the
significance of the (internal) parity operator P;„,
acting on the particle variables x and p. (This will
be clearer in the sequel. ) Note also that this
choice was not made in Ref. 3 —where we used "q,"
=S(X). In that paper this led to the assertion that
Lorentz invariance fails. ]

The operator 0' p has an expansion in terms of
these q,. operators, namely,

X/„'(8, y) -=Q(l(K)-,'mT
~

l(K)-,
' j (K) u)

&& I'/7. &(t/ c }XI/2 and

p„=radial momentum operator

-=r p —i/r (16a)

where ( ~ ~
~

~ ~ ~ ) is a Wigner coefficient and X'„,
denotes the basis spinors

:=0 '"' &' 1'
This eigenbasis admits the pseudoscalar opera-

tor cr ~ r", which is easily seen to have the property

[f„q,]=o (16b)
The significance of the decomposition of o p given
in Eq. (15) is that one finds

[o ~ p, /l, ],=0,

a result that can also be very easily demonstrated
directly.
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After this digression, let us return to our prob-
lem. We can now demonstrate by explicit con-
struction that there exists a two-component (spin-
or) factorization of the Klein Gor-don equation,
namely,

(p, —o p -7),m)(p, + 8 ~ p +q,m) g

=(p, +o p+q, m)(p, —o ~ p-q, m)& =0.

[Proof: The operators p, and o ~ p certainly com-
mute with each other, and p, also commutes with

q, (since this operator is composed from o L,
which itself commutes with p, ). We have already
shown that o ~ p anticommutes with q, in Eq. (1t).
Hence the assertion follows. ]

Thus we have two possible candidates for a two-
component first-order wave equation for massive
spin- —,

' particles: either

p, g =(o p+q, m)p

or its conjugate

pok =-(o p+gsm)0

(19a)

(19b)

We shall discuss in detail in subsequent sections
the properties of Eqs. (19a) and (19b).

Let us turn to a different question now: Does our
construction contradict any claims as to uniqueness
given in Dirac's paper? Quite surprisingly, per-
haps, it does not, for Dirac —with commendable
caution (and insight) —carefully phrased his argu-
ment7:

"The symmetry between p, and p„p„p, required
by relativity shows that, since the Hamiltonian we
want is linear in p„ it must also be linear in py,
p„and p, . Our wave equation is therefore of the
form

(p +ay, +ag, +ng, + pm)g =0, (4)

where for the present all that is known about the
dynamical variables or operators o„o2 cx3 p is
that they are independent ofp„p„p„p„ i.e. , that
they commute uith t, x„x„x,. Since we are consid-
ering the case of a particle moving in empty space,
so that all points in space are equivalent, ue should
exPect the Hamiltonian not to involve t, xg x2 x3.
This means that a„a2, n„p are independent of
t x$ XQ X3 i . e . , that they commute u i th Po Py P2,
p3. We are therefore obliged to have other dynam-
ical variables besides the co-ordinates and mo-
menta of the electron, in order that eg o.p Q3 p
may be functions of them. The wave function P
must then involve more variables than merely

Pt
Xy y X2 y X3 y c ~

Thus we see at once what it is that makes our
factorization work: The factorizing matrices which

we have introduced —in particular, q3 —explicitly
depend on space-time, and what is more, they
depend on a specific point in space-time that has
been singled out (the origin of our spherical basis).
Our two-component factorization, then, in no way
contradicts Dirac's work.

[Equation (19) is preliminary and needs to be
changed (or more accurately reinterpreted) for
two reasons. The first reason is that Eq. (19) is
not invariant for Poincare transformations; it is
not even invariant for spatial translations. The
second reason, which is related to the first, is
that Eq. (19) cannot readily incorporate interac-
tions with a general electromagnetic field. The
only change which is needed is to extend the signif-
icance of q, in Eq. (19) so that it includes "ex-
ternal parity, " a notion which we shall define in the
next sections. To convince the reader that this
change is sufficient we shall proceed in a cautious
manner. First, in Sec. III, we treat in detail
the case of the Coulomb field with a center which
coincides with the center for q3. This special elec-
tromagnetic field is easily incorporated in Eq. (19).
Consideration of the formally equivalent case where
the center of the Coulomb field does not coincide
with that of q3 already suggests the needed modifi-
cation of Eq. (19). In the first part of Sec. IV we
study the change needed for our equation so that it
can incorporate the interaction with an arbitrary
electromagnetic field. In this we are guided by the
demand that our equation must factorize the
Kramers equation for an arbitrary electromagnet-
ic field. In the last part of Sec. IV we establish
that the new equation is invariant for Poincare
transformations (—=proper orthochronous inhomo-
geneous Lorentz transformations). ]

Let us summarize the results obtained in this
section as a formal dichotomy, which we term the
"Dirac c'.ichotomy": The factorization of the Klein
Gordon equation into two commuting linear opera-
tors in p allows two mutually exclusive alterna-
tives:

either A, : the factorizing matrices are indepen-
dent of space-time,

or A, : the factorizing matrices are not indepen-
dent of space-time.

A y leads to Dirac's equation, whereas A, leads
to Eq. (19). In contrast to Dirac's equation, Eq.
(19) is not manifestly Poincare-invariant; however
in succeeding sections we shall find an interpreta-
tion of (19) which is indeed Poincark-invariant.

III. EXPLICIT TWO-COMPONENT SOLUTIONS

FOR THE COULOMB FIELD OtZ/r

The classic example for testing the applicability
of spin- —,

' wave equations is to solve the *'hydrogen-
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atom problem, " that is, to solve the problem of a
pure Coulomb field interaction, c(Z/r, where r
measures (presumably) the distance of the spin- —',

particle from a rigidly fixed source having for sim-
plicity no other attributes. For the Dirac equation
this problem, as is well known, was solved per-
turbatively in Dirac's definitive paper'; exact solu-
tions were found shortly after, ' and have been a
continuing source of physical insight (and esoter-
ica) ever since. '

The equation which we wish to solve is this:

H(( )-=( ' 5'n. )(( )=&(( )

where
—

( )j(K)+1/2 S( )

=Pjnf '

(20)

(21)

and z, S(z), and P;„( are defined explicitly in Eqs.
(9) and (10) of Sec. II. The first step is to use
Dirac's spinor form for the radial momentum,
that is,

8
o p= .iq, —-+- r l~l (-)"q,--

Br (22)

E+m(-)-" "'
r

(24')

[The form in Eq. (22) uses the definitions given in
Sec. II for the rotationally invariant Pauli spin
operators q, . ]

The most economical way to solve Eq. (20) would
be to iterate this equation, thereby obtaining the
(chirality-projected, i.e. , two-component) Kramers
equation with known solutions.

We shall follow the more pedestrian approach of
a direct solution of Eq. (20), since in this way any
possible objection as to the validity of iteration is
eliminated from the beginning. Accordingly we
introduce a two-component spherical basis for the
wave functions (i)(r) having radial functions as sca-
lar multipliers; that is

(j(r) = gf.(y)x!(e, q ), (23)
K~@

where the spinor spherical functions y"„have been
defined in Eq. (11).

Upon introducing (22) and (23) into (20) we obtain
a radial differential equation:

~

~

~ ~

~

~

QZ
r -E+m(-) " f„+i —+ f =0. (24)

)(K) . d 1 K

dr r
The essential content of (24) can be made much
more evident if we rewrite it in a two component
form, where the two components are distinguished
by the sign of K'.

=Tx!(8 v}.
(25a)

(25b)

This is a very complicated basis to introduce "out
of the blue. " Shortly we shall discuss the motiva-
tion which leads to this basis; for reasons dis-
cussed later on, we designate this transformation
as the "Sommerfeld rotation" (even though it is
not a three-space rotation at all).

The properties of this new basis are easily de-
veloped. Let us introduce a new operator

I =X—iaZo ~ r", (26}

which we will call "the two-component form of
Temple's operator, " in exact analogy to X which
is the two-component form of Dirac's operator
K=p,x. (This designation for I' is discussed
below. )

One now establishes easily the following proper-
ties:

(a.) r= —TXT-',
K

(b) I'x,"= ly ls(~)x", =yx", , -
where we have defined

(26)

(c) I y I
-=I [)c' —(oz)'] '"I,

(d) y =+ Iyl, sgn(y) —= sgn(K).

(29}

(30)

From the defining relations for the spin-angle
functions X"„(8,p) we can —using Eqs. (25)-(30) —de-
rive the spectrum for I'. For every allowed value
of K and p. there is precisely one function X~; the
spectrum of I' is therefore + In' —(aZ)'I"' where
n runs over all positive nonzero integers once.
(Note that the square root is always real if nZ& 1,
as we shall assume to be the case henceforth. )

Let us now carry out this same transform on
Eq. (20) itself. To do so we use the results

The form of Eq. (24') shows that the two values of
the (internal) parity function as a formal tu)o co-m

ponent space in a direct formal analogy to the two-
component Dirac p space.

Aside from the insight (parity space —p space)
that Eq. (24') yields, it has not much to recommend
it, for a brute-force attempt to solve Eq. (24') is
messy and uninformative. We will therefore pro-
ceed by an alternative route, having a rather
deeper physical meaning. Let us now introduce
a very different spin-angle basis, which is a
unitary transform of the original spin-angle basis

That is, we define the new basis

x", (&, v)-=«u(l(-()*"1«« '(, )n. )(!(&,()
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~K „QZTer', n, =—~ t-)'
( ~

n.)'
Iy y

K K 2HZ
ylj+( )

I I

73( (31a)

kry( d (I +y)
( )

= k sgn(r) I (I + 2 y)')
I
"'F((

y) n(kr) .

K K+1 2CPZ
Ty),T = —

yl, + (-)
y Iy

(31b)

Introducing (22) into (20), multiplying through by
i (y„adntransforming [thereby using (21)] yields
the desired form:

—-(I (-)"lyly. ) - n,
s 1 „ iE((()

r '
Iyl

( )'o(Z-E
+my), + I, yl, T&=0.

yI

(32)

To solve this equation we introduce the new spin-
angle functions; that is, from Eq. (25) we have

(34)

Equations (33) and (34) are remarkable in that
they constitute a uniform definition not only of the
relativistic Dirac-Coulomb-Sommerfeld radial
functions, ' but also the nonrelativistic Coulomb
radial functions (c-~) and the plane-wave (spheri-
cal basis) radial functions

F)(y) no(kr .=)
= j)(y)(kr)

= spherical Bessel functions

for both the relativistic and nonrelativistic cases.
To apply (33) and (34) to (32') we introduce

f (, (

=AF, () y (, „(kr)

(('=TN=Zf (r))(",

=Z(fI&))((y) f (K)x-(y)) (23')

and

f Iy I +F1(--ly l), n(~) '

(35)

izl ~l (-)" f „

(32')

=0

Now it has been shown"" that the radial differ-
ential equations for the Dirac-Coulomb functions
take a remarkably elegant form in the coordinate
frame defined by the Sommerfeld rotation. Using
normalized continuum functions we have the ex-
plicit definitions

F„„,(kr) = C, (&)(kr) "y'e

x,F,( l (y) + 1 —iyl, 2 l (y) + 2, 2i kr),

(33a)

and

2 "y'e '""
I I"(l(y) + 1 + iy()l

r(2l(y) +2)

l(y) -=Ir I+ o [sgn(r) —Il
k=-I(E m ) ~

(33b)

(33c)

(33d)

y) —= nZE/k = relativistic Sommerfeld number.

(33e)

When so defined, we have a concise operational
definition of the F, „(kr):

K&0

This substitution puts Eq. (32) in a two-component
form:

Equation (32') then implies that the homogeneous
system in A and B has a nontrivial solution given
by

&
I

K
I
+ m

I r I
(-)'

E I K I+m ly I

(-)"" (35)

Putting these results together, we find the de-
sired (unnormalized) solutions to be

e' =ll(& IKI+(-)"mlrl)"'IF«»()n(k ))'l, )y((e &)

+ I(& I((l+ (-)""m
I r I

)"'I

&(- (y ().n(~)x- I y ) (s (37)

(Transforming back to the original frame simply
replaces the spin-angle functions above by )(,"(, (.)

Equation (3~) constitutes the complete tseo-
component solution to the relativistic Coulomb
problem for alternative 2 in all (three) cases:
continuum, zero-energy "continuum, " and (by an-
alytic continuation) the discrete (bound) solutions.

Let us consider the discrete set of solutions
further. Using Eq. (33a), it is clear from the
properties of the confluent Gauss function, F, that
the infinite series terminates for the condition
l (y) + 1 —iyt = nonpositive integer. This condition
is more critical for y positive. For this case we
have Iy I

—iy) = —(N I((l), where (in ag-reement
with the ordering of the Bohr spectrum) N is the
principle quantum number, N ~ 1.

Equation (37) shows that for each admissable N
and I((l there is, at most, one solution The ener-.
gy condition Iy I iyl = (N -

I ((I ) al-lows a so-lution for
I=((1, 2, . . . , N. For the level N, I((I=N, however,
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we find that ~y ~

—iq =0; hence there is a terminat-
ing solution E,&&~

„only for y negative. If we ex-
amine Eq. (37), however, we see that for («~ =N=
even integer we find $' vanishes, since only I',

&

exists and its coefficient in (37) is zero. For
~ «~

=N=odd integer the wave function g' exists (but
note that it has a sharp parity).

The situation is the reverse for the conjugate A,
equation; that is, for the equation H =(aZ/r) —o ~ p

m g3 The change in the sign of the mass term
now allows [cf. Eq. (37)] a nonvanishing solution
for ( «

~

= N = even integer but no solutions for ( K
~

= N = odd integer.
Hence we have shown the following results:
Result (a):

QZ
H = + 0' ' p +m'gs .r

The energy levels are precisely the Dirac-Som-
merfeld levels but each level is nondegenerate and
solutions for ( «( =N=even integer do not exist

Result (b):

QZ
H = —cr ~ p-mq, .r

or

(7), —p,o p —p, m)(w, + p,o' p+ p,m)(I) =0

2QZ ~ ~ QZE- +p) 0''py —p —m /=0,r ' ' r
2QZ zQZE- +, po r"-p —m &=0 ~r r'

(38)

Introducing a spherical basis, one has first

1 () 2 9 L2
p2 r2r' ar ar r2 '

and secondly the spinor factorization of L'. L'
=X(X+1) so that (38) becomes

The energy levels are again precisely the Dirac
energy levels but once again the levels are non-
degenerate and all levels having

~ «~ =N = odd inte-
ger do not occur.

In other words the two two-component Hamilto-
nians H,

=-( o/Zr)+(o. p+mq, ) divide up the Dirac-
Coulomb spectrum in such a way as to produce two
nondegenerate spectra. For the doubly degenerate
Dirac levels (( «( aN) each two-component Hamilto-
nian has one of the two degenerate levels, for the
nondegenerate Dirac levels (« = N), the l-evels be-
long alternately to the two Hamiltonians. "

In order to demonstrate how closely the two-com-
ponent solutions, developed above, are related to
the Dirac-Coulomb solutions let us now make use
of the iterated equation. ' The iterated Dirac-
Coulomb equation is

1 a a, , 2QZE—,—r' —+ (E' —m')—r' ar ar r

+—,(X(X+1)—(oZ)'+ieZp, o ~ r) )I) =0.

(39)

The terms multiplying 1/r' can be given an inter-
esting form. Define the operator

I =—3+iQZp&i ' r . (40a)

Then it is easily found that the bracketed terms
(~ ~ ~ ) in (39) take the form

X(X+1)—(aZ)'+iaZp, o r =f'(f"'+1); (40b)

hence if I' is brought to diagonal form, I"-y
=+ [« —(aZ)'] "', Eq. (39) becomes a purely radial
equation with no spin or p matrices:

( d d 2k' )(y)()(y) ())r + r2

(41)

[The solutions F(r) are just those given earlier in

(33) ]
The operator I' was first introduced by Temple"

in 1934; it is, however, not a constant of the mo-
tion. Temple's operator has been rediscovered
many times since. " The transformation which
diagonalizes I" has been developed in Ref. 10:

s=e p tnnh '
p, KI, (42), aZ

K

where K= p, X is Dirac's operator. (Note the re-
markable fact that the angular momentum is in-
variant under S.)

In Ref. 10 it is shown that, in the classical limit,
S transformations correspond to the rotation by
which Sommerfeld" derived the "Dirac-Coulomb"
energy levels in 1916; hence the name "Sommer-
feld's rotation" for S.

Consider next the Kramers equation for the
Coulomb field; this is simply Eq. (39) with p, —-1
(say}. Projecting on p, (chirality} also changes
Temple's operator to the two-component form I',
given in Eq. (28}. Once again there is a transfor-
mation, T in Eq. (25), which diagonalizes I'.

Let us summarize by noting the following signif-
icant features upon comparing the Dirac-Coulomb
problem and the two-component problem:

(a) The two-component solutions are linear com-
binations having terms of both parities; for the
special case

~ «( =N, hou)ever, the parity is sharp.
(b) The Dirac-Coulomb solutions are linear

combinations having terms in both basis states of
Dirac (p) space; for the special case

~ «~ =N, hour
ever, p, becomes sharp. "

(c) The transformation that diagonalizes the two-
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component form of Temple's operator mixes
parity.

(d) The transformation that diagonalizes Tem-
ple's operator f' mixes p, components.

It is clear that the wave functions of the two-com-
ponent versus four-component problem (A, vs Aw)

are very closely related. In fact, one sees that the
wave functions for the duo comp-onent problem can
be "assembled" by adding together the p3-+1 and

p, —-I Projections of the Dirac Cou-lomb a&ave

function, where the latter is in the transformed
(T-frame) coordinate system.

One further point is to be noted: The transfor-
mation T is a symmetry operation and leaves the
Dirac inner product (gI $)—= (g p, I P) invariant. By
analogy, p, —q„one expects the inner product

to be invariant under T; that this is indeed correct
is readily verified. (This inner product is dis-
cussed further in Sec. IV B.)

It will be noted that we have chosen a special
coordinate frame (whose origin is defined by the
nucleus) in which to solve Eq. (20). What would
happen" if, purely formally, one were to choose
a coordinate system for calculational purposes,
displaced by a distance a, say, from the nucleus?
Surely if there is any physical sense to Eq. (20)
such a formal change must be of no consequence.
In the new origin, q, represents the (internal)
parity operator (since it is defined in terms of o
and L and the latter refers to the new origin). But
the interaction now appears very different, be-
coming aZ/ I

r —a I . More disconcerting, however,
is the fact that the operator q3 no longer commutes
ui th the inter action.

This latter result is totally unacceptable, ' among
other things it spoils the iteration of Eq. (20) into
the Kramers equation.

The way to retrieve the situation is probably
clear: The operator q„which anticommutes with
r, must somehou also anticommute soith 3.. Rec-
ognizing that a is a constant polar vector (a fixed
displacement), we see that we must adjoin to q,
=P;„„ the operator P,„, which is defined to be an
external Parity oPerator, and hence, by definition,
the new q, anticommutes with objects, such as a,
which have odd parity but which (being independent
of r, p) commute with P, . We show in detail in
Sec. IV how this extension neatly retrieves the
situation.

[Let us note here that there exists, for A„a
second exactly solvable problem, the problem of
the constant magnetic field: A0 =0, A =-,' (B,xr).
This problem played an important role in the de-
velopment of A2 in that it clearly showed the ne-
cessity for q, to be the (internal) parity operator.

For the purposes of the present paper, however,
this problem plays a subsidiary role, and it seems
reasonable to develop these explicit two-component
solutions elsewhere. ]

IV. FURTHER DEVELOPMENTS

A. The Factorization of the Kramers Equation

The question as to why the Dirac equation has
four —and not just two —components has been a
continuing source of inquiry ever since Dirac's
original paper became the accepted basis for the
theory of spin--,' particles. Feynman, ' in partic-
ular, has discussed this question from many
angles. Let us begin here with the approach given
by Feynman and Gell-Mann in their classic paper
on chiral currents in weak interactions. "

The Dirac equation in an arbitrary external elec-
tromagnetic field [using the canonical substitution:
p —w=p —eA in Eq. (5}] does not —upon iteration—
obey the Klein-Gordon equation having p replaced
by m. Instead, one obtains, as is well known, the
equation

[w w+eo (ip, E+B)—m']/=0. (43)

Since Eq. (43) contains but the single p matrix
p„ it can be split (Poincare-invariantty) into two
separate second-order two-component equations:

p~ -+: m+m g=m g,

pj- —:m 7t,g=m |t},2

where

(44a)

(44b}

alp = Wo + 0' '
7T ~ (44c)

These two-component equations had been otained
much earlier —and in a different way —by van der
Waerden' and by Kr amers. "

Note especially that Eq. (43) —split into the two
"chiral" forms of the so-called Kramers equation
[Eqs. (44a) and (44b)] —does not have sharp parity
or sharp C, but only the product CP." Note, also,
that the electromagnetic fields enter in the chiral,
or Silberstein, form: +iE+B.

The Kramers equation [either (44a) or (44b)] has
some remarkable properties, as has been dis-
cussed in detail by Brown in his Colorado lec-
tures. 23 In particular, a generalized form of the
Feynman rules can be set up'~ so as to yield an
acceptable quantum electrodynamics, but curiously
—as Brown" has shown —the Kramers equation is
inconsistent unless the gyromagnetic ratio has pre-
cisely the numerical value g=2.

It was by noting the chiral (and CP) symmetry
evidenced by the Kramers equations that Feynman
and Gell-Mann motivated their postulate that the
weak-interaction current is to be a chirally pro-
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and

[rr„a' Tr].=o. (47b)

Equations (47a) and (47b) define what Good" calls
an "even environment. " Clearly the proof extends
to all electromagnetic fields having an even envi
ronment.

If one could have Eqs. (47a) and (47b) true for
arbitrary electromagnetic fields then the demon-
stration would be complete. But it will require a
far-reaching generalization before we can make

jected Dirac current. [This, of course, necessar-
ily denies that the Dirac Hamiltonian generates the
time displacements for the weak current. How-

ever, the really essential conclusions for weak
interactions depend primarily on the form of the
weak current (kinematics); in fact, Hamiltonian
considerations are largely irrelevant in a pertur-
bation theory that stops at first order anyway. We
discuss this further in Sec. VIL]

We shall now demonstrate that either, and hence
both, of Kramers's two equations may be factorized
over the Pauli (two-component) spinors.

Proof Thi.s claim is certainly true if there are
no external fields (cf. Sec. II), or if we have either
of the two cases discussed in Sec. III:

(a) Art =aZ/r, A=o,

(b) Ao =0, A = -,' (Bo x r) .

In fact, one can easily verify that the combined
case Ao = aZ/r, A = -,' (B0x r) also works out. That
is, define

8e = 7/d(rrtt —pro Tr) d: m,

where

rr, =P, —az/r,
Tr =p ——,'e(B,xr),
Bt, =constant axial vector.

Then

8,8 =8 8, =rb(rr, —p,o.Tr)t7, (rr, - p, tr Tr)-m'

=(rr, +p,o ~ Tr)(rr, —p, tr ~ Tr) -m'
= rro + pg[o ' rlx rro ] —(0 ' Tr) —m

= rr ~ rr —m'+i aZpp ~ V(1/r) +io' BD. (46)

This is precisely the iterated Dirac equation and
agrees (after p, - d: 1) with the Kramers equation
(44a) and (44b).

The reason why this demonstration works is
easily seen.' It works because one can explicitly
verify that for the fields given in Ert. (45) one has
the relations

(47a)

this conclusion. Somehow or other we must gen-
eralize to the case of an odd environment. [We
will interrupt the proof at this point, and complete
it beginning with Eqs. (5la) and (51b) and ending
with the proposition I.]

The necessity for some sort of generalization is
implicit already in the Coulomb-field example, as
discussed briefly at the end of Sec. III. It is phys-
ically evident that in this problem there exists a
preferred coordinate frame, namely, that frame
of reference in which the source of the aZ/r field
defines the origin —and accordingly defines the
(internal) parity operator r), . While this frame is
certainly defined physically it is by no means re-
quired mathematically. We can at will choose to
calculate in any fixed frame we so desire. But if
we really do opt for a mathematically displaced
frame (displaced by a) then

Q'Z

and our interaction relative to the new calculation-
al frame has components with both an odd and an
even environment, which we do not know (as yet)
how to handle.

We are thus in an absurd situation, for no phys-
ical theory can depend in an essential way on a
purely mathematica1 frame of reference.

Let us pursue this dilemma further. From the
multipole expansion we can easily expand

~
r —a(

in spherical harmonics around the new origin. (The
radius [r

~

=
( a) will be formally singular, but since

this singularity is in radial space —and hence com-
mutes with the parity operation —we can ignore this
complication as inessential. )

The essential point is that )r —a~ will involve
terms such as Fr (r)yr *(a) which have parity (-)'
under rb. We may single out the (irregular) dipole
term a ~ V(1/r) as the prototype for our dilemma.

Our problem is thus to achieve —in some rational
way —the property

[rb, a V(1/r)]=0. (48)

~extended=g g

By definition, then, we achieve our goal:

[r}ex a, V(1/r)] —0 ~ex —t7extended

(49)

(50)

This step is both far-reaching and —as we have
found in discussions with colleagues —highly dis-

Clearly one way to do this is to adjoin the polar
vector a as a formal parity-changing element in
our calculational structure. Correspondingly we
must generalize r}, (which necessarily commutes with
with the constant vector a) to include a formal ele-
ment —call it the external parity operator P„„,—
anticommuting with a. That is,
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[~,'.w. ] =0,
[q" o ~ w] =0

(51a)

(51b)

We conclude, moreover, the following proposi-
tion.

Proposition I. The operators 6, defined by

8 q3 (wo —p,o w) + m (52)

constitute a factorization of each, and hence both,
of Kramers's two equations and of the iterated
Dirac equation for canonically incorporated elec-
tromagneti c fields.

P~oof. The proposition is equivalent to the fol-
lowing result:

8,8 =8 8, =w ~ w+eo ~ (ip, K+8) —m', (53}

which is evident upon using Eqs. (51a) and (51b).
Q.E.D.

(2) Part of the unease at this formal adjunction
of new elements into the system stems from the

turbing. It smacks too much of a trick, possibly
even a self-deluding trick.

Let us face this unease directly, and subject our
analysis to criticism:

(1) Is this step sufficient to accomplish the goal
or do we have to patch things up, ad hoc, for every
new problems

A little reflection will show that every scalar
function Ao(xyzt) admits of such a formal exten
sion involving but a single neu formal element.

Proof: The term scalar means that under an
arbitrary rotation the functional form is invariant.
[This is most evident using Dirac s functional
notation: Ao(xyzt) =(xyzt IAO&. "Scalar" then
means:

arbitrary rotation

~ (IA.&- IA.'& = IA.&).]

Hence we may use the multipole expansion theo-
rem, exactly as discussed for nZ/Ir —aI, and
conclude that we have but two types of multipole:
i=even and I=odd. There may be (denumerably)
infinitely many independent multipoles in general,
but they always divide into the two classes stated.
Thus the action of P„„,on an arbitrary scalar elec-
tromagnetic field is uell defined. Q.E.D.

Similarly we may extend the analysis to the vec-
tor potential, A(xyzt), and using, the vector spheri-
cal harmonic expansion" repeat the analysis for
Ao(xyzt), mutatis mutandis. (This whole analysis
is, in effect, little more than the familiar result
that functions may be split into odd and even parts. )

We have thus proven the following: Formal ad-
junction of elements corresponding to the concept
of external parity, in particular, q, -g","-=$3P
allous one to implement the relations

fact that "external parity" might really imply ad-
joining a whole universe of (undefined, even un-
definable) new operators. This is a valid criti-
cism, and one really must limit the adjunction to
a fixed list of elements defined at the outset, once
and for all. So far we mean only that A(xyzt) has
been split into taboo parts, uith an operator P..f de-
fined to implement the split.

Let us remark that after we have reanalyzed the
whole structure in Sec. V -using Wigner's analysis
of the Poincarb group —we can, and shall, refor-
mulate the problem anew in a way that appears
perhaps less ad hoc (Sec. VI).

(3) Another part of the unease stems from the
feeling that the whole idea is a sort of trick "not
letting the left hand know what the right hand is
doing. " Let us answer this unease by an example
taken from a more familiar subject. Suppose we
were presented with the operator r —where the
symbols mean just what they normally do —and
were told to answer, yes or no, the following
question' . Is r a vector'? We can make no answerer

for the question is meaningless.
For example, we might correctly answer yes,

meaning thereby that we assume that "vector"
means I.=1 under the rotation operator L =r&&p.

But we can also answer no, if we assume that-
as in the famous Corben-Schwinger formulation"—
we adjoin to our rotation operator the unit spin
angular momentum operator S, —= e,», and then de-
fine the (total) rotation operator to be J = L+S.
Under this operator, the operator r is an invariant
operator having total angular momentum zero.

It is in precisely the same way as in the Corben-
Schwinger example that we have adjoined formal
eLements that enable us to say —consistently —that
under the "combined parity, "gp, Ao is always
even and A is always odd.

In this way we arrive at four equations which in-
corporate the interaction with an arbitrary elec-
tromagnetic field; these equations we still denote
as A, (since they clearly belong to the second al-
ternative in the dichotomy):

[q,'"(Po —eAO —o ~ (p —eA})+m] g =0,

[q3 (Po eAO +a ~ (p —eA))+m] / =0

(54a)

(54b)

with

A;"'" (x, t) = —,
'

[A, (x, t) +A, (-x, t)],
A'dd(x, t) =-,'[A (x, t)-A (-x, t)],

where q,'" =g,P,„„and we have written out separate-
ly the two cases p, -+1.

It is useful to write out in detail, and in several
ways, Eq. (54). First, write

Ao(x, t) =A~o"'"(x, t) +A'dd(x, t),
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and similarly for A(x, t). Then

qQ;"'" (x, t)h, =A;"'"(x, t),

q~,'"(x, t)q, = A;-dd(x, i),

and similarly for A and A . Finally

P A " nP -Aeven
ext 0 ext 0

P A' Pext 0 «t 0

hence

q," A, (x, f)q, " =A, (x, i).
Also

[rl,'" (w, —p,o w) d: m] g(zyz t) =0. (56)

We have proven that this system iterates into
the same result as the Dirac equation, Eq. (56).
Thereby we are assured that much, if not all, of
the physics of the Dirac equation carries over to
A„ if A, is othenoise acceptable. This proviso
means, in effect, that the system A., must not only
be self-consistent, it must accord with the re-
quirement of Poincarb invariance.

This immediately poses a problem": The mo-
mentum operator p does not commute with the
free-field Hamiltonian:

~ even ~ even
P,xtA P,x,= -~

g odd godd
ext ext

hence

H —p 0'p+'g sz

since

(57)

(58)

q,'"X(x, t}q',"= -X(x, t) .
It is clear from Eq. (54) that not only do Ad and

A possess parts both even and odd for P.x„but
that the same is true for g(x, i) We ma. y write
Eq. (54a), splitting tel as g = g~'~+ g ~e:

The way out of this impasse is probably evident:
We must also adjoin as a parity-carrying operator
the distance through which the system is displaced—
even if infinitesimal —since displacements are
necessarily polar vectors. To see most easily that
this suffices consider a finite displacement by a
distance d:

q'"{is,+eA"'+ eA;"'"+o ~ (ia +A' '+A' )}(g"+ p")
—m(y(e) + y(0))

(55)

U(d} =e

One now has the desired result

(59)

Collecting on both sides of (55}the terms which are
even and those which are odd under P,„„one ob-
tains two equations which can be unified as one

g{e)equation for the four-component object P =
(&&,~):

0 0 odd A even

odd Aeven

+0 i~ —e dd —m1 p =0.Aeven Ao

(54')

This equation is nothing but another representation
of A„where q3x is represented by

The existence of this four-component representa-
tion does not of course mean that we have failed to
split the two-component IQein-Gordon equation
with A, . We shall return to this alternative repre-
sentation after discussing the Poincarb invariance
of A, [cf. also Remark after Sec. VI] .

B. Poincare Invariance of A2

The factorization of the iterated Dirac equation,
using the second alternative for the Dirac dichot-
omy, has led us to the following equations:

U HU=H, (60)

since, by adjunction of cl as a parity-carrying op-
erator, one has

U 'Y)d" U =qt" . (61)

This result implies an infinitesimal form of Eq.
(61) which has unusual properties, namely,

Eq. (61)~ [1 p, q',"] =0, (62)

(62 )

(Remark. At first glance Eqs. (62) and (62') are
completely at variance with well-known group-the-
oretic structures wherein the generators of a group
necessarily (by definition) commute saith the Pa-
rameters de/ning finite group elements. The flaw
in this otherwise correct assertion is that parity
is not an element of the (continuous) translation
group generated by p, but is a discrete element of
a distinct Z, group. The distance 1 is indeed a
parametric element for T, (since [p, 1]=0), but this
has nothing to do with the behavior of 3 under P,„,.)

Having "rescued" displacement invariance-
thereby distinguishing "displacement invariance"
from "invariance under commutation by p" —we
can proceed to construct a Poincarb-invariant in-
terpretation of Eq. (57).
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((I e) = fe'xi-(le&, (63a)

where

$ = (l&((lex (63b)

The method to be followed is a purely algebraic
one in which one first defines a (pseudo) inner
product, '9 then constructs explicit operators 3 and
K satisfying the Lorentz group commutation rela-
tions leaving this inner product invariant. If the
Hamiltonian (57) is covariant under S and K and
invariant under p, then Eq. (57) integrates into a
Poincarb group representation, completing the
demonstration.

The first step is to define an appropriate pseudo
inner product. We choose the form suggested al-
ready in Sec. III (with q, - (b"), that is,

[N(& N(] = -ie(((,L(, ,

and impose the requirement

(75)

N =N. (76)
(These relations are precisely those imposed in
the usual Lorentz covariance discussion of the
Dirac equation. )

For later use, we note here that the operator N
has odd parity under the internal parity operation:

[q~, N], = [P,„,N],. =0 .
The critical step now is to define the spin part of

the (total) boost operator K. We define this to be

K=N+ ~iv. (78)
It is easily verified that Z and K satisfy the de-

fining Lorentz group commutation relations. That
is

and ( ~
~

~ ~ ~ ) denotes the usual spinor mapping
into complex valued functions.

Let us verify some properties of this inner prod-
uct. First we note that the inner product of Eq.
(63) is invariant under space-time displacements.

[Proof:
and

(a) ZxS=i3,

(b) [J(&K(]=[L(,N, ]+i[xG;, ~G, ]

=le;, »(N&, + ~iG&,)

—26k&&ky

(69)

(79)

(l&- P' =U(l&=exp(-id (»)(l&,

~0- (~)'= (U4)'n,'"

—+ex U~ ex

Q. E.D.]

The rotation operator is given by the
defined by

Z=L+-,'a,
which obeys

(64)

(65)

(66)

(67)

operator S,

(68)

(c) [K(,K(] = [N(, N(] + [ x i G;t,x 2 io,. ]
1= -SE f'g y Ly —
P S E i fko'lt

= -&~.ya~a ~ (80)

(81a)

(81b)

(81c)

= U(i X& ~ N)W(- —,
'

X& ~ G),

=WU, using Eq. (74) .

One next verxfzes that the armer product xs invar-
iant under boosts. A finite boost is defined to be

&Xv K
7

3xS=iZ, (69)

as required.
We now verify that the inner product of Eq. (63)

is invariant under spatial rotations.

It is essential at this stage to note explicitly that
the boost parameters Xv define a polar vector (re-
lated to the velocity vector) and hence that we must
require

[Proof: [Xv, 0,'"]+= [Xv, P,„,),=0. (82)

yI —~-isn ~ J
y

(T(&)
& —

II&()
ex e+ ( ((» ' J ()ex

Q.E.D. ]

(70)

(71)

(72)

[L(,N(] =(e((»N(»

[G, N] =0,

(73)

(74)

Note that in the step from Eq. (71) to Eq. (72) we
explicitly used the fact that the rotation parameters
8n define an axial vector, so that [n, P,„,]=0.

Corresponding to the orbital angular momentum
generator L we define an orbital boost operator N,
obeying the relations

=q, U(), , by Eq. (82)

=U ', by Eq. (77);

(b) invariance under W:

qs W qs =as" Was by (81a)

=(l~W 7b& by (82)

=W ', since [()„G]=0.

(83a)

(83b)

This last remark makes straightforward the
verification of the invariance of the inner product
under arbitrary boosts. In detail one finds

(a) invariance under U(iX& N):

q,'"U q~ex =q,'" U 'qe, ", by Eqs. (76) and (81a)
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g:0- O' -=S(g)4, (84)

where S is a Lorentz boost transformation gener-
ated by K acting on P, induces on 8 the transfor-
mation

boost g.'8-8'—= S '8$. (85)

The spin and space-time parts of the operator
S(g) commute and define transformations that may
be considered separately:

S(g ) =
Sspro Sorb = Sorb Sspio ~

We have already verified, in Eq. (78), that for
these two operators we have the relations

(86)

(a) Ssp» np -Rb Sspro r

(b) Sorb 7}$ qs~ Sorb

(87a}

(87b)

Consider now the induced action of S„b(g}on the
space-time four-vector p, or (for four-vector ex-
ternal electromagnetic fields) the space-time four-
vector w.

By definition, we have

g:w„- w„'-=S„, '(w„)S.,b=a„„(g)w„, (88)

where a„„(g) is the nonunitary space-time boost
matrix corresponding to the boost g. (Note that
the adjoined parity carrying variables in A do not
effect this result at all. )

Similarly the induced action of the spin transfor-
mation operator S,p;„(g} on the spin four-vector is

Q' =1y

Pa&br I =& =(12—8) s

(89)

g o o Sspro (0' )Sspro s usmg (87b)

and hence

op apo(g)oo '

It follows that

g:8-8' =S qb"(wp —p,v ~ w)S=8,

(90)

(91)

(92)

that is, 8 is invariant under 2, and (since +m is
obviously invariant) Eq. (56) is invariant as re-
quired. Q.E.D.

The very close similarity between this explicit
proof and the usual proof of the Lorentz invariance
of (A, ) is apparent; in both cases the proof goes

The inner product, Eq. (63), is accordingly in-
variant under the Lorentz group 2 generated by
Z and K. Q.E.D.

Finally we verify the invariance of Eq. (56).
Clearly, since Eq. (56) is invariant for time and

space translations as well as for rotations, we
need only verify the invariance under boosts. Con-
sider the operator 8=qbs"(wp —p,o w). The trans-
formation

through because in A„p, and p, change the various
signs in the transformation operators properly,
and in A2, & and P,„, change the same signs as in
A, andin the same uay.

It is useful to elaborate our language and to label
(with a Greek letter) the doubling of the space that
has occured by adjoining the external parity vari-
ables. It so happens that there are available three
ancient Greek letters, ' stigma (to be distinguished
from the terminal sigma), qappa, and sampi,
which had the numerical significance of 6, 90, and
900, respectively. Since one can relate (numerolo-
gically) the known leptons to 6, 90 and 900 appear-
ing to be hopelessly superfluous, we will use stig-
ma, written as ~, for this new+ attribute. Stigma,
appropriately enough, also denotes "mark" or
"conjugate" (in mathematics). (There are other
meanings of stigma that may possibly prove useful
in the long run. ) Stigma spa, ce will be covered by
the four Hermitian Pauli type 2x2 matrices ~0
=1, ~, . Instead of adjoining the implicit two-di-
mensional parity space carried by the Poincarb
group parameters a and v, one can make this space
explicit, by the adjoined operators &, for d, and
for v; and ~, for P,„,.

In terms of this new language, we can now re-
write Eq. (56) in its final form:

[p/br, b(wp —pro ' w) —m] $ = 0 . (56')

Let us remark that

(a) q, -=s,„„
with P;„, acting only on the variables x and p.

p», .=(,
'

'r}

and the Poincarb group parameters 3 and }i& now
explicitly become 3- d&, and X&- Xfr~, .

(c) The s sign in Eq. (56) has been suppressed in
precisely the same way that one chooses the "Dirac
equation" to have -m [in Eq. (5a)] and ignores the
conjugate equation [Eq. (5b)] having opposite sign.

[The remark in (c) is not as trivial as it may
appear. For the field-free case, the Dirac equation
possesses both positive- and negative-energy solu-
tions; by contrast, Eq. (56}, (with A =0), possesses
either positive- or negative-energy solutions de-
pending on the + sign. The sign in this latter case
is therefore nontrivial, but if we unite the two
cases together (i.e. , introduce &,), an over-all +
sign now becomes as unimportant as in the Dirac
equation.

Although the final result, Eq (56'), acco. rds fully
with the results stated in Ref. 4, nevertheless
the concept of stigma space is now considerably
clarified, andgeneralized, as compared to the orig-
inal discussion in that paper].
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The interesting thing about stigma space is that
for A„both for even environment and without ex-
ternal fields, &, can be taken sharp:

'30=~0 (93)

This result is important, since it shows that
in ever~' fixed preference frame the theo currents
having sharp stigma are separately conserved.
(This follows because ~, is sharp in every fixed
frame and hence the current j„splits in every
frame into the two distinct stigma components.
Q.E.D.)

[Unless care is expressed in regard to the vari-
ous adjoined parity spaces, one can obtain seem-
ingly paradoxical results in deriving conserved
currents from Eq. (56'). Thus, for example, the
operator g, is self-adjoint with respect to an in-
ner product integrating over all three-space, but
not with respect to a product g'y. It is essential
in verifying the properties of the currents j„ to
introduce all parity spaces as explicit two-com-
ponent spaces and to define the spinor product in
such a way that all parity space operations are ex-
plicitly Hermitian. ]

Fina. lly let us remark that Eq. (56') can be used
to discuss the Heisenberg form of the equations
of motion for A„ in a manner that exactly paral-
lels the usual discussion for A, In this way, one

To repeat: ~, can be taken to be sharp in every
fixed reference frame, but it "rotates" under
either displacements or boosts. It is in this pre-
cise sense that we say that stigma space splits
into two-component equations in every fixed frame
of reference.

As we shall see in Sec. VI, if one did not have
the possibility of categorizing chirality (via weak
interactions) stigma space would be abstractly
isomorphic to Dirac p space.

It is useful. to state here explicitly some further
properties of Eq. (56') which are of help in appli-
cations.

The first point is to note that —relative to the
inner product of Eq. (63) —the operators

6„—= R,q, (1, p,o)

transform as a four-vector. [The proof has al-
ready been given in Eqs. (84)-(88).]

Using this fact, one can now show that there
exist conserved currents in A, . If we use the
spinor product, (&t i 8 „ i $), to define the four-vec-
tor current densities

q„(x) =(y(x)ie„iq(x)),

then it follows from Eq. (56') that these currents
obey a conservation law ':

finds that the four-velocity is v=(1, p,o), and
that with respect to this four-velocity the Lorentz
force law obtains for general external electromag-
netic fields. Thus -to the extent that the one-
particle approach is valid-A, and A, describe
the same physics for spin--,' particles in external
electromagnetic fj.elds.

V. GROUP- THEORETIC ANALYSIS

A. Unitary Representations of the Poincare Group

We use the name Poincarh group, denoted 6', for
the group of proper orthochronous inhomogeneous
Lorentz transformations. Elements of the cover-
ing group of 6' are denoted by (d;A), where d rep-
resents a space-time translation and A a complex
2x 2 matrix of unit determinant. Wigner showed"
that for quantum mechanics, invariance for the
group 6' leads to a unitary representation of the
covering group O'. The irreducible unitary rep-
resentation which corresponds to a particle of spin
—,
' and mass m is equivalent to"

where

p'=A(A)p, p'=p"=m', p')O,
and

(94)

(95)

Also useful is the relation

m =m P'
0 1

- P' 10 -P' i 0
-P'

0 1

(96)

The main purpose of this section is to give an

explicit construction of our equation starting from
an irreducible unitary representation of the cover-
ing group of the Poincarb group. " Such a construc-
tion once more establishes that A, is invariant for
Poincarb transformations, and shows also that this
equation describes particles with nonzero mass and
spin —,'. This section consists of two parts. Firstly,
we review some of the results concerning the uni-
tary representation of the Poincar0 group. Second-
ly, we use this material to construct the Dirac
equation, and also equations A, Finally we show
the abstract isomorphism (but not the identity) of
our equations to the Dirac equation.
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The functions (p, (p) clearly satisfy the Klein-Gordon
equation

(p'-m')4, (p} =0.

The invariant inner product is given by
2

(( ») .f ='! Z—( (()(,u. )

i=1

(97}

(98)

For what follows it is useful to introduce a self-ad-
joint operator Z, defined by

(~4),(p', p) -=y, (p', -p), ~'=I. (99)

The operator Z commutes with the operator po, but
anticommutes with the operators p. The functions
(P, (P) are not convenient if one wishes to describe
interactions": The reason for this is that the
transformation (94) depends on p. Therefore one
defines other functions

(.(p) =-(»(»)'"(,u),
which transform according to

(U(a;w)y„), (p') =e"'gx„4„,(p).

(100)

(101)

The invariant inner product ((P, P} can now be writ-
ten as

j",7(:())(+') » u)'. (102)

For completeness it is useful to point out that the
functions

(,()1=(+) (())

transform according to

(103)

2

[U(d, ~)4„],(P) =e'"g» ~* » 4.,(P).
1 - if

(104}

(y"p"- m)(t)n(p) =0,

0010

1000
0 100

(107)

which is a somewhat unfamiliar representation of
the Dirac equation. In terms of (pn(p) the inner
product (98) reads

—.4. (p)y'C. (p)=-, . 4.'(p)» q, (p).
1 dp q o 1 dp g 0 1

The function (Pn(x) is defined by

d'p
PD(x) (2 )3/2 0 4D(P)

277) P

(108)

(109)

" (l."l) (u»~'-"l. )
and alternatively

4s(p' ' = (,u»
= e»i-)-'~(.u)} (112)

The functions (p, (p) satisfy equations (A2). First,
remark that

This is a positive-energy solution to the Dirac
equation. Negative-energy solutions can be in-
cluded, by a procedure analogous to the one carried
out here, starting, instead of with (100), with

(.u) (»(')) "(=(~) (&') "(( ~)'-
pu&0, -pu«0. (110)

The transformation properties of (pn(x) and (pD(p)
follow from those of (p(p).

Equation A~ can be constructed in a similar way.
Consider

B. Construction of the Dirac Equation
and of Equation A2

A solution to the Dirac equation can be obtained
by constructing" a four-component wave function
(t) (p} from y„(p):

m — m —m —"m m

(113)

4.(p) y. (p)= (".(oI
= (()i-)-(.()))

The four-component function (pD(p) satisfies

(105)
In terms of the functions (p, the inner product (98)
reads

(114)

which can be rewritten as

(106) Note that (p, (p) can be expressed as

(,",}(.Iu) =(, u). (115)
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The transformation properties of 4), follow, just
as those for g~, from those of (j). For space-time
translations, for instance, we find

Next we define

1 dp
0, (&) =

(2,)3&a ~o
e ""0, V )

and introduce )),. Equation (113) can then be re-
written in x space as

0001
i'

01 sagn3

which we shall abbreviate as

(118)

m1+ i——iB cr
"' P„x =o.

This equation can be rewritten as

m1+ ' i —+i& i g, x =0. (120)

[Equation (120) is identical to (54b); similarly from (112) one can obtain (54a) or (54 ).] Equation (120)
possesses a local conserved current which suggests coupling to the electromagnetic field by

0 )I 8 . A (x, t) 0 .- A(x, t) 0
(121)

This equation can be changed into A, by a rotation
in stigma space.

It follows then that one may derive either Ay or
A, directly from the Wigner's analysis of the Poin-
car6 group. Such an analysis leads to A, with
stigma space fully explicit.

It is worthwhile to notice that with Eq. (115) we
find

(122)

discuss two other, unsuccessful, attempts to ob-
tain a Poincare-invariant two-component equation
for massive spin- z particles.

First we verify the existence of the one-to-one
map. We shall do this only for the equation with-
out electromagnetic fields. (The derivation with
electromagnetic field is identical, except that the
equations become longer. ")

Let us be explicit. Consider the following trans-
formation [note that it is defined (for free fields)
completely within the Dirac structure, A, ]:

This suggests a one-to-one mapping of our equation
into the Dirac equation. This mapping is the sub-
ject of our next section. The mapping applies also
to the interaction with a general electromagnetic
field ensuring that the results of electrodynam-
ics will be the same for A, as for Dirac's equation.

VI. AN INVERTIBLE MAPPING OF A, ONTO 32

s="p' +
' p

=I'~ +g3P,
where we have the properties

(P,)'=P„P,+P =1,

(123)

(124)
In this section we demonstrate that it is possible

to find an invertible mapping~ of A, -A, that is
both an into and an onto map. This mapping dem-
onstrates the abstract isomorphism of stigma
space with Dirac p space, so far as external elec-
tromagnetic interactions are concerned. After
establishing this mapping we discuss that nonthe-
less there is a difference between A, and A, and
that one should not assert that A, and A, are
"equivalent. " At the end of this section we briefly

=0 (125)

Transforming this equation by S acting on the left-
hand side yields

[P„q,]=0.

Note that S '=S.
Consider the Dirac equation, written in covariant

form:

g=—(pro —ip, o p —m)g
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S80ll gS Sg=(80'IIC} (g)'

=0,

where

S:8 „. „-(8 „}'-=S(p,P, —ip, o.p —m)S.

(126)

(127)

To evaluate the transformed operator in Eq.
(127) it is helpful to divide the work into two parts.

(a) The (p, po —m) part: One easily finds that

S(p,p, —m)s=q, p, P, —m. (128)

(b) The ( ip,-o p) part: This part transforms
very curiously:

S( ip, oP-)S =('-ip2)(P +ri3P„)(o P)S,

using Eq. (123) for S

= (-ip2)(P +rig P, )(P, n3P -)(o P), .
using [q„o p], =0

=(-ip }(2n.p.)( op),

using Eq. (124)

= -'03p3O' 'p ~ (129}

[q„,(P, -o p) ™]q=o, (131)

gchich is now seen to he identical soith the (free-
field) equation for A„Eq. (56').

Thus we have established our claim that there
exists an invertible mapping S: A, -A, . The ex-
plicit form of the mapping S demonstrates, how-
ever, much more: It shows, for example, that
Dirac sPace for A, is mapped onto a tuo-compo-
nent space of externa/ parity for Az. It follows that
there is no physical sense in asserting that "A, and
A, are equivalent" -for Dirac space is certainly
not a parity space. Only in the precise abstract
sense in which all two-dimensional Hilbert spaces
are isomorphic can one assert that -on the basis

Hence we conclude that the desired transformation
On 6Qlfac is

S:8 „-(8 „)'=q, p, (P, op) —-m. (130)

Note now that this transformed operator only in-
volves a single Dirac-sPace operator, p, . Accord-
ingly we may split Eq. (130) into two iwo-compo-
nent equations by taking p, -+1. This miracle oc-
curs only because of the curious transformation
properties detailed in Eq. (129).

Since we do not want to conclude prematurely
that Dirac space (p space) is identical to stigma
space (we will justify this at the end of this sec-
tion), we choose to distinguish the transformed
system of Eq. (130), by relabeling the (diagonal)
operator p, as q, . Accordingly Eq. (130) becomes

of the results just proven-A, and A, are "equiv-
alent. "

Let us consider the transformation S from the
standpoint of symmetry transformations defined on
the Dirac structure. A symmetry of a physical
structure is defined" to be a mapping of the sys-
tem into itself which either preserves all proba-
bility amplitudes or carries all probability ampli-
tudes into their complex conjugates, for each co-
herent subspace separately. We require further-
more that a "symmetry of the Dirac structure"
leave (p) ll) invariant. Poincare transformations,
in particular, are symmetries of the Dirac struc-
ture under this definition.

By contrast, the transformation Sis not a sym-
metry of the Dirac structure

[Proof: The transformation S does not leave the
inner product based on g—= g~p, invariant; in fact,
one sees that

PO ~0 (132)

p c~p

J
(133)

(134}

Kouac =N+ 2ip~o — q~K~ . (135)

[Mappings (132) and (134) are obvious from the
definition of S, but the remaining two mappings
require comment. To establish (133), we note that
g3 has the significance of P. , and hence anticom-
mutes with p. Thus one finds

P-P'=SPS=P(P, r,P }(P,+r)-, P)
= cj p (136)

(upon redefining p, as &,). Similarly the operator
N anticommutes with q, (since N has odd parity)
and hence N- S NS = c, N. Thus one finds (identi-
fying p, as &,) that (135) is correct. ]

This dictionary establishes in complete detail the
validity of the language used in Sec. IV. In parti-
cular, one sees that the (Dirac) parameters d
(spatial displacements) and )l & (boosts) under the
mapping S now acquire the operator &„ explicitly

S:ps —S p,S = ps ps. Q.E.D.]

This result demonstrates moreover that the trans-
formation S carries the inner product for A, into
the inner product for A, [defined in Eq. (63)], and
is accordingly a mapping: S:A, -A~. Because
this mapping preserves commutators, we can con-
clude that the Poincare representations carried by
Ag and A, are isomorphic. "

It is useful at this point to examine the effect of
the mapping S on various operators. We find the
following "dictionary":

A,
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p, =~(p'+ m')"'g. (137b)

This Hamiltonian clearly violates Dirac s require-
ment that p appear linearly in all four compo-
nents -but, of course, such a requirement has no
valid a priori basis. Much more fundamental is
the result stated by Dirac and proven in greater
generality by Sucher~: The square-root equation
cannot be extended to include interactions uithout
losing Lo~entz invaxi ance. This effectively elim-
inates (137b) as a physically meaningful wave
equation. "

verifying the more intuitive arguments of Sec. IV,
which concluded that, for A„ the Poincare param-
eters "8"(=d~, ) and "Xv" (=y6r ,).became parity-
changing operators with respect to q~«(=ri, e,).

It is interesting to add one more operator to our
dictionary. We have already seen that the (A, )
operator p, maps under S into the (A, ) operator

C3g3
This establishes an interesting result: The pari-

ty oPerator for the Dirac equation (q3ps) maPs un

der S into the (Az) oPerator qq.

This remark verifies the statement by Good" to
the same effect. (It is essential, to remark how-

ever, that if p, has a fixed significance, then, 3

and Dirac parity are not transforms under $. See
discussion below. )

We must now justify, in more detail, why we
chose to distinguish stigma space from Dirac p
space -which the mapping S seems to imply are
the same. Our reasoning is based on physical con-
siderations.

Our original aim was to factorize the Kramers
equation, which presupposes that p, (chirality) is
sharp. Thus the factorized system A, can be ex-
tended to sharp chirality. Clearly the original
Dirac structure -for which chirality is not a con-
stant of the motion —can in no sense be equivalent
to the A., structure, which has chirality a constant
of the motion. Expressed in different words, we
have identified the isomorphic "Dirac space" de-
fined by the factorization with a specific physical
space (parity), such that the original Dirac space
(defining chirality) is incorporated in both A, (four-
dimensional) and in A, (eight-dimensional, splitting
over parity and chirality into four two-dimensional
subspaces).

Let us now discuss briefly two other attempts at
either circumventing the requirements underlying
Dirac's factorization or toward obtaining two-
component equations.

Consider first the so-called "square-root"
Hamiltonian, which factorizes Eq. (1) in the form

[p, —(p'+ m')'"][@,+(p'+ m')"'] &=0 (137a)

or

Now consider the Pryce-Foldy-Wouthuysen
(PFW) transformation. ~ Applied to the free Dirac
equation this transformation leads to the result

H~„= ff 'tt = p, (p'+ m')'"g. (138)

This is clearly just a doubling in Dirac space (p
space) of the square-root Hamiltonian.

In the light of the Dirac-Sucher result one must
conclude that —despite the very beautiful analyses
and deep physical insights afforded by the PFW
transformation —it is unacceptable as a two-com-
ponent splitting of Dirac's equation. This conclu-
sion is borne out by the well-known difficulty in

defining a PFW transformation on the Dirac equa-
tion in interaction with general electromagnetic
fields. The Coulomb field problem, in particular,
does not admit of a solvable PFW transformation
(but rather of a series of unlimitedly many approx-
imations). "

By contrast, A, does admit two-component solu-
tions for arbitrary external fields; in particular,
the Coulomb field problem admits of such a two-
component solution, as discussed in Sec. III.

Remark. Before concluding this section it might
be useful to discuss briefly a question that must
surely have arisen: Why do we call A, a two-
component system? If one recalls the theorem
which asserts that every faithful unitary represen-
tation of a connected noncompact semisimple group
(such as 6') is infinite-dimensional, one sees that
even to call the Dirac solutions four-dimensional
must involve some (unstated) convention. The con-
vention is that one chooses to ignore dimension-
ality based on space-time [that is, |t(p) is infinite-
dimensional in the space of p, for example].

It is in precisely this same sense that we call A,
two-dimensional (in spin space), for we have cho-
sen to ignore the dimensionality associated with the
space-time structure carried by parity. This is
not an unusual convention; a scalar function f(x),
for example, may be split into two parts, f '" vs

f~~, but one may —or may not —choose to call
f(x) "one-dimensional. "

Thus we may choose to designate A, as two-
dimensional, meaning thereby that all space-time
structures (p, stigma, chirality) are both sharp
and ignorable. There is a sense in which these
dimensional considerations are not simply a matter
of convention. For example, in neither A, nor A2
can spin space be taken sharp. The Dirac postu-
late for quantum mechanics (the existence of a
complete set of commuting observables) has the
implication that all states can be split by sharp
variables into one-dimensional subspaces. Spin
space is subsumed under J,J, which split into one-
dimensional subspaces. For Dirac space there is
a genuine problem here. This space is related via
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Q (= conjugation) to charge. But conjugation for a.

one-particle theory is nonlinear (antiunitary). It
is necessary to invoke second quantization to ob-
tain a linear unitary operator and a splitting quan-
tum number.

Thus we see that, conventional or not, the ques-
tion of dimensionality does relate to genuine physi-
cal problems.

VII. CONCLUDING REMARKS

The preceding sections have all been directed
toward proving that A, exists and is a genuine al-
ternative to A, Once this has been done success-
fully, then really interesting questions may be con-
sidered: For example, does nature choose to make
any use of A.,? Or again: Which alternative does
the physical electron choose? Because the Kram-
ers equation and g =2 are related, it seems clear
that A.„ if it applies to anything, might apply to
leptons.

In this connection it should be noted that either
of the Kramers equations suffices (by the mapping
of S of Sec. VI) to define a Dirac-like electro-
dynamics (at the one-particle level). Yet the path
to the Kramers equation, by way of the iterated
Dirac equation, clearly introduced a doubling via
p, (chirality).

This strongly suggests that the weak interactions
might play a role in utilizing the freedom afforded

by A, . Parity has all along been a very puzzling
variable; even more so as its role in A, is difficult
to grasp fully. Let us note in particular that the
stigma variable (c,- s), is quite peculiar in that it
seems to imply a kinematic relationship to the
concept of a frame of reference. (For example, a
weak current of sharp stigma could conceivably
interact in a frame fixed by hadrons. )

We mention these speculations only to motivate
the belief that A., may have some interesting appli-
cations in physics.

There are simpler questions, which we intend to
answer in the near future, namely: the role of
g =2 in factorizing Kramers equation; field quanti-
zation; the reflection operations; and the CPT
theorem in the context of A, .
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