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In the scattering of electrically and magnetically charged particles, it is found that, be-
sides the orbital and spin angular momentum of each particle, there is a residual angular
momentum in the electromagnetic field of the in or out scattering states given by M l'~

Q;); piixe" K&, p; pi [(p;.p, ) —p; pi ), where p;&=(4|r) (e&g&-g; e&) and p, , e&, g,.
are the 4-momentum and electric and magnetic charges of the ith particle. Because of the
addition of this M &~ to the generator of Lorentz transformations, the scattering states do
not transform like free-particle states, but the modification has a simple group-theoretical
description. For each pair of particles i and j, M l' generates a one-dimensional repre-
sentation of the little group of the pair of 4-vectors P &, P&. This is the subgroup of the
Lorentz group which leaves both 4-vectors invariant and is isomorphic to the one-parame-
ter group of rotations about the z axis. The problem of constructing scattering amplitudes
satisfying the new kinematics is solved. For two-body decay processes 1 2+3, there
results the selection rule s, + s&+ s3 ( gt, (= (4r) '( et g, —gt e3( relating the spine s; of the
particles to their electric and magnetic charges. Parity- and time-reversal-violating an-
gular distributions are found. For example, in the decay 1—2+3, if particle 1 has spin
one and polarization vector e, and particles 2 and 3 are spinless with @23 =1, the center-
of-mass angular distribution is & ~ &+- e .q e*.q + i e x e + q, where q is the direction of
particle 2. It is found that a consistent Lorentz transformation law requires p,-. to take
on integral or half-integral values, but the usual connection between spin and statistics
further limits p, . to integral values only.

I. INTRODUCTION

Whereas the nonrelativistic charge-pole prob-
lem has been rather thoroughly explored, ' ' the
relativistic quantum field theory of charges and
poles has, in general, received only rather formal
treatment. ' ' In the present note some definite
observable consequences" concerning angular dis-
tributions and a selection rule are extracted from
the relativistic theory.

We evaluate the angular momentum contained in
the electromagnetic field of the in and out asymp-
totic states and obtain a definite nonvanishing in-
teraction angular momentum, above and beyond the
spin and orbital angular momentum of each parti-
cle. This addition to the generator of Lorentz
transformations changes the way scattering states
transform. The new law has a simple group-the-
oretical description, however, which is a natural
extension of Wigner's result" that the spin space
of a particle transforms according to a representa-
tion of the little group of its momentum 4-vector
(the subgroup of the Lorentz group which leaves
the 4-vector invariant). The transformation law
of scattering states includes, for each pair of par-
ticles i and j the (one-dimensional) representation
of the little group of the pair of momentum 4-vec-
tors p, , p,. labeled by it, , =(4v) '(e,g, —g, e&), wher. .e
e; and g; are electric and magnetic charges. "
This is the subgroup of the Lorentz group which

leaves both 4-vectors invariant and is isomorphic
to the one-parameter group of rotations about the
z axis.

The new kinematics leads to definite experimen-
tal predictions, the most striking of which are a
selection rule relating spin and electric and mag-
netic charge, and angular distributions which vio-
late parity and time-reversal invariance.

Let us now outline how the relativistic quantum-
mechanical calculation is done. In the asymptot-
ically distant past and future, wave packets con-
centrated close to p in momentum space move
along straight-line trajectories, lim, ,„x (7)
=(p"/m)T+O(in'). At these times the electromag-
netic field deviates negligibly from its classical
value in regions spatially far away from the tra-
jectories. As we shall see, the angular momentum
(apart from spin and orbital angular momentum)
contained in the electromagnetic field of the as-
ymptotic states in fact lies at spatial distances
x- cT from the trajectories so that the angular
momentum in an asymptotic state may be evaluated
classically. This done in Sec. II. There results a
contribution to the angular momentum tensor" of
in or out states
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This constitutes a relativistic generalization of
the familiar nonrelativistic angular momentum, ' '

r,which, for scattering in or out states of rel-
ative momentum p, becomes X=+ p, P, since
lim, „r(t)= (p/m)t.

To understand the relativistic form consider an
asymptotic state of two particles and let particle
1 be at rest, and let particle 2 have 3-momentum
p. Then (1.1}gives zero Lorentz boost (M" =0)
and an angular momentum S=+ p»P (J; = —,e;,,M'").
The agreement between the relativistic and non-
relativistic expressions is remarkable, because
the angular momentum densities are quite different
in the two cases. However, it is necessary to the
consistency of the quantization condition

p„= (eg, g;e,—)/4v =0, +-,', a1, . . . . (1.2}

We employ two different methods to pass from
the expression for the interaction angular momen-
tum to the Lorentz transformation law. The first
is purely kinematical, relying solely on group
theory, whereas the second is dynamical and re-
lies on the use of Dirac strings. To understand
the first method, again consider a pair of spinless
particles and observe that if particle 1 is at rest
and particle 2 is traveling in the z direction, then
rotations about the z axis leave the momenta in-
variant. These rotations thus constitute the little
group of the pair of 4-vectors. However, because
of the identification of angular momentum with the
generator of rotations, a rotation Q about the z
axis changes the phase of the state by exp(i p»Q),
We obtain a representation of the little group only
if p» takes on one of the quantized values (1.2).
The corresponding representation of the full Poin-
care group is found in Sec. III.

The second, dynamical, method of finding the
transformation law for the asymptotic states is to
introduce vector potentials for the electromagnetic
fields. As usual for magnetic monopoles, these
potentials rely on the artifice of the Dirac string.
The total angular momentum tensor of the asymp-
totic state is obtained by adding (1.1) to the angular
momentum tensor for each particle which is,
apart from spin,

M""= lim g x";[p'; —e;A"(x,) -g;B"(x;)]—(g —v).t~~ i (1.2)

Here A"(x;) and B"(x;) are the vector potentials
produced by the other charged particles in recti-
linear motion in the asymptotic state. This is
evaluated in Sec. IV and the result agrees with the
group-theoretical expression. The arbitrariness
in the choice of the Dirac string is found to coin-
cide with the arbitrary but necessary choice of
phase convention in the group-theoretical method.
Thus, the rather nonintuitive Dirac string is

shown to be identical with the more familiar arbi-
trariness involved in phase conventions of states.

In Sec. V, the previous results are translated
into predictions about scattering and decay pro-
cesses. When a particle at rest decays into a pair
of particles, 1-2+3, the interaction angular mo-
mentum lies along the momentum q of the final
particle. This must be balanced by spin angular
momentum because orbital angular momentum is
perpendicular to q. The selection rule

s, +s, +s, ~ ~p„~ (1 4)

results. Scattering and decay amplitudes for arbi-
trary spin and particle number are constructed
which satisfy the restriction imposed by the trans-
formation law of scattering states. They are not
invariant functions of momentum and polarization
vectors but depend on phase conventions which are
equivalent to a dependence on the direction of the
Dirac string. This dependence is given explicitly.
The resulting cross sections and angular distribu-
tions are invariant functions of momentum and po-
larization vectors which, however, display explicit
parity and time-reversal violation. It is observed
that the normal correction between spin and statis-
tics restricts p. ;,. to integral values. Finally, we
note that the Lorentz transformation law of scat-
tering amplitudes is not crossing-invariant. For
example, if a pair of spinless electrically charged
particles annihilate and produce a spjnless pole-
antipole pair, the amplitude transforms like a
scalar. However, in the crossed channel corre-
sponding to charge-pole scattering it does not.
Readers primarily interested in applications may
turn directly to Sec. V.

II. ELECTROMAGNETIC ANGULAR MOMENTUM

IN THE ASYMPTOTIC STATES

we obtain the Yang-Feldman equations

p —pio, oot + Qret, ado [Spj (Spj ) ] (2.2)

Here F'"'"' are free fields. We are interested in
the retarded and advanced source contributions
which are often assumed to vanish as t-+~, re-
spectively. Consider an asymptotic state made up
of particles of electric and magnetic charge e& and
g, each in a wave-packet state concentrated in mo-
rnentum space around p;, with p =m . For suf-
ficiently large times the wave packets in position
space separate and travel along trajectories given
by

From the Maxwell equations generalized to in-
clude electric and magnetic currents"" j, and j~,

(2.1a)

(2.1b)
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x ",(r;) = (p;/m, )7, + O(in', ) (2.3a)

or

x, (t) = (p, /E&)t+0(lnt}, (2.3b)

so the distance between wave packets diverges
linearly with time

x;(t) —x, (t) —(v, —v, )t+ O(lnt)

for v; = p;/E, . The asymptotic times are such that
the spatial extent of the wave packets is very small
compared to the separation between wave packets.
Consequently, in the region between wave packets,
Eq. (2.2) may be evaluated with the wave packets
replaced by point sources moving uniformly ac-
cording to (2.3). The retarded and advanced po-
tentials are equal for uniform motion and Eq. (2.2)
becomes

M""=lim (x"T" —x'T" }d'x,
|~+ao

(2.5)

with the energy-momentum tensor T""given by

TPII 1 (FPKF tl+ FdPXF 44 ) (2.6a)

locity. Consequently, Eq. (2.4) is exact for mo-
mentum eigenstates.

According to Eq. (2.4) the source contribution
to F vanishes like t ' as expected from dimension-
al considerations. The corresponding energy and
momentum densities which are quadratic in F
vanish like t 4 and extend over a volume of order
t'. So the electromagnetic energy and momentum
(apart from the part which is self-energy and self-
momentum} contributed by the sources vanish like
t '. Their moment however brings in another
power of t, and we thus expect a finite contribution
to the angular momentum tensor,

lim F(x) =F'"'"'(x)+ —~1 ~ e, (xn, u, )-g,.(xnu, }'
t ~moo $ X'Q3 —X

(2.4)

or in matrix notation

T=2(F.F+F .F ) (2.6b)

where u; =P,/m;. The approximation involved in
deriving this expression is to neglect the spreading
of wave packets in space which grows linearly with
time, like Avt, where Av is the uncertainty in ve-

We are only interested in the contribution to T
from the self-fields of the charged particles so
we retain only the second term of Eq. (2.4) and
find"

T = —
2 g, , [(e,e, +g,g,. ). [(.xnu;) ~ (xnu, .) + (xnu;) ~ (xnu, )].

D —[(x,u )2 x2]1/2

+(e;g, -g;e, )[(xnu, )' (xnu, ) —(xnu;) (xnu, .)']j, (2.7)

(2.6)

Here we have dropped the term with i =j since we are not attempting to caclulate self-interactions.
Upon examining this expression for T"', we see that each pair af particles contributes a term propor-

tional to (e;e&+gg, } which is Coulombic, and a term proportional to (e@, -g;e, ) which is the charge-pole
interaction that interests us. The asymptotic Coulombic interaction will be discussed in detail elsewhere.
At present we note only that the Coulombic contribution to M"", Eq. (2.5), must vanish because for each
pair of particles i and j the total contribution to M"' is symmetric in i and j, whereas the only antisym-
metric covariant tensor that can beformed out of u, and u,. isantisymmetric in i and j [i.e. , u, nu, . or (u,.n, uj) ], and
in the Coulombic term this is multiplied by the symmetric coefficient e;e,. +g;g, (Actually, the Coulombic
contribution to the integral (2.5} is ambiguous and depends on the order of integration. ) The charge-pole
contribution to T may be easily rewritten as

T,d=
(

„Q(e;g, -g;e, )[xx (u;nu, )'+x (u;nu, )dx]. (2.9a)

(2.9b)

We thus get for the contribution to the angular momentum tensor from the self-fields of the charged par-
ticles

-t= lim, » (e, gd -g;e, )[x"(e'z„x. u,'u,'. ) -x'(e"~„x u,'u,')]D; 'D, 'd'x.
g~~~ 'L &J

(2.10)

The evaluation of this integral is simplified by noting that the contributions to T,",", from each pair i, j
has vanishing 4-divergence, as is easily verifiedin the form (2.9}. So x"T'" —x'T"' has vanishingdivergence on
the index x, and the value of the integral (2.10) is independent of the surface of integration chosen for each
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pair i j. Let us evaluate the contribution to M /" from a single pair i j, in the frame where u," =(1,0, 0, 0)
and u,"=((I+u~)'", u). In this frame one finds directly that the Lorentz boosts vanish

M&9 =0 (2.11)

(the upper indices are Lorentz indices m, n = 1, 2, 3, the lower indices label a particular particle pair i, j).
For the angular momentum J, J, =-,'c, „M ", one finds

x x (xx u) d'x
(47/)' ' ' ' ' J )X('([t(u +1)'"-x~ u]'-t' +x}'"

The t dependence may be eliminated by making the change of variables

x= ftfx', (2.12)

which gives, after dropping the prime

x x (xxu) d 'x
(2.13)

(4v)' ' ' ' ' (x('([v(P+ I}'/2-x u]'-1+x'}'"
This form for S;, shows the important result that J has finite asymptotic values independent of t, and the
change of variable (2.12} shows that the contribution to S comes from a region with volume -~t~', as argued
above. By symmetry one has that S,/ is parallel to u so

(4w}' ' ' ' ' . lxl'[u'+2(u'+I}"'u. x+(x ~ u)'+x']'"
This integral is easily evaluated in cylindrical coordinates with the result

(2.14)

+Q
S;, = —(e;g, -g;e, ). (2.15}

It is remarkable that this expression is independent of the magnitude of u and agrees with the nonrelativis-
tic value for which the second denominator in Eqs. (2.13) and (2.14) would be ~x —u~'/'. This is necessary
for quantization of p;/

——(e, g,. -g, e/}//(4v}. The expressions (2.11) and (2.15) may be written covariantly,

M; /
=

4 (e;g/ —g;e/)& „y )2 ]3/2r'
~~Q& Q j —1

which is the contribution of each pair of charged particles to M"'. We thus find for an asymptotic state
containing electrically and magnetically charged particles, a net contribution to the angular momentum
tensor from the self-fields of the particles given by

]IV K

Mpv ~ ecEj -g]ej
4v [(u, u, )' -I]'n '

The upper sign holds for in states, the lower for out states.

(2.15)

III. GROUP- THEORETICAL DERIVATION
OF THE TRANSFORMATION LAW

Let us consider an in or out state containing a
pair of charged particles with 4-momenta p, and
P2 and charges (e„g,) and (e„g,), and let the par-
ticles be spinless for the moment. Further, sup-
pose particle 1 is at rest and particle 2 is moving
along the +z axis. We call this the standard con-
figuration for the pair

P, = P', =- m, (1,0, 0, 0),

p, = p,'-=((m, '+ p')'/', 0, 0, p) .

(3.1a)

(3.1b)

Both of these 4-momenta are invariant under rota-
tions around the z axis. In fact this is the largest
subgroup of the Lorentz group which leaves both

[It.(4 )]IPl, P', & (3.2)

The momenta are left invariant, and since by as-
sumption there are no other labels for the state,
the state itself is unchanged, which means the
vector ~P'„P', ) will change at most by a phase fac-
tor. One usually assumes that the scattering state
transforms like the product of free-particle states,

4-vectors invariant; for p', is invariant only under
rotations, and of these, only the rotations about
the z axis leave p,' invariant. Thus, rotations about
the z axis constitute the little group of p', and p,'.

Suppose we apply the operator of rotation through
an angle P about the z axis to an in or out state
with the pair of particles in the standard configu-
ration,
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so that this phase factor is unity. However, ac-
cording to Sec. II, Eq. (2.15), there is an inter-
action angular momentum in this in or out state,
with z component

m»=k p»,
=- (e,g, -g,e,)/4v.

(3.3)

(3.4)

Thus, under the transformation (3.2) the in or out

state must pick up the phase e""»@,

Hence we have

L'(A) IP„P,&
= ~(A, ;o )~(R.(y(P,P„A)))IP'„P,'&,

or by Eq. (3.5}

&(A)IP„P,&=U(A, ;,;}Ipl,pl&exp[2u, .A(P. , P. A}].

This yields the desired transformation law for in

or out states:

U(A)IP„P.&= Ipl, pl&exp[+ }J;.4(p P. A}1

[R.(4}]Ipl, Pl& = s"""'Ipl& (3.5} (3.10)

Pl Pl P2 P2

and apply it to Ip» p, &

(3.8)

U(A}IP„P.& = U(A}IJ(A...,) I pl, P,'&

= II(AA. ..,) IP*„P'.&

Now AA~ ~ is a Lorentz transformation which takes
p1 p', into p,', p,' so it differs from A~.~. at most by1 2
a rotation about the z axis, which may depend on

p,p and A,

This transformation law must be a representa-
tion of the group of rotations around the z axis,
[more precisely of the subgroup of the covering
group, SL(2, C} of the Lorentz group corresponding
to rotations about the z axis], which means that

p. » must be integer or half-integer:

1
p» =—(e,g2-g, e2)/4v =0, + -„+1,. . . .

The charge quantization condition is thus necessary
for a consistent transformation law of the scatter-
ing states.

Besides yielding the quantization condition, the
relation (3.5} also determines the transformation
law of an arbitrary configuration under an arbi-
trary Lorentz transformation. This depends on
phase conventions for the states Ip,p, & which we
determine as follows. The argument occurs in de-
riving the transformation law of single-particle
states. ' Let A» be a Lorentz transformation

@102
which brings the standard configuration p'„p', into
the configuration pj p2.'

Pl 42&&2 Pl& P2 2g22 P2 ' (3.6)

Obviously, A» is indeterminate to within a right-
1

factor of rotation about the z axis, and the phase
convention consists in some arbitrary but definite
choice of A» . (We will specify a particular
choice later. )

The phase of the state Ip„p,) is specified by

Ip„p.&
= U(A2, & ) IP'„P.&. (3.7)

Now consider an arbitrary Lorentz transformation
A which takes p1 p2 into p1 p,',

-
I

' ' '» ' "», " &exp +2Z ~i;4 (P;,P, , A)

(3.12)
The Lorentz transformation law of the in or out

states is completely specified by Eq. (3.12). In

order to make use of this formula, however, it is
necessary to obtain a more explicit formula for Q
than (3.11}. The Lorentz transformation corre-
sponding to rotation by Q about the z axis is given

by

,„(l 0 0 0
cosQ -sing 0
sing cosj 0
0 0 1

so from Eq. (3.11) we have in terms of matrix ele-
ments

cos=&P[ A2 'AA2, 2 ] 2,

sin&P =[A2&2 'AA2 2 ] „
where we have suppressed the argument of
&P(P„P„A). More explicitly, using A '=gA'g, we
have

cos&P =g„,(A, )',g"A", (A 2 )"„

sin&P =g„,(A, )',g A"„(A, 2 )",.

(3.13a)

(3.13b)

Thus to obtain &P we need (A 2,)"2 and (A» )",.
Let us now determine a convention for A» .P yP2

From Eq. (3.6}we have

p," = (A2,, )",m,

and

p," =(A, , )",(m, '+p')'"+(A. ..,)",p,

with the phase angle &P determined by Eq. (3.9},

R,( &P(P„P„A))= A2 2
'AA (3.11)

This transformation law clearly satisfies the group
property as well as its obvious generalization to
an arbitrary number of particles,

U(A)I".P " P" &

AA2, 2 =A2 2 R,($(P,&P2, A)) . (3.9) or
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(A...,)",= p,"/m„ (3.14a) sin&p( p„p„A)

(A )P — [(p .p )2 p 2p 2]-1/2 m|p, —Pl P2pl

(3.14b)

e"(p„p„n)
l~(P„P„n)l ' (3.15a)

and A, is now determined up to sign, which is
fixed by requiring IA» I=1,

v K A/

[(p .P.}' P, 'P, ']'"-I e(p„p., n) I

Equation (3.13a,) then gives for cosP,

cos&P =-(A, , )', (A ')P, g~„(A» )",

e'(p,', p,', n)» j(p» p„n)
l&(p'„P,', n} ' l&(p„p„n)l '

I

or, using A ' (ep'„p,', n)=e(A 'p'„A 'p, ', A 'n)
= e(P„P„A 'n), we get

.(P„P., A 'n) e(P„P., n)

(3.16a)
Similarly, from Eqs. (3.13b) and (3.15b) we get

sin&P ( P„P„A)

e(P„P., A-'n) e(P„P., e(PP.n))
l~(P„P„A-'n)l [(p, p,}'-p,'p, ']'~'le(p, p,n)l

'

(3.16b)

The columns of A"„are orthonormal 4-vectors, so
A", and A", are orthogonal to P, and P, . The arbi-
trariness in A» which is a factor of right multi-
plication by a rotation about the z axis results in
an arbitrary recombination of A", and A",. We fix
this arbitrariness in A» by requiring that A, be

1 2
orthogonal to a fixed 4-vector n. In this case A",
is orthogonal to p„p2 and n and may be written"

and

e "(p„p„e(p„p„n))
[(P, P,)' P,'P, '-]"le(P„P„n)l

(3.17)

are a pair of unit orthonormal vectors in the two-
dimensional space orthogonal to p, and p2. Any
change in n, in particular from n to A 'n, leaves
the vectors (3.17) orthonormal in this two-dimen-
sional space, so it produces at most a rotation of
the vectors (3.17) through some angle &P, with

cos&P and sin&P given by Eqs. (3.16).
Our formulas for &p(P„P„A) correspond to a

particular choice of A ~ . The most general choice
1 2

of A ~ differs from the one we have given by
right multiplication of a rotation about the z axis
through some angle y depending on p, and p„

(3.18)Aq p =Aq q R,(X(P» P, )) .

From Eq. (3.11), we see immediately that the most
general form of P is given by

4(P„P„A)-4(p„p., A)+X(P„P,) —X(AP„AP,}.
(3.19)

Let us now find the form of the generators of
Lorentz transformations. This will allow us in Sec.
IV to make contact with dynamical theory, for the
generators correspond to physical observables.
The transformation law (3.10) for in or out momen-
tum eigenstates

fJ(A) IP„P.&
=

I AP„AP, & exp[*f u„t(P„P., A)],
(3.20)

leads to the transformation law for wave functions

e(p„p. , n, A-'n)[(p, P.)'-p, 'p. ']'"
le(P„P„A-4)l le(P„P„n)l

(3.16c)
These formulas are easily understood by observing
that

e"(p„p„n}
le(P„P„n)l

ff(A) f(p„p,)IP„P,& 2E
'

2E' =
J f(P„P.)IAP„AP2&exp[*&u„e(P„P„A)]

2

ol

f (A 'p„A 'p, ) exp[*i u-„&p(A -P„A P„A)]I p„p,)
4

f(p„p,)-f.(p„p,}=f(A 'P„A 'P. ) exp[~iu-, .e(A 'P„A 'P. , A)].
- (3.21)

Now let A be an infinitesimal Lorentz transformation

A" =g" + 0"

where 0 " is an infinitesimal antisymmetric matrix. The form of the Lorentz generators M„„ is deter-
mined by

fA(p, & P.) f(P„P.) = k f&""Mu-„f( P„P.), (3.22)
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to first order in Q. From Eq. (3.16c), we get

"n Q" n"
p(A lp A lp A} &x&vpl p2 v [(p, p )2 p 2p 2]l/2

-"(p p n) 1 2 1 2

so we may write

Q(A 'P„A 'P, A) = 20""Q„„(P„P,),
with

[(p, p )2 p 2p 2]l/2

y„, (p„p2) =[n„e„(p„p„n)-n„e„(p„p„»)]
p„p2, n

The most general infinitesimal form of Q is found from Eq. (3.19),

a 8 8 a
42v (pli p2) p2v (pit p2) P12 S v plv S 2 p2$ S~v p2v S*ll X(pli p2}i

1 1

(3.23}

(3.24)

(3.25)

where X(p„p,) is assumed to be differentiable. 2' It is natural to restrict X(p„p2) to be antisymmetric in

p, and p„since the original expression (3.24} is.
Combining Eqs. (3.21) and (3.24), we obtain

Mj v=M2v+ Vl2/t/vv(P»P2)~
f

with

(3.26)

a 8 8 8
P1]I ppf' P1I/ ppP P2P ppfj P2I/ ppP

(3.2 I)

In order to make the physical meaning of this formula more transparent, we write it out explicitly in ma-
trix notation, so as not to be burdened by indices,

M=K P.A —+p2A *I,. nAC p„p„n ', ' ' ' -p.hb— p. p. -p.he p, p. . 328

The generalization to an arbitrary number of particles is clearly

(3.29)[(p .p )2 p 2p 2]l/2
M=+ p, /i —+g il, / nne(p, , p/, n) '2, ' ', / — p, n +p//l X(p, , p/)

The first term is the Lorentz generator for free particles. The second term, proportional to ~p.», is an
additional contribution from the charge-pole interaction to the Lorentz generators for in or out states. In
Sec. IV we will derive this form of M„, from a specific dynamical theory involving electromagnetic poten-
tials depending on a Dirac string. The arbitrary fixed vector n which appears in M„„as a result of choos-
ing phases of states will turn out to be the direction of the Dirac string. The arbitrariness in M„„, due to
the appearance of the arbitrary X(p„p,), which expresses the freedom in the choice of the phases, will
turn out to correspond to the gauge freedom of the electromagnetic potential.

IV. DERIVATION OF THE TRANSFORMATION LAW USING THE DIRAC STRING

In a classical theory the orbital angular momentum of a set of particles is given by

„„L=gm;( xu, , —x;„u,„) (4.1a)

Or 19

L =pm;x;nu;, (4.1b}

where u; is the 4-velocity u, '=1. If the particles are in an asymptotic state and carry charges e&,g; then
to this should be added the angular momentum carried in the electromagnetic field, Eq. (2.16}, and we get
for the total angular momentum in an in (out) state,

(u, gu, .)

S i&g y)
(4.2)

To pass to the quantum theory of electric and magnetic charges, we use the formalism developed in the
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last reference of Ref. 14. Basically the transition is made by the substitution

m, u",. -P"; —e;A "(x,) g,—B"(x,), (4 3)

where A"(x) and B"(x) are 4-potentials described below. The meaning of asymptotic states is that at as-
ymptotic times the dynamical variables have their free-particle Heisenberg representation. Thus at asym-
ptotic times, when acting on the in or out asymptotic states ~p„p„. . . ), p, is the operator of multiplication

by

p,"(E;,p.;)=((m +p )'",p, )

and x"; is represented by

(4.4a}

x,. = t, —i V, . + —' t = P", t Z, + 0, —s V',
S

(4.4b)

(There are actually Coulombic terms of order lnt, which do not concern us here. ) The potentials are of
order l /t at asymptotic times, as we shall verify below, so Eq. (4.3) may be written

M=~ p;/i ——lim —p;/[e;A;(p;t/E;)+g;B(p;t/E;)]
a . t (p/p)'

~Pp )~zoo ~f &&j Pf Pj Pf Pj

To obtain the asymptotic form of M, all we need are the potentials A(x;) and B(x;}corresponding to the
fields produced by the other charged particles given in Eq. (2.4),

(4.5)

(p;/ p, )' (4.5)
j)j (pj pj pl pj

On making the substitutions (4.4a) and (4.4b}, we find, on dropping terms that vanish like 1/t, for the angu-

lar momentum tensor

(4.Sa)

4m ~ [(x u,.}'-x,']'"
where u,. = p, /m, , which is accurate to the order considered. The potentials A(x;) and B(x;) are defined by'4

F(x,)=a,.&A(x.,) (n ~ a) '(n/ j,), -
F'(x;) =a;&B, +(n a) '(nn j,)'.

Here j, and j, are the electric and magnetic currents and (n ~ a) is an integral operator with kernel
(n ~ a) '(x —y) given by

(4.Sb)

(n a) '(x) = — f 5'(x —ns)e(s) ds,2J (4 9)

where n is a unit spacelike 4-vector, n'= —1. The support' of (n ~ a} '(x) is on the Dirac string x=ns, -~
& s&~. According to Eq. (4.7), F is a sum of separate contributions from electric and magnetic sources,

F=F,+F, .

Correspondingly, let us put

A(x, ) =A, (x;)+A (x;),

with A, (x) the usual

(4.10)

(4.11)

8 Qj
e( j) g [(x u )2 x 2]1/2

By contracting Eq. (4.8a) with n, we get

n. F,(x;)=n ~ a;A, (x;) —a,n A, (x;).

By imposing the axial-gauge condition

n. A (x;) =0,

we find

A, (x;) =(n ~ a,. ) 'n F,(x;)

(4.12)

(4.13)

(4.14)

(4.15}
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or, from Eq. (4.7), '9

1 ~ "
e(s) e"(n, x, —ns, u, )

4m ~ ' „2 ([(x, —ns) u, ]'-(x, —ns)')'~ ' (4.18)

Evaluation of this integral is easily done by aligning the third axis along n, n = (0, 0, 0, 1), which yields

4v ' [(x u )'-x ']'"e'(n x u. )

One easily verifies that this expression for A, (x;}satisfies

(n ~ s)A,"(x;)=—Z g/ 2 2 3/2 n F (x;) ~

1 x e"(n, x„u,)
4m ~ x, u, '-x, '

Hence we have for the total vector potential A",

47T j«[&xi ~
Q&& n, X, , ujj j«

(4.17)

(4.18a)

and similarly for B"

e" (n, x;, u,.}[n x; nu, -u, x, ]
I( . )2 .211/2 g/ "/ -e/ ' "

2/ .
'

)
' ' ' +el ~ e/A(' u/)

4& j«[4&; Njj —&; ] fRy X;y Qj) j hei

(4.18b)

Here we have added possible gauge terms which are of the general form of the string-dependent contribu-
tion and which correspond to different directions n or more generally different paths of the string, in Eqs.
(4.8). Finally, we require the potentials only for xO' =lim, ,„p~t/E;,

e" (n, f;,I,)['I;I;-'p, f, I;]
i&i 4s ~ [(p'p)' p'p']'" -' ' ' "(n I I )

E; 8 1

I ~I ~p;„4 (4.19a)

E- 8 1

/t/ BP'u 4~ j
(4.19b)

which is of order I/t as advertised. The gauge term was assumed to have the same asymptotic behavior
as the principal term.

These expressions may be used to find the form of the angular momentum operator acting on in or out
asymptotic states From .Eq. (4.6), we find, with l/, ,/= (eg/ g, e/)/4s-,

, s g p, /, e(n, p, , p/)[n p, p/' n p, p,. p,.].
(I; P, )'""(n,f;,P, )

p p
p p (4.20)

The first term is the angular momentum tensor for free particles. The second arises from the
-Qx;/, [e;A(x,}+g,B(x,)] contribution and depends explicitly on the directions n of the Dirac string, Eq.(4.9). The third gives the change in Mdue to a gauge transformation The last te. rm is the angular momen-
tum in the asymptotic electromagnetic fields, as calculated in Sec. II.

We must now compare this expression for M derived using string dependent potentials with the expres-
sions for Mderived group theoretically in Sec. III, Eq. (3.29). The two expressions are found to agree up-
on making use of the identity"

1n/ e(p, ,p„n)= [, , (
~2- ( A O(p,e, p„)[ npnp/' —p, p/n p, ]

+ P/A e ( P, , P/, n) [n ~
p/ p, ' —p, ~

p/ n .P, ] + (p, A p/) e (p, , P/, n) ), (4.21)
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which shows that the second term of (3.29) is the

sum of the gx, *Ie, A(x,.) +g; B(x;)] contribution
from the particles plus the angular momentum of
the asymptotic electromagnetic field. Finally, the

gauge term is found to be identical with the phase
arbitrariness upon identifying

A(p;, p, ) =x(p;, p, ) = A(p„-p;), (4.22)

so X and A must be equal antisymmetric functions.
The group-theoretical calculation is very well
founded and must be regarded as giving support to
the string method which is a Priori physically less
compelling, though more general. Within the con-
text of the present calculation we see in fact that
the string method amounts to no more than choos-
ing an axis of quantization.

The method of Sec. III assures us that the M„,
we have found are a representation of the Lie alge-
bra of the Poincare group. It also shows that, pro-
vided p, ;,. = (e;g, g;e, }/—4v takes on integral or half-
integral values, the representation of the Lie alge-
bra integrates to a representation of the finite
(covering group of the) Poincare group. It is some-
what surprising to find half-integral quantization
here because the string function we have used, Eq.
(4.9), is antisymmetric, corresponding to a pair
of semi-infinite solenoids each bringing in half the
unit flux. Physically, one expects the solenoid to
be unobservable only when it carries a full unit
flux. '" By choosing the antisymmetric string func-
tion one would expect to obtain only integral quan-
tization, as has been argued in the field-theoretic
case."' However, our result shows that half-in-
tegral quantization provides a consistent transfor-
mation law for the asymptotic states. This may be
related to the possibility of making a gauge trans-
formation from a semi-infinite solenoid (n ~ s) (x)
= f" e(s)5 (x —ns) ds, to the antisymmetric form,
(4.9), (n ~ 8} '(x) = ,'f e(s)5—'(x—ns}ds. In Sec. V
we will find, however, that half-integral quantiza-
tion leads to an abnormal connection between spin
and statistics.

V. APPLICATION TO CHARGE-POLE
REACTIONS

In this section we will find a selection rule and

angular distributions which follow from our expres-
sions for the angular momentum and transforma-
tion law of scattering states. Consider first the

decay of a state at rest with momentum p,
= (m„0, 0, 0) into a pair of particles with momenta

p2 and p3,

p, =((m.'+q )'", -q),

p, =((m, '+~q)'", q).
(5.1)

In Sec. II the angular momentum in the electromag-
netic field was calculated, Eq. (2.16), and gives
for these momenta

J, =~a, M = pq, M" =0. (5.2)

If we balance angular momentum along q, we ob-
serve that the electromagnetic contribution p.23q

must be balanced by spin angular momentum be-
cause the orbital angular momentum is perpen-
dicular to q. Thus, if S, (i=1, 2, 3) are the spin
operators for each particle participating in the de-
cay, S, ~ S, = s, (s, + 1), we have from conservation
of angular momentum along q

q ~ S, =q S, +q S, +~». (5.3)

This immediately yields the selection rule

s, +s, +s, o-
I p, „I= I(e,g, —ge, )/4vI . (5.4)

Because electric and magnetic charge are sepa-
rately conserved (e„g,) = (e„g,) +(e„g,), we have

23 p ]3 p 2y so this selection rule relates the
three particles symmetrically. Such a selection
rule relating spins and coupling constants is pecu-
liar to charge-pole theory. For example, it for-
bids a spinless dyon" from decaying into a pair of
spinless dyons, an otherwise allowed reaction.

To calculate angular distributions we must trans-
late the transformation law of the in and out states
into a condition on the scattering amplitude. For
the scattering matrix we use the notation

s(".p " p ' .p .p )=( p . . .p out ~ ~ ~, ~ ~ ~ ~ ~ ~ in
f g & i j f Pt Pj (5 5)

where i,j, . .. labels incoming particles and f,g, . .. labels outgoing particles. The Lorentz transforma-
tion law for in and out states, Eq. (3.12), yields the Lorentz transformation law for the S matrix (omitting
the dots):

s( pi ~ p, i p; ~ pi) =
& pj pg'"'I U (A) U(A) I p&, pg'")

=«p„f p,'"'IAp;, Ap, '") e~ iZ p. „e(p,, p, , A)+iZ I „e(~„p„A)

or

s(ApI, Ap, ;Ap, , np, )=s(p&, p;, p, , p, ) exp iQ p, & -(4p, , , ,p)A- Qip.„y(p, , p„A)
i&j f&f

(5.6)
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with ip(p, , pi, A) given explicitly in Eqs. (3.16). Here the sum extends separately over pairs of particles in

the initial state and pairs in the final state, so the transformation law is not crossing symmetric. The
above transformation law is written for spinless particles. Otherwise the spin index for a particle of spin
s and momentum p would be multiplied by a factor of 3)'(A2. '

AA ), as usual.
We must now construct a scattering amplitude which satisfies condition (5.6). To do this we will make

use of the 4-vector"

e2(P P n) ~
'

(Pilpul&

e(pitpJln))

iy fy
I e(P, , P„n) I

which possess two remarkable properties:

a', (Ap, , Ap, , n) =A"„a,"(p, , p„A-'n)

= A"„a,"(p„p1,n) exp[+iip(p;, p„A)]

(5.V}

(5.8a)

(5.8b)

, p, P, (p!.p,"+p,"p!) p;p! p-;" pp12-P; „jt 1! k il 17 g2ll (p p )2 p2p 2 [(p p )2 p 2p 2]1/2' (5.9)

The first property will allow us to construct am-
plitudes satisfying the correct transformation
laws, and the second property shows that the cor-
responding cross sections are independent of the
direction n. Equation (5.8a) is obvious, and Eq.
(5.8b) is a consequence of the argument which fol-
lows Eq. (3.17), or it may be proved directly as
follows. We denote the Lorentz transformation
defined in Eqs. (3.14) and (3.15) by A(pi, r, p, , n),
and recall that Q(p, , p&, A) is defined by

A '(p', , p,', n)AA-(p, , p, , n) =R.(Q(p, , p, , A)),

with p';=Ap;, p,'. =Apf, so

AA( p, , p„n) = A( p,', p,', n)R.(y(p, ,p„A)) .
From its definition, Eqs. (3.14} and (3.15),
A(p, , pi, n) satisfies the identity

The real part is obtained from Eqs. (3.14) and the
imaginary part is easily found by observing that it
is an antisymmetric tensor orthogonal to p,. and pf
and hence proportional to c"'„),p,". p, This estab-
lishes Eq. (5.9)

To describe a decay process 1-2+3, with py
= p2+ p„ that satisfies the transformation law (5.6},
with p» integer p»-—+~i1»~ contract the vector
a,"(p2, p2, n)

~ I1»( times. Since a", (p2, p,n) is or-
thogonal to p„p„p, and to itself, it must be con-
tracted with spin vectors, which accords with the
selection rule (5.4}. For example, suppose l1»= 1

and one of the particles has spin 1 with polariza-
tion vector e and the others are spinless, then the
unique decay amplitude is

A(p,', p,', n) = AA( p, , p, , A-'n), f;e ~ a (p2, p2, n) (5.12)

so we find

A(p, , p„n) = A(pirp„A-' )Rn.(y(p, , p„n))
(5.10}

However, according to Eqs. (5.7) and (3.15),
a(p, , p&, n) and A(p, , p&, n) are related by

a,"(p, ,p„n) = +i[A",(p, , p„n) +iA"2( p;, p„n)] .

{5.11)
Equation (5.8b) is then established by writing out
the matrix multiplication appearing in Eq. (5.10)
in terms of components. To prove Eq. (5.9}we
observe that by Eq. (5.8) the left-hand side is a
covariant tensor function of p, and p, , so it is in-
dependent of n and may be evaluated in any frame
with any n. A quick way to find it is provided by
Eq. (5.11), which gives (with the arguments sup-
pressed)

a", a",'=A",A", +A",A" +i(A" A" -A" A" )

Cy a (P., P„n), (5.13)

where y" are the Dirac matrices. [The amplitude
y'y ~ a (p„p„n) may be eliminated using the Dirac
equation and a (p„p„n)=a (p„p„n) = a (p„p„n)
if necessary. ] Finally, for an example with I1 = 2.
let two of the particles be spin- —,

' Dirac particles,
and let the third have spin 1. The unique decay
amplitude is then

Cy ~ a (p„p„n)e ~ a ( p2, p„n) (5.14)

The general case may be treated systematically by
using a covariant spinorial basis in spin space"
and combining spins into a total spin s. The decay
amplitude using an undotted representation is then
a sum of terms of the form

If p.»=l and two particles have spin & and are rep-
resented by Dirac spinors while the third is spin-
less, the unique decay amplitude is
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(5.15)

followed by a Lorentz transformation along the z
axis going from the rest frame of particle 2 to the

F'.(P„P,) = c,a"„[A(P„P„n)].
In the center-of-mass frame Eq. (5.1) the Lorentz
transformation A(p„p„n), Eqs. (3.14) and (3.15),
may be written as the product of a rotation R(q, n),
where n" =(n', n) and R(q, n) has the columns

A A A

(5.is)
lqxnl ' 2 qxn

center-of-mass frame. The effect of this Lorentz
transformation may be absorbed in the definition
of c„so the decay amplitude (5.15) becomes

F'(q) = c,3)' „[R(q,n)]. (5.17)

The dependence on p,~ of the angular distribu-
tion is very striking. It yields strong parity viola-
tion. For example, the angular distribution cor-
responding to (5.12} is, according to Eq. (5.9),

I
cl'I & ' (P P-

p2 ' PS(e ' P2e P3+e ' P3e '
pm) p2 e ' P3E P3 p3 s pme ' p2) . EKXUllf e P2 P3

(p, p.}'-p.'p. ' [(p, p )2 p 2p 2]1/2

(5.18}
The n dependence has disappeared and the distribution is a characteristic sum of scalar and pseudoscalar.
In the center-of-mass frame, Eq. (5.1}, with e =(0, 7), this is easily evaluated replacing p, by p, =(m„0)
[because a (p„p„n) = a (p„p„n)] which gives

f(q}= IcI (7 7* —7 qZ+ q —ifxe+ q).
If the initial spin state is upward e =2 '"(1,i, 0), the resulting angular distribution

f(cos8) = IcI'-,'(1 —cos8)'

(5.19)

(5.20)

shows strong up-down asymmetry, with particle 3 emitted preferentially antiparallel to the spin. The am-
plitude (5.12) is also time-reversal violating, "both violations already occurring at the classical level. The
theory of charges and poles thus provides a very natural mechanism for observed parity and time-reversal
violating decays.

So far we have discussed two-~dy decay where the results are most striking because, apart from multi-
plicative constants, the amplitudes are determined kinematically. For other processes, where there are
more than two linearly independent momentum 4-vectors, it is easy to construct amplitudes satisfying the
transformation law (5.6). Suppose p; and p, are a pair of momentum vectors and let p, , be any 4-vector
which is linearly independent of P, and P&. The phase factor

exp[ +I 8(P P P )]
— Pl(J t( Pl Pi Pj If )

ip;, a,(P;,P„n)i
obviously satisfies

exp[+i 8(Ap;, Ap~, Ap;, )] = exp[+i 8( p, ,p„p;,) ] exp[+i&( p;, p„A}],

(5.2i)

(5.22}

(5.24a)

so the most general amplitude satisfying the transformation law (5.6} may be expressed as

S(p„p, ;p, , p,.) = S,(p„p,; p, , p, )exp iQ p;, 8(-p, , p„,p, ,) -i g q«8(p„p„p„) (5.23)
f&s

Here S, has the ordinary transformation law for amplitudes in the absence of charge-pole pairs. For ex-
ample, in the case of spinless particles it is an invariant function of the momenta. The cross section is
given by IS, I' and is independent of n, in agreement with the classical argument presented in the introduc-
tion. However, the motion of wave packets, both for scattering and decay processes depends on a phase
which is the azimuthal angle in the plane perpendicular to pt and pz, measured by convention from the pro-
jection of n in this plane. Partial-wave expansions make use of the vertex amplitudes (5.15) or (5.16). For
example, the amplitude for the scattering of spinless particles 1+2-3+4 has the expansion

S(P„P„P„P,) =g (2j + 1)a, (s)S)J' „[A '( P„P„n)A(P„P„n)],

which in the center-of-mass frame becomes

S(q', q) P(2j+ 1)=(as)Z'„„[ R'(q', n)R(q, n)] . (5.24b)
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Finally, 1st us consider the question of whether half-integral quantization of p, , = (e; g, —g;e, )/4x is
allowed within the simple kinematic framework presented here. The Lorentz transformation laws require
that these parameters be integral or half-integral. However, half-integral quantization contradicts the
generally accepted connection between spin and statistics. To see this consider the amplitude which de-
scribes the simultaneous decay of particle 1 into 2 and 3 and 1' into 2' and 3', where 1 and 1', 2 and 2',
and 3 and 3 are identical particles. Further suppose, to be definite, that particles of type 2 and 3 have
integral spin and obey normal Bose statistics. The decay amplitude for the simultaneous decay process,
with particles 1 and 1' in the same spin state is of the form

[5'(P, P. ——P, )5'(P', P,' -P,')+5-'(P, P,'-P—l)5'(P', P. P-.)]—
x F(p„p,)F(p,', p,') exp( tp„[e-(p„p,', p) + e(p„p„p)] f

+ [5'(p, —p,'- p, )5'( p,'- p, p,')+5—'(P, -P, -Pl) 5'(Pl Pl —P-, )]

x F(p,', p, )F(p„p,') exp[-t u „[~(P2, P& P) + S(p.' P3 P)] )

(5.25)

where p may be chosen to be p, +p,'+ p, +p,'. This is obtained by taking the product of amplitudes F(p„p,)
x F(p,', p,') of the type (5.15) as expected, multiplying by the phases (5.21) of the 2-3' and 2'-3 pairs, and
symmetrizing on 2-2' and 3-3'. The resulting amplitude is symmetric on interchange of particles 1 and
1', so we see that, as usual, if a particle decays into bosons, it must itself obey Bose statistics. Qn the
other hand, if particles 2 and 3 have integral spin, by angular momentum conservation, particle 1 will
have integral or half-integral spin accordingly as p» is integral or half-integral. Hence, in order to
maintain the usual connection between spin and statistics for particles of type 1, we must have p.» integer.
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