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full three-body kernels instead of from the subsystem
operators only. To find such terms in a reasonable
way, however, is evidently very complicated.

Here, we assume that the full potential V is given as
the sum of the three two-particle potentials V: V
= Q& V& . A slight generalization of the formalism
allows us to incorporate also three-particle potentials.

~8The normalization of q ~ is chosen such that q ~2

represents the kinetic energy of the two colliding bodies

in the over-all c.m. system.
27%hen replacing the right-hand side of (A13) by

, ~th an arbitrary constant R„., the

residue of (-L n)nm at z = Ear becomes 6nr nr ~rm.

We then have to renormalize the transition amplitude

Ts„~~ by a factor RB„R~ 2, in order to get the
conventional normalization.

The proof is given in Appendix A of Ref. 10.
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Quantized flux has provided an interesting model for muons and for electrons: One closed
flux loop of the form of a magnetic dipole field line is assumed to adopt alternative forms
which are superposed with complex probability amplitudes to define the magnetic field of a
source lepton. The spinning of that loop with an angular velocity equal to the Zitterbesoegung

frequency 2mc /h implies an electric Coulomb field, (negative) positive, depending on (anti)

parallelism of magnetic moment and spin. The model implies CP invariance. A quark may

be represented by a quantized flux loop if interlinked with another loop in the case of a me-
son, with two other loops in the case of a baryon. Because of the link, their spinning is very
different from that of a single loop (lepton), The concept of a single quark does not exist ac-
cordingly, and it is seen that a baryon with a symmetric spin-isospin function in the SU(2)

&& SU(3) quark representation might not violate the Pauli principle because the wave function
representing the relative position of linked loops may be chosen antisymmetric. Weak inter-
actions may be understood to occur when the flux loops involved in the interaction have to
cross over themselves or over each other. Strangeness is readily interpreted in terms of
the trefoil character of a A. quark: Strangeness-violating interactions imply crossing of flux
lines and are thus weak and parity-nonconserving. b8 =bQ is favored in such interactions.
Intrinsic symmetries may be interpreted in terms of topology of linked loops. Sections I
and II give a short resume of the 1971 paper.

I. INTRODUCf ION

In recent years, several attempts have been
made to move from an abstract description of
quarks [successfully achieved in terms of the
SU(3) and SU(6) symmetries] to a more specific
model which might relate the internal and the ex-
ternal symmetries. In this connection the question
has arisen whether magnetic monopoles can be
considered as the physical counterparts to the for-
mal definition of quarks. To extend this type of
approach to a more conservative viewpoint, the
obvious suggestion has been made that a quark
may be considered as a closed quantized flux loop
if interlinked with other flux loops. To verify the
details of such a model, the known classifications
of particles have been discussed in terms of the
topological structure of linked quantized flux loops.

In our previous work we succeeded in formulat-
ing a charged-lepton theory (i.e., a muon or an

electron) in terms of quantized flux. It was pro-
posed that the lepton's magnetic field may be rep-
resented by the superposition of alternative forms
which a quantized flux loop may adopt. These al-
ternative loopforms should be superimposed with
complex probability amplitudes in a manner simi-
lar to the superposition of alternative path histo-
ries in Feynman's space-time approach to quan-
tum mechanics. With the appropriate choice of
the spatial distribution of these complex ampli-
tudes, the magnetic fieM of a muon-magneton or
a Bohr-magneton source may be reconstructed.
Furthermore, the electric Coulomb field has been
shown to result from the spinning of the loop. In
our previous work we have also made a quantitative
proposal to explain the relation between the charge
e of the electron and the Planck constant h.

To move from this heuristic to a more familiar
and concise formulation of the theory, the prob-
ability-amplitude distributions of manifolds of
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loopforms are expressed in terms of a wave equa-
tion for these amplitudes (cf. the Appendix of the
present paper). It has, however, been found that
the preceding heuristic formulation of the theory
and the analysis of its consistency' were essential
in anticipating a more sophisticated formulation.

In the present paper we have proposed a top-
ological configuration of the linked quantized flux
loops to represent mesons and baryons. Mesons
and baryons are represented by two and three in-
terlinked quantized flux loops, respectively. We
should note that the manifold of infinitely many
loopforms of this type (defining a fibration of
space) is needed for a full description of the par-
ticle. The superposition of this manifold, weighted
appropriately with complex probability amplitudes,
defines the internal structure of the particle.

Topologically these loops may be characterized
by their winding numbers about the circular and
about the straight axis (Sec. III, Figs. 1-5}; they
are assumed to be of the type of torus knots to
avoid unnecessary singularities, and to permit
independent spinning of the different quarks which
make up a particle. The loop-antiloop (quark-
antiquark) dichotomy is assumed to correspond to
left-handedness-right-handedness which in the
case of a neutrino or in the case of a A, quark im-
plies the forms of left-handed-right-handed tre-

l. 25ro = core radius;

2=r/

FIG. 1. Spinning-top model (spinning about a straight
axis and a circular axis), referring to a muon or an elec-
tron. The figure shows alternative loopforms {magnetic
flux lines) of an extended source corresponding to a
spherically symmetric Gaussian distribution of polariza-
tion in g direction. The variance of the distribution is de-
noted by t(}, the core radius is chosen so as to go through
the circular axis of the magnetic field which is located at
1,23t 0 for the Gaussian distribution. The total amount of
flux is subdivided into 10 equal sheaves by the nine to-
roidal surfaces (which in the figure look like flux lines) .
This extended source model is supposed to visualize the
quasinonlocal nature of a "single-particle" source, im-
plied by the Pryce- Tani-Foldy-Wouthuysen transforma-
tion.

foils.
We assume that reactions which imply a loop

crossing over itself, or over the loop with which

it, interacts, is slow (a weak process). Strange-
ness may therefore be interpreted in terms of
left- or right-handedness of the trefoil (X) knot.
The reason for this is that two mirror-related
trefoils may readily annihilate without flux-loop
crossings.

Due to the topological constraints, the spinning
of interlinked loops differs very much from that of
free loops. Consequently the unlinkage of a quark
(conditional to conservation laws) is not considered
to lead to a "free quark" but to a lepton.

It was shown earlier' that the spinning of loops
implies an electric potential by the very same as-
sumption which defined flux in the first place. The
signature of equivalent charge depends on paral-
lelism (+}or antiparallelism (-) of magnetic mo-
ment and spin.

The quark loops are assumed to spin about both
the circular and about the straight axes with the
same angular velocity 2m, c'/5, in a left-handed
spin for left-handed loops, and right-handed spin
for right-handed loops so as to minimize electric
field energy production. Thus the electric field
will be seen to be proportional to the difference of
the winding numbers which characterize a loop.

The ratio of absolute value of equivalent electric
charge for a 3I loop of winding numbers (2, 1), for
a d' loop of winding numbers (3, 1}, and a A. loop of
winding numbers (3, 2) are 2 —1 = 1 to 3 - 1 = 2 to
3 -2 =1; the signatures of the charges depend on
the magnetic moment versus spin orientation,
and will be determined by the following considera-
tion.

Charge conservation (in reactions involving a re-
placement of a quark by another quark with accom-
panying change a e or 0 of charge} implies that the
different quark charges be +1 or 0 units of e apart.
Only the assignment -3e, +-',e, -3e satisfies these
conditions and implies the integer-charge spectra
O, ~e, ~2e for qq and for qqq, but not for qq or qqQ

nor their antiparticles.

II. REVIEW OF A LEPTON'S

ELECTROMAGNETIC FIELD IN TERMS
OF QUANTIZED FLUX

Flux Quantization

Flux quantization arises from the possibility
that the wave function of an electrically charged
field particle, even though single-valued, may
have a phase 8 which is single-valued only modulo
2~. Lines in ordinary three-dimensional space
around which the phase of a field particle changes
by ~2m define quantized flux. Indeed, if we set
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-2m= V3 ~ dr
3

= (el» }fgA dr
1

= -(e/kc)c, . (2)

We want to understand a source particle in terms
of quantized flux. In particular we assumed that a
source lepton is to be understood as a single,
closed, quantized Qux loop which takes on the
form of a closed magnetic field line of a magnetic
dipole source.

Superposition of Loop«rms

In a manner somewhat analogous to Feynman's
space-time approach to quantum mechanics which
constructs a quantum-mechanical path from a
superposition of "alternative path histories" of
classical paths, a superposition with complex
probability amplitudes, we construct the magnetic
dipole field of a source lepton from a complex
amplitude superposition of the alternative loop-
forms which the quantized flux loop may adopt.
(Such a superposition is not a superposition of dif-
ferent quantum states, but a superposition of al-
ternative classical or semiclassical loopforms to
construct a quantum state. )

A particular closed loop with its implication
concerning the phase 3 of the field particle's wave
functions is to be considered as only one of a mani-
fold of "loopforms" characterizing the source
lepton (in terms of a corresponding manifold of
field particle wave functions). The superposition
of these loopforms is assumed to be made with
probability amplitudes, continuous functionals of
the loopforms, and result in a continuous magnet-
ic and (as we shall see) electric field.

The flux loop is considered to be "attached" to
the source, i.e., to the point at which the Maxwell-
Lorentz equations have inhomogeneous terms.
The probability amplitudes are to be chosen such
as to result in a field satisfying the Maxwell-
Lorentz equations. This leaves their phases still
largely undetermined, a fact which was seen' to be
altogether important for the possibility of con-
structing a consistent theory of leptons. The
phases of the probability amplitudes have nothing
to do with the above-mentioned phase 3 of a field

the gauge-invariant combinations of four-potential
A» = ( V, -A) with the derivative of the phase 8 of
any field particle's g function ~g( expis,

A -(bc/e) s»3 = 8» = 0,

equal to zero, we simply state that a g field with a
singularity of ~„3, characterized by a 3 change of
2v, implies a singular potential A, of quantized
flux:

particle's wave function.

The Pertinent Fields

We have to distinguish three types of fields.
First, the g functions of one of many field parti-
cles, its phase 3 defining quantized flux (and as we
shall see later, also an electric field), Second,
the probability amplitudes of the loopform attached
to one source lepton; they, in toto, represent the
quantum-mechanical state of the source. Third,
the electromagnetic field defined by the former
fields; this field is a quantum-mechanical observ-
able.

Heuristic Approach to Determine

Probability Amplitudes

A central problem of the present and of the pre-
vious work' is how to make the appropriate choice
for the probability amplitudes of the alternative
loopforms. The usual way to do this is to find the
appropriate (in this case "internal" ) wave equation
for the system and use conventional techniques to
carry through the analysis. In the Appendix to this
paper a sketch of such an approach to this problem
is given. This facilitates the transition from the
ordinary techniques of the particle picture to the
loop picture with all its topological refinements.

As it is inadvisable to speculate about possible
wave equations and equations describing topologi-
cal manifolds without previous study of a heuristic
model, we took it as our task in the previous and
present work to develop such a heuristic model
which should determine the structure of the loop
model and the physical meaning of the fields in-
volved in it. This essentially qualitative model is
made to fit the Maxwell-Lorentz equations, and
the conservation laws and other data of particle
physics. This heuristic step may help to find a
precise quantitative formulation of the model, a
formulation which might make use of fiber-space
topology and differentiable manifolds. In the pres-
ent paper we would like to check the consistency
of that model and show how such a heuristic mod-
el makes it possible to understand some basic
open issues in particle physics.

Magnetic Monopoles, Quantized Flux Loops,

and Their Structure

Considerations similar to those relating to
quantized flux had previously been made in order
to introduce magnetic monopoles. With the intro-
duction of magnetic charge, the physical basis for
electromagnetic theory receives a drastic change,
however: It may be an unnecessary complication
of the well-defined discipline of quantum electro-
dynamics.

The introduction of closed quantized Qux loops
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as a basic entity implies new mathematical tech-
niques and concepts. Whereas magnetic monopoles
may use the formalisms developed for point
charges, the flux loops need, in order to describe
their probability amplitude distributions, tech-
niques which imply interesting topological con-
cepts. But a model of particles in terms of flux
loops does not imply a change from Maxwell-
Lorentz theory as monopoles do. It seems there-
fore obvious that this more conservative loop mod-
el should be developed.

The basically new features which enter in the
present theory are structural. In the previous
work an essential issue was to characterize the
manifolds of flux loopforms in terms of statistical-
ly independent bundles of loopforms of a lepton;
it was essentially by geometrical means that these
bundles were defined. In the present paper it is
the topological characterization of linked loops of
mesons and baryons which brings the interesting
results. One may, with a certain amount of over-
simplification, say that the present program is
one of reducing problems of particle physics to
topological issues of quantized magnetic flux loops.

periodical fluctuations of 3. We may thus calcu-
late the expectation value of V = (Kc/e) aa/act if
we assume that the probability amplitude of the
flux loopform corresponds to the total field of
dipole moment ek/2mc.

It may be shown that the manifold of loopforms
of such a source lepton then gives rise to a Cou-
lomb field, and this is not due to any additional
assumptions but holds by virtue of the very same
definition of the four-potential A„= (kc/e)a, a which
defined quantized flux in the first place. Positive
and negative charge of the source lepton corre-
sponds to parallelism and antiparallelism, re-
spectively, of magnetic moment and spin, again
in agreement with well-known facts.

To illustrate this result in a greatly simplified
manner we may evaluate, for a point P on the
equator of the source lepton, the fraction F (of
quantized flux 4, =2wkc/e) of loopforms which are
linked with P, as

F = (e'/2mc')/r

because the effective magnetic dipole field implies

Electromagnetic Field
B,ff 2wrdr = (ek/2mc)2w/r. (6)

Let us, for the moment, assume that this mag-
netic dipole is constructed such as to correspond
to a moment ek/2mc, and discuss later how the
probability amplitudes will have to be chosen to
properly relate this dipole moment to the quan-
tized flux C, . The effective (averaged} magnetic
vector potential A,ff will be time-independent for
a fixed lepton.

By the same definition, 8, =0, which defined
quantized flux through

A = -(Rc/e)Va, (3a)

we find that moving quantized field lines define
an electric potential

V =+(kc/e) aa/act . (3b)

We assume that every flux loopform performs a
spinning motion with the Zitte~beuegung angular
velocity

0 = 2mc'/5 (4)

about its flux-orientation axis. The field a(t, x, y, e)
of the field lepton is carried along with that spin-
ning motion (otherwise one would get an entangle-
ment).

Any point which is "linked" with that loopform
(Fig. 2 of Ref. 1}, i.e., which is inside the perim-
eter of the loopform, experiences a aa/act which
amounts to a unidirectional rate of change of 3, a
change +2m per spin period. An outside point Q,
not linked with that loopform, experiences only

As the phase 3 changes by +2n for each passage of
a flux of the amount 4„we have

V ff = (hc/e)(aa/act), ff

= ~(kc/e}(1/c}(2w)F(Q/2w)

= +(Kc/e)(1/c)(e'/2mc'r)(2mc'/I)

= we/r.

The result of a potential V.ff corresponding to an
equivalent charge e, after we assumed the dipole
moment to be ek/2mc, does not surprise us; it is
simply the reverse of Dirac's result of intrinsic
moment eh/2mc which arises when a relativistic
electron of charge e is considered.

A more detailed discussion' shows the isotropy
of the electric field.

It is of great importance to note that the mass m
of the lepton cancels out, rigourously, indeed; the
effective electric charge of muon and of electron
is thus identical.

The motion of an electric potential implicitly
arising from spinning flux loops is one of the es-
sential points of the theory. We derived this po-
tential from the basic equation (1) rather than from
an inappropriate application of the induction law to
a situation of loops in spinning motion, and that
with linear velocities beyond the velocity of light.

In the later sections of the present paper we
shall make ample use of this simple relationship
between magnetic moment and effective electric
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charge, and of the proportionality of electric
charge to the number of "wings" of a loop (ex-
pressed in terms of its effective winding numbers).

The issue of the preceding work' was to account
for the relationship of quantized flux 4, =2wkc/e
and magnetic moment el/2mc and also, to make
the model consistent, to show how the electromag-
netic energy accounts for mc' and the electromag-
netic angular momentum for —,'h.

Quasi-Nonlocality

The question now arises: How can we, with the
simple loopform concepts, at least qualitatively
satisfy these requirements; i.e., can we find a
reasonable interpretation of charged leptons in
terms of superposition of quantized flux loopforms,
given these requirements.

The first obvious step in such a picture of the
lepton in terms of semiclassical loopforms is the
construction of the source lepton. If the source
lepton (when we attach a manifold of semiclassical
loopforms to it) were considered as a point source,
not only would there be a true singularity of the
magnetic field B.ff (unlike other points of the field
at which only infinitesimal probability amplitudes
contribute to each flux loopform), but also, for a
given finite magnetic flux, the magnetic moment
would be zero because almost all flux loopforms
are of infinitesimally small size.

Though this circumstance seems to present a
formidable problem, it has an obvious solution.
It should be remembered that a source lepton, if
used as a source to which semiclassical loopforms
are attached, will have to be considered as a
"single particle. " Therefore, when we use a de-
scription of a source lepton in terms of a space-
time distribution of loopforms, we necessarily
have to attach those loopforms to the "mean posi-
tion" of the lepton, the position of a single parti-
cle. The Pryce- Tani-Foldy-Wouthuysen' transfor-
mation of the Dirac electron from representation
in ordinary position into a single-particle repre-
sentation makes the particle's mean position an
operator which is nonlocal of the extent 5/mc in
ordinary position space. For a stationary single
particle this implies a nonlocality h/mc for the
position of the particle as well as for the field
lines emanating from it. As the underlying theory
is truly local we might term this effect "quasi-
nonlocality. " We might then perhaps make the
terribly crude hypothesis that we may take ac-
count of this quasi-nonlocality of the source by
considering the source as an extended source of
size h/mc.

This then seems to imply a magnetic dipole mo-
ment of the order of (4,/4v)(K/mc), a moment 2
orders of magnitude too large compared with the

Bohr or muon magneton, respectively. That ex-
pression for magnetic dipole moment would be
valid if the total effective magnetic flux of the di-
pole field were equal to 4, . We assume, however,
that such a statement were only correct if the com-
plex probability amplitudes of the alternative loop-
forms were all in phase. Their actual phase dif-
ference is bringing about a superposition corre-
sponding to a reduction factor in the calculation of
effective flux from quantized flux, as well as in
the calculation of electromagnetic energy and an-
gular momentum.

We do not, in this paper, recapitulate the es-
sential objective of the previous work, i.e., the
answer to the aforementioned questions. This
program also provided, as seen in Sec. X of Ref.
1, for an understanding of the electromagnetic in-
teraction constant e'/Kc, and was applied to the
electron-muon problem.

Neutrino

The neutrino is proposed to be a loop of the
form of a left-handed trefoil, the antineutrino a
right-handed one. It is proposed to spin through
space like a coasting three-blade propeller. (A
surface 3 =0, 3 =2m representing the "cut surface"
of the multivalued pseudo gauge field 3 may be
chosen in the following way: Deform, i.e., dilate

FIG. 2. A trefoil representing a neutrino loop which,
like a coasting three-bladed propeller, moves in a heli-
cal spinning motion in the direction of the spin axis. In
this and in subsequent figures, flux loops are drawn as
double lines merely to better visualize the form of the
loops. The loops are singular lines, the alternative
forms of which define fibration of space. The question
of orientation of the magnetic flux is still open; a neu-
trino might even be a superposition, not only of different
loopforms, but also of both signatures of magnetic flux
orientation. The difference between electron and muon
neutrino is discussed in Sec. IV and in Appendix II of
Ref. 1; the distinction is in regard to phase-related
versus random-phased probability amplitudes super-
position of the contributions of loopform bundles. A
single loop of this form never represents anything else
but a neutrino.
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the central loop region which in the upper Fig. 2

projection shows a triangular form, into a form
which has a circular projection; build this circle
into a cylinder which is coaxial with the spin axis
and which reaches up toward infinity. This cylin-
drical surface, together with three wing surfaces
attached to the cylinder and extending out to the
three loopwings, respectively, may represent
this "cut surface. " The helical coasting motion of
that surface then implies no "sweeping, " i.e., no

Bs/8&, and thus no electric field. )
This neutrino model is suggested by the possi-

bility of explaining the helicity of the neutrino in
terms of the seemingly general tendency of flux
loops to spin in such a manner as to produce a
minimal (in this case zero) electric field which is
attained by the coasting rather than sweeping mo-
tion of the wings.

As the handedness of a neutrino does not change
with any Lorentz transformation, whereas a neu-
trino of finite rest mass would change its helicity
with a Lorentz transformation beyond its rest sys-
tem, our model implies zero rest mass if helicity
is interpreted in terms of loop handedness.

The knot character of the neutrino is also sug-
gested because weak interactions involving neu-
trinos seem to imply the creation or destruction
of a knotted loop: It is assumed that the crossing
of a Qux loop over itself or over a loop with which
it is interacting, is a slow, i.e., weak process.
The creation or destruction of a neutrino implies
such processes. It is also to be remarked that

two trefoils of opposite handedness, e.g. , neutrino
and antineutrino, have a means to annihilate each
other or be pair-created without the crossing of
loops. The neutrino-antineutrino dichotomy im-
plies, apart from left-handedness-right-handed-
ness of the trefoil loops, also opposite signature
of the frequencies of their probability amplitudes.

The smallness of interaction of a neutrino with

matter may be understood in terms of its zero
electric field, and in terms of the weakness of a
process involving the change of a neutrino trefoil
into an ordinary loop.

As to the question of the "size" of such a loop
one might consider that its lab energy indicates
spinning frequency (we should note that the spin-
ning frequency 2mc'/5 referred to particles in
their rest frame and may be interpreted as 2 lab
energy/k). As the essentially important ("first
shell" ) loopforms may spin with linear velocities
of the order of magnitude c, the radius (size) of a
neutrino loop might be of the order of Kc/lab en-
ergy.

III. MESONS AND BARYONS,
SPINNING- TOP MODEL

We shall outline two models of linked flux loops
to represent hadrons. The basic assumptions are
quite similar for both models. The first, the
"spinning-top" model (Figs. 3-5), is a develop-
ment of the model which we sketched in Appendix
II of Ref. j., now formulated in closer relationship
to topology. The second, the "symmetric-axes"

/I)

!2

T
Po, o

{a) (b)

FIG. 3. Forms of quarks in the spinning-top model. These loops represent quarks only if interlinked with other loops
as shown in Figs. 4 and 5. The difference of winding numbers about the two dash-dot-dash axes, i.e., 2 —1=1(+), 3-1
=2(tP ), 3- 2 =1(A,), multiplied with the signature of spin with respect to magnetic moment, is proportional to the equiva-
lent electric charge of the respective quarks. Quarks are assumed to be left-handed, antiquarks to be right-handed.
Winding numbers have obviously a simple group-theoretical interpretation.
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FIG. 4. Spinning-top model. A. and K quark interlinked,
contributing to a meson. To illustrate the topological
(knot-theoretical) relationships of the two loops, space
is here suMivided by a toroidal surface [dashed lines in
Fig. 4(a) which show a doughnut cut in half]. The A is
located entirely outside this doughnut shaped surface,
the X entirely inside. This surface is dividing the fibrat-
ed space of A loopforms from that of K loopforms; this
toroidal interface may arbitrarily shrink or extend it-
self. Both loops pass through the spherical core region
which is indicated by the dashed circle; the two loops
may spin independently in a rolling-spinning motion
about both the circular and the straight axes.

model (Figs. 6-11), is a generalization of the
first model. We describe the basic ideas in terms
of the spinning-top model which we consider the
first choice to represent mesons and baryons.
The symmetric-axes model is an alternative pos-
sibility; it also serves to illustrate the topological
issues of flux loop linkage.

Linked Loops; Axes and Core

We assumed that a quark is a quantized flux
loop if linked with another loop (to make a meson)
or two other loops (to make a baryon). In terms
of quantized flux loops, different quarks are de-
fined by the form and orientation (direction of mag-

netic flux) of the linked loop, and by their spinning.
A linked loop's mode of spinning is very different
from that of a single loop. Accordingly the con-
cept of an isolated single quark has no meaning in
this theory. Loops, if able to dissociate them-
selves (in accord with conservation laws), behave
as leptons.

We assumed that the linked loops are confined to
regions between toroidal surfaces (cf. Figs. 4 and

5), which makes it possible for them to spin in-
dependently; this is an obvious requirement for
loops representing quarks with spin.

For simplicity we assumed that such toroidal
surfaces have the symmetry of a doughnut, i.e.,
that they have a circular axis and a straight cen-
tral axis [which is perpendicular to the plane of
the doughnut (Figs. 4 and 5)]. These toroidal sur-
faces are by no means fixed; they may shift alto-
gether towards one or the other axis.

yO
~0~
I

Og1y

f~
+ygOQy+eseee

pe

~d'or ~+

(p, z)

FIG. 5. Spinning-top model of a XXX contribution to a
baryon. The three loops define these fibrated space re-
gions separated by the toroidal (dashed) interfaces. The
suMivision of space permits independent spinning of the
three quarks.

FIG. 6. Symmetric-axes model. Two interlinked axes
are shown by thick dash-dot-dash lines. This is a gener-
alization of the spinning-top model for which one of the
axes is straightened out to reach + infinity. The quarks
&(2, 1), 6'(3, 1), and A(3, 2) are shown in relation to one
of the two axes.
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In the model of the lepton we made the obvious
assumption that the Zitterbewegung amplitude
k/mc, which corresponds to the linear extent of
the quasi-nonlocality (which defines the radius of
the "core" of the source lepton) is of the size of
the radius of the circular axis (Fig. I); this in
turn is the extent of the inhomogeneous Maxwell-
Lorentz region. In other words, what we called
the "core equatorial ring" coincides with the cir-
cular axis. In the case of mesons and baryons,
loops are linked in the manner illustrated in Figs.
4 and 5. In view of the discussion of (quasi-) non-
locality in Sec. V and Appendix I of Ref. 1, the re-
gion extending to the circular axis is to be con-
sidered again as the core, i.e., the "position" of
the particle.

As every loop has, of course, to pass through
this core (source) region, one may consider that

roy+
4

0
~1

aos++

as amounting to a linkage with the core. This
linkage, as well as the linkage with the other loops
of the same particle, may be simply expressed in
terms of the above assumption and the following
one:

To make an orderly linkage and motion possible
it is assumed that the linked loops all share the
same axes, and while spinning, do so with in-
stantaneous spinning axes which are coaxial.

Some remarks about superposition of alternative
loopforms may be useful here. The interlinked
loops of a hadron are, if we refer to one of their
"alternative forms, " just two or three loops in
space. The superposition of a continuous manifold
of alternative (similar) forms which such a linked
loop doublet or triplet may adopt, is formulated in
terms of a superposition of products of three prob-
ability amplitude functions. The superposition de-
fines a magnetic field in three-space. This may
be considered to be a fibration of space, but a
special one: It is made up of doublets or triplets
of closed loopforms by definition because the su-
perposition refers to alternative closed loopforms.

The superposition of the continuous manifold of
loopforms, resulting in a fibration of space and
formulated in terms of probability amplitude
waves, implies a corresponding interpretation of
coaxiality.

+g
Oy

FIG. 7. The same quark loops as in Fig. 6 are shown
here in relation to the other axes. This setting involves
closer crowding of magnetic field lines and is thus ex-
pected to be less favored than the setting of Fig. 6,
which shows the preferred setting of the loops.

FIG. 8. The symmetric axes of the quarks shown in
Fig. 6 are indicated as dash-dot-dash lines. The two
flux loops are not shown here; they appear in Fig. 9. In
order to permit the two meson loops to spin independent-
ly, these loops may be considered to be confined to the
two domains separated by the shaded surface. To visual-
ize this surface which reaches to infinity, it is in this
figure, bounded by one long-winded line. The opening,
connecting front to rear with the far right region, is free
from shadings; we see an axis passing through that open-
ing. The other opening, connecting upper to lower with
the far left region, is hidden behind the shaded surface;
the other axis passes through that opening. The surface
is, as in the spinning-top model, not fixed at all. The
spinning is again, as in the spinning-top model, a rolling,
whirling motion about both axes, for each of the loops.
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Form of Quark Loops; Winding Numbers

We shall assume that every quark loop is a torus
knot, i.e., a closed loop which, if projected onto
one of the doughnuts, does not intersect itself
(Fig. 3). As a "loop" stands for the corresponding
type of fibration of space, such an assumption per-
mits us to avoid unwanted singularities of that
fibration. (In our previous work' we did not yet
adhere to this requirement. )

Every torus knot has two "winding numbers"
which indicate how often it winds about the torus.
We may denote by (1, 0) an electron or muon loop
(Fig. 1) and by (2, 1) a loop which winds once about
the hole of the doughnut, twice about the doughnut
itself [Fig. 3(a}].

These winding numbers characterize the fibra-
tion. A fibration with rotational symmetry about
a straight axis has also an axis which is circular;
it may represent a topological singularity.

Handedness of Quark Loops

A loop (i.e., a fibration of space) has a handed-
ness (right or left} which is defined by attaching
two arrows to the (straight and circular} "axes, "
i.e., giving an orientation to the magnetic field at
or near these axes. Handedness is, in the topolo-
gist's language, the "orientation" of the fibrated
three-dimensional space.

A special case of handedness arises if the loop
is a knotted one, i.e., a left-handed or right-
handed trefoil [clover leaf knot, Fig. 3(c)]. We
then assume that strangeness of a quark is rep-
resented by the topological character of the A. , X

loops. They are assumed to be of trefoil shape (X

and A of opposite handedness} because an annihila-
tion or pair creation of strange quarks must be
fast if there is strangeness conservation: Indeed,
two oppositely handed trefoils of opposite magnet-

ic flux orientation may annihilate each other rap-
idly without crossing of flux loops. This is not so
for two trefoils of equal handedness or for a tre-
foil and a simple nonstrange loop.

We assumed that the helicity of a neutrino, i.e.,
the handedness represented by the g function of
the neutrino, corresponds to the handedness of the
flux loop.

As the particle-antiparticle character of a neu-
trino (lepton} loop and of a X quark loop is charac-
terized by left-handedness and right-handedness,
respectively, we might assume that this holds for
all quarks.

As the segments of a line which form a loop
seem to tend to spread out, "repelling each other"
as magnetic field lines do to minimize magnetic
field energy, the loops of type (2, 1), (3, 1}, (3, 2)
(which look like Figs. 6 if the left axes may be
thought of as corresponding to the straight axes)
seem to have preference over the loops (1, 2},
(1, 3}, (2, 3) (which look like Figs. 7 if the right
axes may be thought of as corresponding to the
straight axes) which more often go around the
straight axes (around the holes of the doughnuts).

It is assumed that a flux loop crosses over it-
self, or over a loop with which it is interacting,
in a weak process. As the unknotting of a knotted
flux loop implies such flux loop crossing, we may
look at a strangeness-nonconserving weak pro-
cess as implying, in the simplest case, a transition
from a trefoil to a simple loop. We therefore as-
sumed the X quark S = -1 to have the form of a
(left-handed) trefoil and the X (S =+1) the mirror
form. Those two may annihilate each other or be

~—w

FIG. 9. A meson's loop-antiloop contribution in the
symmetric-axes model (an K~ contribution). The inter-
face between the fibrated space regions belonging to K
and A, respectively, is of the type shown in Fig. 8.

FIG. 10. Two toroidal surfaces separating space into
three regions, for a baryon in the symmetric-axes model.
The loops are not shown here, they are shown in the cor-
responding meson case of the spinning-top model Fig.
4(b). In the present case one loop is located altogether
inside one doughnut (wound about its dash-dot-dash axis),
another inside the other doughnut, and the third in be-
tween, i.e., the region which covers all outer space. In-
dependent spinning is possible in this way.
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pair-created without crossing of loops.
A strangeness-violating weak process then im-

plies crossing of loops. It is interesting to note
that such a process is, in terms of the topology of
the loops, parity-nonconserving.

Frequencies of Probability Amplitudes

We mentioned handedness (and thus also strange-
ness} characterizing quark with respect to anti-
quark. For the muon we assumed that the particle-
antiparticle character corresponds also to posi-
tive-negative frequencies of their probability am-
plitudes. Not only is this what might be expected
in analogy with relativistic quantum mechanics;
this frequency assignment also makes it plausible
that particle-antiparticle annihilation and pair
creation may occur while there is a loop consera-
tion law, i.e., number of loops minus number of
antiloops being conserved.

Spinning of the Loops

The spinning of the loopforms is assumed to
occur with angular velocity 2m, c'/5 about both the
straight axis and about the circular axis, in the
latter case causing a rolling motion of the loop-
form about that circular axis.

The relationship of spinning motion to fibration

FIG. 11. Interlinkage of a baryon in the symmetric-
axes model; an X%A contribution to a baryon (they are
left-handed loops). The fibrated space corresponding to
these quark loops has the interfaces represented by Fig.
10. In this symmetric-axes model of Figs. 9 and 11, or-
bital angular momentum might perhaps be accounted for
by the rotational motion of the two axes about each other,
spin being a matter of motion of the loop manifold about
the two axes. The symmetric-axes model (Figs. 6-11)
is shown to illustrate the topology of linkage; the spin-
ning-top model (Figs. 3-5) has the advantage of simpli-
city.

of the flux loop field is assumed to be such that
both have equal handedness. Such an assumption is
equivalent to the assumption already made in re-
gard to the neutrino, i.e., that the motion of the
loopforms is such as to produce as little elec-
tric field energy as possible at the given spinning
angular velocity. Such a kind of an assumption,
similar to the assumption of forms of flux loops
which correspond to a mininal magnetic field en-
ergy, is akin to a Maxwell-Lorentz field. One
may shortly characterize this equalization of
handedness of spinning and fibration as a tendency
towards a coasting type of motion.

Spinning and Equivalent Electric Charge

There is still the alternative of the resulting
spin being parallel or antiparallel to the orienta-
tion of the resulting magnetic moment which, as
we shall see, corresponds to positively charged
quarks or negatively charged quarks, respectively
(cf. Fig. 3).

It is most interesting to note that given, e.g. ,
parallel orientation, the signature of the electric
potential produced by the spinning depends on the
difference of the winding numbers, i.e., is pro-
portional to +2 -1 =+1 for a loop with winding num-
bers (2, 1). It is the difference because the coast-
ing motion implies that the second winding num-
ber, i.e., 1 in case of (2, 1) [Fig. 3(a}] (with spin-
ning parallel to flux orientation) counteracts the
electric effect of the first winding number, i.e.,
2 in this case of an X quark (2, 1) in Fig. 3(a):
The simultaneous spinning about both axes is ex-
actly equivalent to a loop with "effective winding
number" 2 —1 = 1 spinning only about the straight
axis.

If we consider the absolute values of equivalent
quark charges as proportional to the effective
winding numbers, the equivalent electric charges
of (2, 1), (3, 1), (3, 2) loops are proportional to 1
to 2 to 1, respectively. (In our former proposal'
we counted the number of wings" instead of the
winding numbers because we did not yet pay atten-
tion to the spinning about both straight and circu-
lar axes).

The flux quantization proposal is based on gauge
covariance of the definition of the fields. Charge
conservation is thus implicit in the theory from
the outset. Considering the integrity of electric
charge of muon or of electron, all other reactions,
directly or indirectly involving a muon or an elec-
tron, may only occur with integer changes of
charge. As these reactions imply a quark-anti-
quark annihilation or production, [equivalent to a
replacement of an (anti) quark by another (anti)
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quark] the difference of the equivalent electric
charge of any two quarks should be integer, +1,
or 0, indeed.

Magnetic Moment

This charge assignment means that for g, 6',
and A. quarks the spin and magnetic moments are
parallel, antiparallel, and parallel, respectively.
The opposite holds for the antiparticles.

A little careful consideration of the signatures
of the field and loop quantities shows that with the
loops of Figs. 3 and 6 the signature of the equiva-
lent electric charge is indeed given by the paral-
lelism or antiparallelism of spin and magnetic mo-
ment; in the case of the electron and muon that
relationship was trivial.

It may also be noted that on the basis of the pres-
ent assumptions, the proportionality between elec-
tric charge and magnetic moment is the general
basic relation derived at the beginning of the pre-
vious paper. '

It is therefore no longer necessary to introduce
an assumption (Appendix II of Ref. 1) relating the
effective magnetic moment to the number of core
traverses. This circumstance permits us now to
define the forms of quark loops in terms of the
topologically straightforward winding number as-
sumptions which we formulated above and which

we illustrated in Fig. 3, in perfect accord with

the properties of the conventional quark model-.

We may refer to further detailed discussions
about baryons, mesons, neutrinos, electrons, and

muons, given in the main body and Appendixes of
Ref. 1.

IV. SOME PUZZLES OF THE QUARK MODEL

We noted above the difference of quark charges
to be +I or 0 (due to charge conservation in inter-
actions with leptons}. We also noted that the ratio
of the absolute values of the equivalent quark
charges of g, 6', A. are 1 to 2 to 1, while their
signatures depend on magnetic moment being par-
allel or antiparallel to spin, an open choice so far.
One may ask what quark charge assignments and
what quark combinations may satisfy these condi-
tions and result in particle charges 0, +e, +2e.
Among the simple combinations it is only the qq
and qqq, with charge assignments ——,'e, +—,'e, ——,'e
for q or for q, which are compatible with those
conditions.

We noted that the hypothesis of loop crossing
being a slow process (when it comes to a loop
trying to cross over itseU or over the loop with
which it may interact} leads to a topological in-

terpretation of strangeness, to some understand-

ing of weak interactions, and to an understanding

of why strangeness-nonconserving weak interac-
tions violate parity. We assumed that handedness
of a quark loop itself, not only of the (probability
amplitude) wave function referring to the loop, is
related to parity.

Another interesting point is the following:
From the consideration of models of flux loops,

their intrinsic handedness and their link with the

axes, it becomes obvious that between a loop (2, 2)
and a loop (2, 1), both of equal handedness, a tran-
sition is simple compared with a transition be-
tween (2, 2) and a (2, 1) loop. This fact may pro-
vide for an understanding of the dS-versus-b, Q

rule.
We discussed the muon-electron decay and noted

that the presence of two types of neutrinos may be
understood in terms of the muon-electron dichot-
omy. As a muon's probability amplitudes are as-
sumed to be random phased, while the electron's
are phase related, and because the transition
muon to electron requires that the internal (and

translational) k, u distributions on both sides of
the equation should match, a random-phased as
well as a phase-related neutrino probability dis-
tribution must necessarily enter the picture.

In connection with loop crossing, the following
issue is to be discussed. When a baryon's quark
interacts with a meson's antiquark leading to an
actual or virtual process involving annihilation
and/or pair creation, the question arises whether
the other (nonparticipating) quark loops are in the
way, blocking any such qq interactions. It seems
appropriate to assume that for an annihilation
process the frequencies of the quark and of the
antiquark with which it interacts (e.g. , X and X)
are equal and of opposite signatures. In that case
the wave function for the combination qq does not
show beats, the absolute value of the wave function
for qq, in the course of time, does not frequently
pass through zero (as other quark product wave
functions do). Under such circumstances there is
no cancellation of that qq's contribution to the
magnetic field. Consequently for a possibility of
fast annihilation the topological conditions will
have to be met, i.e., the condition of opposite
handedness of A. and of A. , i.e., of strangeness
conservation, so that annihilation may proceed
without actual crossing of flux loops. For other
quark products, the interference terms [written
out in Eqs. (Al) and (A2) of Ref. 1] lead to many
and frequent zero field values for the magnetic
field. This circumstance should permit crossing
of flux loops corresponding to such interfering
pairs, and should permit the passage of the for-
mer qq quarks over regions in which other quarks
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are located. Accordingly annihilation of qq pairs
becomes possible if the frequencies of the inter-
acting quarks are equal, but then only between
quark and antiquark of the same type; annihilation
occurs under disregard of the presence of the
other loops linked with q or with q.

The consideration is also of relevance when it
comes to the formation of the spatial part of
quark wave functions. As they accordingly may
exchange places in their distribution over the
toroidal regions between the two axes, we may
set up antisymmetric "spatial" wave functions as
regards this distribution, or symmetric ones.
We shall come back to this when discussing the
applicability of the Pauli principle to quarks.

The loop picture has raised the following ques-
tion: Clearly, a A. and A. , being of opposite handed-
ness, may readily annihilate when they approach
each other. How may they coexist when attached
to the same core of the meson? A simple model
shows that in the latter case their opposite handed-
ness prevents ready annihilation without flux lines
crossing each other.

The question also arises about the absence of
spin--,' baryons of the XXX, of the 6'6'6', and of
the A.X~ type. With total spin =-,', there is in such
a qqq always at least one pair of neighboring q's
of opposite spin. As they are of equal charge,
their magnetic field orientation is opposite. We
may assume that those cannot coexist as nearest
neighbors, attached to the same core, because
they would repel each other.

The Question of Giant Quarks

We pointed out' that this spinning-top model
brings up an interesting issue in regard to the
higher-lying meson states (i.e. , those above the
pseudoscalar and the vector moments), as well
as in regard to the higher baryon states. A spin-
ning top has no orbital angular momentum. To in-
troduce a qq orbiting about another qq introduces
far too many unobservable states unless a plausi-
ble rule may be found to exclude them. It seems
that the existence of the giant quarks might ac-
count for these higher lying states. A quark dis-
cussed as a spinning top indeed not only permits,
but actually invites a spectrum of spins. A de-
tailed discussion of this possibility has not been
made.

Spin-Isospin Functions Without Violating the

Pauli Principle

It should from the outset be remarked that it is
an open question whether or not one may assign

definite values of spin to quarks. As an individual
isolated quark is a meaningless object in the pres-
ent theory, it might also be questionable whether
it may be given a definite spin.

The simple picture of quarks of spin —,
' and of

magnetic moments proportional to their electric
charges has, however, had such spectacular suc-
cess with SU(2) x SU(3) that we shall stick to it
for lower-lying meson and baryon states. The
one drastic shortcoming was that the successful
derivation of the ratio of magnetic moments of
proton to neutron was in conflict with the Pauli
principle. The successful symmetric spin-isospin
functions for proton and neutron violate the Pauli
principle because the quarks could not well be
thought of as adopting an antisymmetrical orbital
wave function as such a one is not expected to
pertain to the lowest states as the nucleons are.

We like to consider now what new situation
arises when the loop's distribution over the re-
gions between the axes is considered. There is
an innermost loop (i) (next to the doughnut's circu-
lar axis), a middle (m) and outermost loop (o)
(closest to the straight axis). Were the loops con-
fined to either (i) or (m) or (o), a simple product
spin-wave function (as long as it corresponds to
total spin -', }would be appropriate for this loop
triplet. If, however, there is a possibility of
loops switching, i.e., permuting their locations
(i}, (m), and (o), we shall have to describe the
situation again by the same spin-isospin function
as in the case of nonlocalizable quark "particles. "
The same consideration holds in regard to quark
loops spinning about linked axes, Fig. 11.

The proton's spin-isospin function, symmetric
in the quarks, is

(18) ' ~ (2X4 (P 0 (P 0 —X0 (P 0 (P 0 —Xt (P 0 6' 0

+26'0gt 6'0 -6'0 +06'0 —d't @06'0

+ 2d' 0 (P 0 Xt —(P 0 (P t X4 - (P & (P & X&j .

This function' (cf. Beg, Thirring, and Weisskopf')
thus applies not only to nonlocalized particle
quarks, but also to localizable loops if these are
occasionally interchanging their locations.

The spatial part of the three-quark wave func-
tions could not be expected to be antisymmetric in
the conventional model of quark particles. In the
present model of quark loops there may, however,
be no objection against antisymmetric spatial dis-
tribution (over the toroidal regions spanning from
one axis to the other, of Fig. 5 or 11). There is ac-
cordingly no conflict with the Pauli principle and
no need for introducing parastatistics.
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The same arguments as for the proton hold for
the neutron spin-isospin function, also, and the
beautiful SU(3) x SU(2) result,

magnetic moment of neutron to that of proton= 3,

holds again, but now we might avoid a conflict with
the Pauli principle.

We may finally remark that it might not be sur-
prising if there would be some connection between
the present quark proposal and the ones which con-
sider dipole pairs of positive and negative mag-
netic monopoles as discussed by Barut. ' It might
be suggested that in this respect a meson might be
represented by two dipoles, and a baryon by three
dipoles. Magnetic monoyoles, if they should exist
at all, would not be expected to represent quarks.

V. SYMMETRIC-AXES MODEL

We want to discuss some modifications and gen-
eralizations of the spinning-top model simply to
clarify a number of topological issues.

We may generalize the assumptions about the
axes by bending the straight central axis so that
we now consider two interlinked axes as the axes
about which spinning occurs. (The straight form
of one of the axes represents 5 special case of
linkage of axes). Unless we state the contrary,
we shall discuss the case of two equal size linked
axes (Figs. 6 and 7). We may then show a few
simple loops with winding numbers (2, 1), (3, 1},
and (3, 2} in Fig. 6. These same loops also appear
in the form of Fig. 7 (when their relation to the
other axis is considered}; they are topologically
identical with the corresponding ones of Fig. 6.
We shall later discuss why these loops may rep-
resent X, 5', and A. quarks, respectively.

The core maintains its significance as the re-
gion of inhomogeneous (i.e., source} terms of the
Maxwell-Lorentz equations. It is now assumed to
be bounded by the two axes.

These loops are either left-handed or right-
handed, i.e., the fibrated space characterizing
the magnetic field has a handedness. This handed-
ness is again defined by attaching an arrow, i.e.,
an orientation to each of the two axes. Handedness
characterizes a loop whether it is knotted (as a
trefoil) or plain; for knotted loops it implies
strangeness. One might suggest a quark to relate
to a left-handed fibration, an antiquark to a right-
handed fibration, in analogy to neutrino, antineu-
trino.

To generalize the assumption about spinning, we
recall that one mode of spinning is a rolling,
whirling motion about one axis; this motion, if
smoothly continued throughout space, implies a

tangential translation (circumferential) motion

along the other axis, causing it to be displaced
congruently upon itself. A second mode of spin-
ning is possible with the role of the two axes in-
terchanged.

We again assume that spinning occurs about both
axes simultaneously, The spinning motion might
then be left-handed or right-handed. We might
again assume handedness of motion to coincide
with handedness of fibration so as to minimize
electric field energy.

In order to discuss the alternative of the forms
of Fig. 3 or the forms of Fig. 6 as regards the
axes, we first consider this question in regard to
the muon or electron. Their field with winding
numbers (1, 0) may be simply the dipole field of
Fig. 1, only the spinning about that dipole axis
matters.

We proceed to discuss the question of axes in
the case of hadrons from now on. We first con-
sider the relationship of a single quark loop to the
two axes as illustrated in Figs. 6 and 7.

It is evident that both motions which a loop may
perform with respect to the axes (the spinning-
rolling motion about the two axes, be it Fig. 3 or
be it Figs. 6 and 7) contribute to the generation of
electric potential -both by the same argument
which was made in sequel to Eq. (3b) and in Ref. 1.
These contributions are expected to be proportion-
al to the winding numbers.

The symmetric-axes model differs as follows
from the spinning-top model: In the loop settings
of the type of Fig. 7 the spinning about the left
axis makes no electrical contribution in the limit
of the loop converging toward the axis. On the
other hand the loops of Fig. 3, loops setting close
to the straight axis, contribute much to the elec-
tric field because these loops are big and sweep
over large areas with each turn of the spinning mo-
tion. For those spinning top loops, wherever their
setting, it is always the difference, 3 -2 in the
present example, which determines the electric
potential.

With the above comments taken into considera-
tion, it is, in the symmetric-axes model, effec-
tively again the difference of the winding numbers
which, as in the spinning-top model, is responsi-
ble for the equivalent electric charge.

Thus, as we already remarked, the two spinning
motions occur simultaneously; we arrive again at
the most interesting relationship between winding
numbers and their equivalent charge. With this
topological definition of quark loops and their prop-
erties, we achieve a definition of the ratios of the
quark's electric charges, and also of their mag-
netic moments.

The forms of the antiquarks as previously men-
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tioned are the mirror forms of the quarks. We

might take as the mirror plane a plane perpendicu-
lar to the paper plane of Figs. 6 and 7, a plane
which bisects both doughnuts, e.g. , goes through
the major axes of the elliptic projections of the
interlinked axes.

The spinning motions may occur without the
axes moving in space (except for the sliding mo-
tions along the axes, referred to above); there
are furthermore the motions of the two linked axes
in space. Ignoring deformations of those two axes
and considering them for simplicity as equivalent
in size and mutual relationship, these axes might
perform a rigid body motion in space, character-
ized, apart from translations, by the rates of
change of three Euler angles.

It might be possible that this latter motion may
represent orbital angular momentum whereas the
first two motions might correspond to spin. If that
is a correct interpretation, there would no longer
be need (as was suggested in Appendix II of Ref. 1)
to assume giant quarks with higher spin to under-
stand the higher-lying mesons, as well as the bar-
yons. The spinning-top model on the other hand is
preferable because of its simplicity, and may be
more amenable to quantitative discussion.
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APPENDIX: WAVE EQUATION FOR LOOP-
FORMS OF QUANTIZED FLUX

The heuristic, geometrical picture, in terms of
which we developed the present program, was
designed to show the consistency of the idea of the
quantized flux loop model. It permitted achieving
approximate numerical results and it indicates to

B-=y, [1+cos(&,2)][3& '(g ~ r)r —r 'g] (A2)

For a given g, expression (A2} represents a 2-
parametric manifold (aximuth a and size parame-
ter o of loopforms}. Therefore (Al} can be con-
sidered as the resultant of a 4-parametric mani-
fold of loopforms (flux orientation g, azimuth a,
and size parameter o; g, n are Euler angles},
cf. Figs. 1 and 4 of Ref. 1. The size of a loopform
was characterized by the size parameter o which
measures the "aphelion" distance from the source
point of the loopform in question.

We notice that the shape of a loopform is the
same for all sizes of loopforms, and evidently
also for all orientation parameters & and azimuth
parameters e. This permits us to replace a func-
tional description of the manifold of loopforms by
a description in terms of probability amplitudes,
functions of three angle parameters g, 0. and a
size parameter o.

In our previous paper we have discussed the
motion of a lepton's loopforms and we have seen
that the lepton can be appropriately described in
terms of just one loop. Mesons and baryons im-
ply two- and three-quark loops. When the motion
of loopforms of quark loops is under consideration,
we have to remember that the quark loops are as-
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$/r = a, sin(P/2),

q/r = a, sin(P/2),

p/r = a, sin(P/2),

y/t = cos(4/2),

(A3)

+g +p +g (A4)

The angular part of the wave-equation operator
for the symmetric top, analogous to the three-
dimensional case for a mass point

sumed to spin about the main straight axis and

about the circular axis (Figs. 3-5). This latter,
rolling motion is equivalent to a spinning about
the straight axis with a commensurable spinning
frequency, the commensurability is determined
by the ratio of the winding numbers. Thus, with
caution, we may apply the spinning-top model
even in the case of quark loops.

Returning to the simplest case of a muon or
electron loop, we may start with the question:
What may be the wave equation for the loopforms
generating the magnetic dipole field of a point
source, and thereafter discuss the issue of quasi-
nonlocality of that source.

Considering the invariance of the loopforms
with respect to P, u, i.e., with regard to the 3-
parametric rotation group Q„we follow Casimir's'
spherical-top discussion. The homogeneous coor-
dinates in terms of the unit vector a of the axis of
rotation and of the angle P of rotation are

three Euler angles, i.e., g, n; (A6) is the ap-
propriate operator for the rigid spherical top.

Looking at the form (A6), (A4), and (A3) of the
S2 operator, we find that it permits the assign-
ment of physical interpretation to a fourth param-
eter, i.e., t, along with the three Euler angles g,
n. As the shape of the loopforms is not only the
same for all values of g, n but also for all values
of size a, we may extend the 3-parametric loop-
form characterization (by g, a) to a 4-parametric
characterization (by t, n, a) and assume the inter-
pretation

f CC 0'. (AS)

may now characterize this Q(4)-invariant problem
which characterizes the loopforms' invariance
with respect to &, a, and o or $, g, p, and y. We
may thus assume a wave equation

8 8 8 8t2, +,+,+, +(u' —C /=0. (A10)8(2 Bq Bp By

We may therefore associate with every loopform
a point in the four-dimensional space of the varia-
bles(, g, p, y.

And we may assume that instead of the Laplacian
operating on the 3-parametric manifold [Eq. (A6)],
the Laplacian now operates on the 4-parametric
manifold. The operators

82 82 82 82

8(' Bg Bp' By

(A9)

8 8 8 8
2 2 2 + 28)2 Bg Bp2 Bg2

is

and has the eigenvalues

-4t(t+ 1).

(A5)

(A6)

(A'I)

The solution of such a wave equation corresponds
to angular velocities II (of the loopforms) which
are independent of r because this equation is ho-
mogeneous of degree zero in r; (, q, p, and X are
proportional to r [Eq. (A4)] This corresponds to
our basic assumption of spinning of flux loops with
Zitterbeuegung angular velocity 2mc'/II.

At this point it may be appropriate to comment
on the proportionality (AS) between r and o. In the
calculation of the electric field of the spinning flux
loop, the mass of the electron or the muon cancels
out rigorously. This implies the equality of the
electric charge of these two leptons. The cancel-
lation of the mass means that there is a scale in-
variance. Considering this we may write

Whereas (A5) represents the Laplacian operating
on the two-dimensional space of 8, y, (A6) rep-
resents the Laplacian operating on the three-
dimensional hypersurface spanned out by the

r = o/(a/mc) (A11)

as a parameter indicating the size of a loopform.
A Maxwell-Lorentz field B(r, o.) of the dipole

form (Al) may be reconstructed by giving the prob-
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ability amplitude g($, g, p, y) an r dependence such
that

(A12)

x.e.,
(A13)

To discuss the solutions of a wave equation, we

may be reminded of (A6) and (A7) which permit
the solution of (A10) by separation of variables,
leading to

r3 —-4l(l+1)+(O' —C R(r)=0. (A14}
dl' dK

Since we want the g function to represent a dipole
field, we have to take R&,&

to be proportional to
&-S/2

gK g 5/2 (A15)

-4l(l+ 1)+&O' —C = -~(~+ 2)

5
4 (A16}

This represents the point dipole solution.
The solution (A15) has a singularity at r =0,

which corresponds to a point dipole source. Con-
sidering the Pryce-Tani-Foldy-Wouthuysen rep-
resentation of a stationary single particle, the
latter appears in ordinary position as smeared
out. Replacing, accordingly, the point dipole
source (a crude substitute for a transformation
from mean position to position), we get rid of that
singularity. We may effect this by introducing into
the wave equation (A10) or (A14) a "potential" U(r)
which is positive in the "core" region 0 &r s1 and
goes to zero at the core surface t= 1 and is zero
outside, 1&r&~, which ensures the t ' 'behavior
of R(r) for large r.

Considering these, Eq. (A14) may be written as

r ' —r' ——U(r) —4l(l+1)+u —C R=O.
ar Br

(A17}

This equation might represent the wave equation
for the loopform of an electron or a muon. The
choice C= ~ gives, by (A16) to achieve commen-
surability,

(3=2l+1=1, 2, 3, (A18)

This relates to the spherical top. The eigenval-
ues of the symmetric top show a 2-parametric
spectrum. Commensurabilities of cu permit phase-
correlated motion of loopform amplitudes (angular
group velocity) in the case of the electron, distin-

guished from random-phased muon amplitudes
(angular phase velocity).

The wave equation is presumably to be written
in a linearized form. The group-theoretical anal-
ysis of Eq. (A10) is particularly promising; Barut's
analysis is expected to contain many of the rele-
vant results.

We found in Sec. VIIIB of Ref. 1 the important
result that lepton-antilepton pairs, represented by
generalized spherical harmonics, have the correct
transformation properties under CP conjugation.
These harmonics form bases of the irreducible
representations of the continuous group O(3).
Equation (A10) admits the O(4) group. The ques-
tion arises whether the bundling of the continuous
manifold of Qux loopforms, Secs. VII, X, XI, and
XIV of Ref. 1, into a discrete number of statisti-
cally independent bundles may be formulated in
terms of the discrete subgroups of the aforemen-
tioned continuous groups. The counting in terms
of the pentagondodecahedron/icosahedron, Fig. 8

of Ref. 1, has already pointed in that direction.
And the question arises about the role of irre-

ducible representations of these discrete sub-
groups in the description of the electron, muon, and
other particles. The representation of the contin-
uous groups, in particular the generalized spheri-
cal harmonics, should, however, first of all be
considered for a description of bundling of loop-
forms.

This bundling is an important issue because it
was shown in Ref. 1 that the concept of superposi-
tion of complex probability amplitudes, with dif-
ferent phases for different bundles, may permit
us to derive effective magnetic moments (= Bohr
or muon magneton) and electric charge (= e), elec-
tromagnetic energy (=mc'), and electromagnetic
angular momentum (W/2), all from quantized flux

4,(=bc/e).
Note added. In our paper' we characterized the

statistical independence (of the probability ampli-
tudes) of the loopforms by assuming that a dif-
ference (in size, in orientation, in azimuth)
greater than 1 rad makes them to be independent,
whereas closely neighboring loopforms are cor-
related as regards their amplitudes. We thereby
were led to group the loopforms into 207 bundles.
This was done by simplified geometrical means,
using graphical illustrations like a pentagondodec-
ahedron whose corners are about 1 rad apart (or
the faces of an icosahedron), and a flux tube pic-
ture. A more formal treatment is sketched in this
Appendix.

To the qualitative discussion of electron versus
muon we might note that the (angular} group and
phase velocities of the terms bilinear in probabili-
ty amplitudes are as 1 to 20'7. As the linear veloc-
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ities of the spinning loops are of the order c to c
and as the sizes (radii of the cores) stand in the

ratio of 207 to 1, their electromagnetic energies
are of the order of 1 to 207.
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