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The renormalization problem is solved, qualitatively, for the hog interaction of a scalar
field Q(x) in two space and one time dimensions. The theory is found to be finite after mass
renormalization, although perturbation theory predicts there should be ft}4 and p6 counter-
terms also. The renormalized theory is an interacting theory; it is scale-invariant at short
distances. The field ft} has canonical dimension

2
in mass units (but this dimension may

change in a more quantitative analysis) while the renormalized form of Q~ has a noncanonical
dimension, about 1.36. The cutoff dependence of the theory is computed by evaluating the
Feynman path integral qualitatively. The analysis reduces the problem to a recursion for-
mula for a function of one variable which acts as a representation of the renormalization
group. The method of analysis is applicable to any scalar field theory.

Until now it has been impossible to give even a
qualitative solution to strongly coupled quantum
field theories requiring coupling-constant renor-
malization. Consider, for example, the Xop' in-
teraction of a scalar field P(x) in two space and

one time dimensions. If this interaction is treated
nonperturbatively, it is not known whether this
theory has a solution (either with X, fixed or with

a cutoff-dependent A.,). If it has solutions it is not
known whether the solution is a field theory with
interaction or not, etc. This kind of difficulty has
been a major bottleneck in trying to develop a
quantum field theory of strong interactions.

A new nonperturbative method for solving
strongly coupled quantum field theories is pre-
sented in this paper. The method is qualitative
(at best). It is, at present, limited to scalar field
theories and is not applicable to theories contain-
ing Dirac fields. It is at present limited to calcu-
lations of Euclidean vacuum expectation values,
i.e., vacuum expectation values calculated for
imaginary times. However, the ultimate limita-
tions on the method (if any} cannot be foreseen at
present.

At the heart of the method is a representation
of the renormalization group, ' ' in the form of a
recursion formula for a function of one variable.
The recursion formula enables one to replace an
interaction Lagrangian with cutoff A by an equiva-
lent effective Lagrangian with cutoff zA. The ef-
fective Lagrangian is defined so that it gives the
same physics as the original Lagrangian despite
the lower value of the cutoff. A representation of
the "renormalization group" is (in the author' s
definition) any set of equations which determine the
variation of a Lagrangian or a set of coupling con-
stants as one varies a cutoff or cutoff-like param-
eter. ' '

The purpose of this paper is to exhibit the recur-

sion formula, along with a typical solution of it for
the ~,Q' theory. ' The derivation of the recursion
formula will be given in exceedingly sketchy form;
the interpretation of the recursion formula and its
solution will be described very briefly.

The specific results on the ~0(I)' theory obtained
here are as follows: (1) Wave-function renormal-
ization is absent in the qualitative analysis. (One
can make arguments that show it is present in a
more quantitative calculation. ) (2) The theory can
be renormalized with only a mass counterterm (no
coupling-constant renormalization is required).
(3) The renormalized form of the composite field
Q'(x) has an anomalous dimension, ' namely,
(mass} with d = 1.36.

Further discussion of the analysis which gives
the recursion formula will be found elsewhere, in
the context of classical statistical mechanics. "
There it is shown that the qualitative analysis of
this paper is in good agreement with other more
quantitative methods of calculation.

The field theory will be defined using the Feyn-
man path integral. " The exact propagator will
be studied explicitly. The path -integral formula. —

tion gives a closed-form expression for the prop-
agator which is equivalent to the sum of the Feyn-
man-diagram expansion (if the expansion conver-
ges). The path-integral formula is

where

A(('I- fd'*f dt( , e„(*(v("('(*) —u((( ll( (2—l

(3)

(mo is the bare mass) and ( ) denotes the path inte-
gral over all c-number fields @(x). The three-
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y(0) e(A[4] f63(x)&efA[4])
5$(x)

When 6A/5$(x) is calculated from Eq. (2), Eq. (6)

(6)

becomes

—( V„V"+ rn, ')D(x)

-6~ &y'( )y(0)"""'&{&e'""'&]'=f6'(x)

(7)
This is Schwinger's equation for the propagator
D(x).' This equation (plus equations for the vac-
uum expectation values of four, six, or more
fields which can be derived by similar arguments)
uniquely determines the perturbation expansion
for D(x) and gives the same result as the unrenor-
malized Feynman graph expansion.

In this paper the propagator will be studied only
for spacelike x. It is then legitimate to convert to
a Euclidean metric by replacing t by -ix, . In this
case f d'x f dt becomes if d'x and v„p(x)v" p-(x)
becomes —VP(x)]'. Then one can write

(8)

with

A[p] = —J)d'x{-,'[V(t((x)]'+ U[p(x)]).

If the above analysis seems dubious one can show
that D(x} thus defined satisfies the Euclidean form
of Schwinger's equation. "

A cutoff is needed to make D(x) be finite, at

vector x has two space components and a time
component t. A[/] is the classical action for a
P' theory. Feynman" has shown that Eq. (1) con-
taining functional integrals over all classical
fields g gives the exact (unrenormalized} propaga-
tor of the quantized theory. A quick way of prov-
ing this will be given here A. n integral f g(Q)dp
over a single variable Q is unchanged if one trans-
lates the integration variable &[( (P- P + c where c
is a constant). Likewise a functional integral
should be unchanged if one translates P(x) at each
point x: P(x)-p(x)+c(x). In particular, one
should have

&4(0)e'""'&= &[0(0)+c(o)le'"""&.
Let c(x) be infinitesimal and calculate both sides
of this equation in first order in c. One gets

o = c(o)&e'"[']
&

le 6Ad'x dt ((0) e' i i)c(x),5$(x)

where 5A/5$(x) is the variational derivative of A
with respect to (t((x). This has to be true for any
function c(x), which means one has

least in perturbation theory. A simple cutoff pro-
cedure is to restrict the field P(x) to be

P(x}=
J

e'"'"P(k),
lkl& A

(10)

(12)P((x) = e'"'"P(k) .
1klcA

The action A([Q, ] will be obtained from A(,[Q(,]
by integrating out the variables (t((k) which are in-
cluded in P, , but not in P„namely the variables
(t((k) with A, & g~& A, , The result is a recursion
formula giving A([&[(,J in terms of A, ,[(t(, ,]. The
integrations will be calculated qualitatively, not
quantitatively.

To determine the dependence of the field theory
on A one chooses a reference momentum AR
which is held fixed while A is varied. One then
considers cutoffs A which have the form 2~AR.
For A = 2~A„(with L an integer), one iterates the
recursion formula L times giving an effective cut-
off A~=AR. The effective action A~ depends on
the field $1 =JR with

P (x) = e'"'"P(k) .
Ikl&PR

This effective action will be denoted A„. The re-
normalization problem is solved if one can give
the unrenormalized action A[/] a cutoff depen-
dence such that the effective action A„[Q„]has no
cutoff dependence in the limit A- ~."

The recursion formulas defining A, [P, ] are as
follows. (They will be derived later. ) The effec-
tive action is found to have the form

A, [y,] = —
J

d'x{-', [Vy, (x)]'+ U, [y, (x)]] . (14)

where f„means (2m) ' fd'k and the restriction
[k~& A means (t((x) cannot have Fourier components
with $(&A. With the cutoff the path integral is
defined as a sum only over fields of the form (10).
In perturbation theory this means all virtual mo-
menta in all Feynman graphs must be less than A.

The problem discussed in this paper is the de-
pendence of the field theory on A and how to elim-
inate it in the limit of large A. The procedure for
determining this dependence will be as follows.
Suppose one has chosen a large but finite value of
A and a given action A[/]. Define a sequence of
cutoffs A, :

A =2'A
2

A sequence of effective actions A, [Q, ] will be ob-
tained with cutoff A, which are equivalent to the
original action with cutoff A. '4 To be precise, the
low-momentum behavior of the propagator can be
computed with A, and Q, substituted for A. and Q
in Eq. (8}. The field (I]((x) has cutoff A(:
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U, [4, J =A, 'Q, [A, '-"'~, ]. (15)

The actual recursion formulas will be written for
a scaled form of U, . The following formulas are
valid for arbitrary space-time dimension d.
Write'6

more slowly than P,(x). For qualitative purposes
it will be assumed that Q,(x} is constant over a
given box.

With these assumptions the original action A[/]
reduces as follows:

The (vp)' integral can be written
Then

Q, +,(y) = -2 1n(I, (2 X2 ~~'y)/I, (0)j, (16)
" [v@(x)]' =

I pl'ly(k) I'
Jx J Ik l&A/2

with

I, (z) = dy exp[-y' ——', Q, (z + y) ——', Q, (z —y)j .

(17}

+ Ik I'ly'(k)
I

~ A/2 &!k l&A

[vp, (x)]'+ [vp, (x)]'
4 X X

(24)

The initial formulas are

U [V J =A'QIA'-"'e],

Q,(y) = -2 1n(I(2 x2 ~~'y)/I(0)j,

(18)

(19)

I(z) = J( dyexp{-y'--,'Q(z+y)- —,'Q(z- y}) . (20)

(21)

where

The recursion formulas will be made plausible
by developing the formulas connecting A,[p,] to
A [Q]." Write

y(x) = &0(x) + P,(x),

(where f m-eans Jd 'x). The integral over P, can
be written as f P-,(-x)V'P,(x}. Because cf the
limited range of wavelengths in Po(x), V2$o(x) is
of order A'Po(x). Finally J-y (0x) is of order
A '+-„$,-„2. This is because P,'(x) is of order
Q p when x is in the box surrounding the lattice
site n, and the box has volume A . So"

[vg(x)]' -A2 gy -'+-,' ' [vp, (x)]'. (25)
& x

n

The integral over U reduces to

fI[4(x)] Ag-( 'U[@..-+0 ]
& x

P,(x}= '

~O. sA& lk I&A

e' "'"y(k) . (22)
where'

+-'II[-4..+ 4,.]] (26)

The field P,(x) cannot vary independently at each
point x due to the limited range of momenta con-
tained in the field. In particular, if x, and x, are
two points with separation much smaller than A '
then P,(x,}=Pgx, ), since the field Pgx) does not
contain short enough wavelengths to change much
between x, and x,. In contrast, if x, and x, are
separated by much more than A ', there is very
little correlation between Qo(x, } and p,(x,}: One

has a spread in wavelengths of order A ' available
and a much smaller change in the average wave-
length will change Q(x ) enormously in relation to
Q(x,). As a very crude representation of this sit-
uation, let the independent variables of the field
$0(x}be its values on a lattice of points with lattice
spacing A '. Then the independent variables are

4.-. =4Am~ '), (23)

where n is a vector with integral components. One
can divide space into boxes surrounding each of
the lattice sites n. Within the box containing the
lattice site n, the field P,(x) behaves like a wave
packet with amplitude Qo„and mean momentum of
order A.

The field Q,(x) has only smaller momenta, since
Ik I& -',A in Q,(x), and therefore changes with x

@in=fi(nA ')

The action A now has the form

&I @J
- -Q(A' ' %on'+ 2A U [40.+ 4i; J

(28)

+-'.A -'U [-y,-„+y,-„]). (29}

The functional integration of e"~ ~ over Q,(x) thus
reduces to an infinite set of independent integrals
over each of the y;„. The p,-„are held fixed and
act as parameters in these integrals. These inte-
grals all have the form of Eq. (20} once one intro-

y,-„=y, (nA -') . (27)

ln writing the approximate form for f U[p(x-)]
the wavelike nature of Qo(x) within the box about
site n has been crudely represented by putting
Q,(x) = P;„ in half the box and Q,(x) =- P;„ in the
other half of the box. This square wave form for
P,(x) is the simplest form one can construct which
satisfies the restriction that $0(x) have no Fourier
component with k =0. The k =0 Fourier component
of Po(x) is f Po(x), -and this integral vanishes for
all choices of (I) p-„, given the square wave form of
Q,(x) used here. The field Q,(x) is replaced by a
constant Q,-„ inside the box, where
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duces the scaled function Q(y) of Eq. (18).
Having computed the integrals over ft);„, the

functional integral (expA[P] }becomes (exp&,[P,] ),
with

A, [y, J = g lnf[A ' 4~'-y -]--.' lt [Vy, (x)]' . (30)

function for the recursion formulas (16}, (17},
(19}, and (20}. To obtain the effective action As,
one must iterate the recursion formulas L times
to give an effective invariant interaction Q~(y, L),
from which the effective interaction Us(pe) is ob-
tained by

UR[AR] AR QI. (AR AR& L) ' (37)
The sum over n is now approximated by an inte-
gral, resulting in Eq. (14) with

U, [y, ] = -A' ln (I[A'-"'y, ]ji(0)) . (31)

The factor 1(0) only changes U, [Q, J by a constant;
this constant cancels out in the ratio defining D(x)
It is introduced for convenience in calculation
[otherwise the functions Q, (y) have large constants
when l is large -this becomes evident when one
does actual calculation]. When U,[P,] is converted
to Q,(y) according to Eq. (15) one gets Eq. (19).
The factor 2 multiplying lnI arises because Q, is
proportional to A, "times U„not A ' times Uy.

This completes the derivation of the recursion
formulas, except to note the following. The recur-
sion formula was defined in terms of a calculation
of (e"~ '), not (Q(x)p(0)e"~~'). However if one is
interested in D(k) for small k, say pl&As, where

D(k}= e ' "D(x}, '
(32}

& x

then only the Fourier components Q(%} with

lkl&As are important in P(x) and Q(0). Hence one
can replace Q(x) and &p(0) by Pe(x} and P„(0),
which are held fixed when one integrates the com-
ponents Q(%) with [kl&A„. Hence one can use the
recursion formula for (Q(x)P(0)e"l~~) as well, pro-
vided that A, ~ A„and one is interested in D(k)
only for pl&As.

Now the renormalization problem will be dis-
cussed in terms of explicit numerical solutions
of the recursion formulas. Let the cutoff inter-
action U[/] have the form

If U„ is to have a finite limit when A —~, then

Q~(y, L) must also have a finite limit when L- ~.
So the renormalization problem, technically speak-
ing, is to choose a sequence of constants (r~) such
that Q~(y, L) has a finite limit for L- ~.

The recursion formulas have been solved numer-
ically for the initial condition'0

Q(y) =ry'+o ly (38)

for a number of values of r. The results were as
follows. There is a critical value r, for r with the
property that if r =r, then Q, (y) has a finite limit
for l-~:

Q,(y}-Q,(y) for I (39)

The value of r, is about -1.09. In practice one
cannot calculate Q, (y} for I-~: what one sees
numerically is that for r= r, , Q, (y) is approxi-
mately independent of / over a large range of l. See
Table I for an example of this. The function Q,(y)
is shown in Fig. 1. For r= r, but not equal to r,
and for sufficiently large l, one finds that"

Q, (y)= Q,(y}+2"eR, (y), (40)

where e is r —r„n is a constant (n = 1.64) and

R,(y} is a function of y independent of I. It is
doubtful that either Q,(y} or R,(y} have simple
analytic forms, but this has not been checked. "
The form (40) is what one might expect if one con-
siders a linearized form of the recursion formulas
in which terms of second order in the difference
Q, (y) -Q,(y) are neglected. The constant a was

U [0]=-'[~.(A)]'0'+ ~A '. (33) TABLE I. The functions Q, (y) for' Q(y) =-1.09y +P.ly

A=2 A~, (34)

where L is an integer. Consider now dimension
d = 3. The invariant function Q(y) corresponding
to U[g] has the form

(As will be seen, it will not be necessary to let
Xo depend on A, nor is it necessary to include a
counterterm proportional to Q'. ) Let the cutoff A
have the form

pb
3
6
9

12
15
18

0.45

-0.221
-0.053
-0.0 782
-0.0783
-0.0783
-0.0 773
-0.0469

1.35

-1.388
-0.591
-0.584
-0.582
-0.582
-P.571
-0.251

2.25

7.439
0.807
0.696
0.688
0.688
0.722
1.77

Q(y, L) =r, y'+~. y',
with

r = —,'m, '(2 A„}/(2~A„)'.

The function Q(y, L) is to be used as the initial

(35)

(36)

~ To be exact, r was -1.0934813.. . in this calcula-
tion, but to reproduce the results of this table with this
precise value for r one would have to use the same nu-
merical approximations to the recursion integral used
by the author. See Ref. 10.

Qo(y) is the same as g(y).
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+ 5g~, the interaction changes by

U[e]- U[e]+ 6U[4],
with

6U[y]=60,A„(A'- 4').
The corresponding change in D(x) is

D(x) -D(x) + 6D(x),

(47)

(48)

with

(4(x)0(0)6U[4(y)]e""'&
6D(x) =

( g[y] }Jy

- (6U[4(y)]e""')—D(x)
( ~i@]}

(49)

FIG. 1. The function Q, (y) vs y. Beyond the range of
y shown, Q~(y) becomes large and positive (it is esti-
mated to be proportional to y~ for large y).

Q (y, L)= Q,(y)+2 e R,(y). (41)

For Ql, (y, L) to approach a limit Q„(y} for L —~,
one must have 2~ c~ approach a limit, i.e.,

a~=2~ q (42}

where qs is a constant. For Eq. (41) to hold
(which neglects terms of order [Q~(y, L) Q,(y)]')-
one must have g„small. "

So an answer to the renormalization problem is
that if

not known a priori; the function R, (y) and the
constant n were found by fitting the form (40) to nu-
merical calculations of Q, (y) for small &.

With these results one can construct the required
sequence ~I . If L is large and if e~ = r~ —~, is
small enough then

D(R) = 1k I 'D(k/A, Q) . (50)

Since changing the renormalized parameter qR
produces a finite (not infinite) change in D(x), it
follows that the field 6U[ Q(y)] has finite matrix
elements [provided one subtracts its vacuum ex-
pectation value, as is done in Eq. (49)]. This
means that A' "&p'(x) is a finite operator in the
limit A- ~.

One can learn further consequences of the renor-
malization analysis by performing dimensional
analysis. Consider the function D(k). By tech-
niques similar to those discussed here, the func-
tion D(k) can be computed directly. " These com-
putations are complicated; therefore only the di-
mensional analysis is discussed here. D(k) de-
pends on k, A, and the interaction U. Dimensional
analysis, in mass units, gives the following dimen-
sions (for d=3): Q has dimensions rn'~', U has
dimensions m', and D(k) has dimension m '. The
dimensions of Q and U are determined by the re-
quirement that the action A be dimensionless.
The variable y and function Q are easily seen to
be dimensionless. So one can write"

+2 gg,

where g~ is small, and if

(43)
One can also calculate D(k) using the effective in-
teraction Q, and cutoff A„provided that k is less
than A, :

Z, =0.1, (44)
tk I-'D(k/A, Q) = Ik I 'D(k/A„Qr } . (51)

then the effective interaction function Qz(y) corre-
sponding to the fixed cutoff A„ is In the case that Q, =Q, independent of 1 (i.e., q„

= 0), this gives
Q&(y) = Q.(y) +n~R. (y) . (45)

D(k/A, Q, ) =D(k/A „Q,), (52)
This is independent of the original cutoff A. The
original interaction U [/] has the form

U[y J =(A'r, +A' q„A„]4'-+~,y'. (46)

The parameter g„ is a free parameter of the re-
normalized theory since it appears in the renor-
malized interaction Q~(y) 2~

If one makes a small change in q„, i.e., qR- q~ D(k/A, Q, +eR, ) =G(k/A, e) . (53)

which means D(k/A, Q, ) is a constant independent
of both K and A." This means D(k) o- ~k( ', which
is a scale-invariant propagator for a field of di-
mension 0.5." Suppose one now considers func-
tions Q(y) of the form Q, (y)+eR, (y) with e small;
write
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Then

G(Tc/A, e) =G(k/A„2' e), (54)

which means G depends only on the single variable
(k/A)e '~, i.e.,

D(k) = g~ 'G(. -~~ %/A) (55)

Now with the substitutions gR=2 c, AR=2 A,
one gets for the renormalized theory

D(k) = )k[ 'G(k/m„),

where

~R AR~R
l/a

(56)

(57)

So if q„t0, one has an effective-mass p-.rameter
ms on which D(k) depends and D(k) is no longer
scale-invariant.

ln the scale-invariant theory (q„=0) th«ini«
field which is the limit of A' "p (x) for A-~ has
an anomalous dimension, namely, (mass)'
With n =1.64, this field has dimension 1.36.

The results obtained above are rather contrary
to what one would anticipate in perturbation theory.
In perturbation theory one must have Ao depend
logarithmically on A, and a linearly divergent (I)'

term and a logarithmically divergent VQ' term in
the original action, if the renormalized theory is
to be finite. If one studies the recursion formula
in perturbation theory [i.e., if one computes Q, (y)
as an expansion in Xo] one indeed finds that Xo must
be logarithmically divergent and a linearly diver-
gent P' term is needed to make Qa(y) be finite
order by order in perturbation theory. No diver-
gent VQ' counterterm is needed (such a term is
required only if a more accurate calculation is
made than the qualitative analysis of this paper")
The reason that ~0 can be held fixed and no p'
counterterm is required in the nonperturbative
analysis reported here is that the self-regulating
effects of strong coupling damp out the divergences
which appear in perturbation theory, except for
the self-mass divergence which must still be com-
pensated for.

Are the simplifications of this paper reliable?
The crucial question is not how accurate are nu-
merical results like the dimension 1.36 for QR'.
The most important question is the validity of qual-
itative results such as the renormalizability of the
Q' theory without coupling-constant renormaliza-
tion. This question has to be answered by experi-
ence; the simplifications of this paper are too
great to permit a credible formal analysis of er-
rors generated by the simplifications. (See, how-
ever, Sec. V of Ref. 10.)

At present most of the applications of the recur-
sion formula have been to problems in critical
phenomena in classical statistical mechanics.

The functional integral of Eq.(8) can be interpreted
as giving the spin-spin correlation function of a
generalized Ising model. ' " The recursion for-
mula of this paper gives a remarkable good de-
scription of the critical behavior of the Ising mod-
el." The Ising model has been extensively studied

by other methods; in particular, high-temperature
expansions combined with Pads approximant sum-

mation techniques appear to give very accurate
values for critical exponents. ' The numbers cal-
culated from the recursion formula can be com-
pared with numbers calculated from the high-tern-
perature expansion. When the results are trans-
lated into field-theoretic terms, the high-temper-
ature expansion gives" 1.44 for the dimension of
Q' with an error of about 0.01.

Further experience has been gained by studying

the recursion formula in 4- e space dimensions
with e small. " It turns out that one can set up
exact calculations of critical behavior for c small;
one finds that the recursion formula is exact to
order ~ and not so good in order e'. The exact
calculation for d(Q') gives 2--,'a +0.117&' while the

recursion formula gives 2--', a+0.026m'.

The crucial question, whether the Q' theory is
renormalizable using only mass (and perhaps
wave -function) renormalization, cannot be answered
as yet. The trouble is that, when the hypothesis
of renormalizability is translated into predictions
for critical phenomena, one predicts the Widom-
Kadanoff scaling laws, some of which are still
controversial. " In particular there is a predic-
tion that n =2-dv, where o. and v are critical ex-
ponents. High -temperature expansion calculations
indicate that there may be a small violation of
this prediction, by about 0.05. One will have to
understand whether this prediction for o. is correct
before one can claim that the ft)' theory is renor-
malizable.

This paper leaves many questions unanswered.
However, enough has been said about the recur-
sion formulas so that one can do further practice
calculations with it, such as perturbation expan-
sions or further numerical calculations. The work
of this paper may be easier to follow if one studies
Refs. 4 —7 and 10 also.

There has been much more rigorous work done
on superrenormalizable theories; the importance
of the analysis of this paper is that it is a start on
understanding theories which in perturbation
theory require coupling-constant renormalization.
The results of this paper suggest that perturbation
theory is not a good guide to the strong-coupling
behavior of these theories, so nonperturbative
methods are crucial to understanding them.

The calculations described here were performed
on the PDP-10 computer of the Laboratory of
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Using the Klein-Gordon equation and relativistic invariance, we calculate the commutator
and anticommutator for free tachyon fields. We exhibit the form of the spectral representa-
tion of the vacuum expectation value of the commutator for interacting tachyon fields.

I. INTRODUCTION a that

Two striking examples of the power of relativ-
istic invariance are the calculation (up to a multi-
plicative constant) of the free-field commutator,
and the Lehmann spectral representation for the
vacuum expectation va1ue of the commutator. We
will attempt to extend these calculations to the
case of tachyons (faster-than-light particles). In
Sec. II we show that the requirement that the com-
mutator (anticommutator) of free fields be an odd
(even), invariant, c-number solution of the Klein-
Gordon equation fixes the value of the commutator
(anticommutator), apart from a multiplicative
constant. For the commutator, we find the free
fields are more than causal. Section III involves
writing the commutator vacuum expectation
value (VEV) in a spectral representation. The
form which the spectral representation takes sug-
gests that a theory of interacting tachyons would
satisfy microcausality. Finally, in Sec. IV we end
with some comparisons of our results with those
of others.

II. COMMUTATORS AND ANTICOMMUTATORS

We assume that it is possible to describe spin-
less tachyons by a Hermitian field (f)(x), which
satisfies the Klein-Gordon equation (0 —a'}4)(x)
=0. The requirement that the commutator be an
odd, invariant, c-number solution of the Klein-
Gordon equation will be shown to fix the value of
the commutator.

Denote by F(x, y) the right-hand side of the com-
mutator,

F(x, y) =F(x+a, y + a),
so that F can only be a function of x-y. Invari-
ance under proper homogeneous Lorentz trans-
formations requires that

F(ax) =F(x) .
Since 4)(x) satisfies the IGein-Gordon equation,
F(x, y) must likewise satisfy

(& —(r')IA(x) 4(y)f=o=(& —a')F(x, y).
Finally, the commutator has the property that

(3)

(4)

so F must be odd:

F(x- y) = -F(y —x},
or equivalently

F(x) = -F(-x).

(6)

F(xx) = F(x)

d 'k 5 k'+ n' F k e '"

Since F(x) satisfies the Klein-Gordon equation, we
will write it in the form

)'( )=fd'k5(k + ')F(kie (6)

Here F(k) is only defined on the "mass shell" k'
=k,'- k'=-o. '. The possible values of the vector
k are all spacelike. Lorentz invariance of F(x)
means

d k5k+n FAke ' '", (9)

where by assumption F is invariant c-number. In-
variance under translations requires for arbitrary

so that F(k) = F(Ak), and F can only be a function
of the invariants formed with the vector k. For


