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The Heitler-type equations relating the three-particle transition and E matrices are re-
placed by equivalent connected-kernel equations. This constitutes the practical realization
of the E-matrix formalism for the usual class of three-particle nonrelativistic scattering
problems.

I. INTRODUCTION

II. CONNECTED -KERNEL EQUATIONS,

The three-particle scattering operators rz „(z),
which satisfy the integral equations

r(z) = t(z)+ t(z)aG, (z)r(z)
= t(z)+ r(z)G, (z)5t(z), (2 1)

were found to play a central role in the K-matrix
formalism developed in Ref. 1. Our notation in
this paper is precisely the same as that used in
Ref. 1; however we will outline some aspects of it
in order to make the present treatment reasonably
self-contained.

In Eqs. (2.1) we have employed a matrix notation
with respect to the channel indices e =0, 1, 2, 3.
That is, I'(z) represents the 4x4 matrix whose
elements are the operators I'8 (z), t(z) is a di-
agonal matrix whose elements are the two-particle
transition operators with the discontinuity at the
two-particle bound state poles removed, t (z),
for et 0, and t, (z) = 0, a.nd 5 is the matrix with
elements 1 —58„. The t„(z) are, of course, two-
particle operators defined on the three-particle
space. The free three-particle propagator is de-
noted by G,(z), where z is the (complex) paramet-

Recently a realization of the three-body K-ma-
trix formalism was developed in terms of Faddeev-
type scattering integral equations. ' In this formal-
ism on-shell integral equations of the Heitler va-
riety appear. However, these equatioris in their
usual form do not possess kernels which become
connected after iteration. This problem was
handled satisfactorily for the particular applica-
tion considered in detail in Ref. 1 and in the pres-
ent work we will treat it in general. The result is
a set of equations which are essentially on-shell
connected-kernel Heitler equations and therefore
may be regarded as the practical realization of
the K-matrix formalism for the usual class of
three-particle nonrelativistic scattering problems.

ric energy. For z=E+ic, e-0+, we will replace
(z) by (+) ~

The crucial constraint upon the operators I"
z (z)

is that on-shell, at least, they satisfy the discon-
tinuity relations

r(+) —r(-) = -2tr(+)D, (1+6)r(+),

where

Do = v5(E —Bo),

(2.2)

and II, is the free three-particle Hamiltoriian. Do
appears in the decomposition of Go(+) into its prin-
cipal-value (G) and Dirac-5-function parts:

Go(+) =G+ iDO. (2.2)

It was shown in Ref. 1 that any I'(z) satisfying Eqs.
(2.2) on-shell will yield a set of unitary scattering
amplitudes upon solving the so-called reduced K-
matrix Heitler equations. The rationale, there-
fore, for constructing unitary theories for three-
particle scattering is to find (exact) equations for
I'(z) which permit the convenient construction of
approximate solutions which satisfy (2.2) on-shell.

One such approach is to consider the following
generalization of Eqs. (2.1):

r'(z) = t(z)+t(z)S9(z)r'(z)

=t(z)+r (z)S9(z)t(z), (2.4)

where 9(z) is such that

We suppose that 9(z) has no matrix structure with
respect to the channel indices. Obviously, I"(z)
satisfies Eqs. (2.2).

Let us write

9(+) =Be iD, ,

where B is continuous across the unitary cut. The
approximation B=O corresponds to the fully unitary
impulse approximation considered in Ref. 1. For
Bc 0 we find that
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r'(+) = r, (+) + r, (+)s ar'(~)
= r, (+) + r'(+)Bar, (~),

where

(2 5)

F(+) = t (+) + K' (+)v i t (+)D,5 F(+)

+i K~Dp(1+5)r(+),

where

(2.10a)

r, (+) = t(+)+ t t(+)5D,F,(+)

= t(~)+ t r, (+)5D,t(+), (2.6)

K~(+) =—[I+i t(+)D,]K'

is a manifestly connected operator. Similarly, we
obtain from the second of Eqs. (2.6)

corresponds to the case B=0. It is easily verified
that the off-shell matrix elements of Fp(+) re-
quired in Eqs. (2.5} can be expressed entirely in
terms of the on-shell elements since

r(+) = t(~) + K~(+)+ir(+) 5Dpt(+)

vi r(+)Dp(I + 5) KK,

where

(2.10b)

Fp(+) =t(+)+i t(+)5Dpt(+)

—t(+)5D I" (+)D 5t(~).

It will be seen later that in some sense various
approximations to the connected portion of the K-
matrix correspond to approximating G by some
other operator B. However, the K-matrix formal-
ism of Ref. 1 is much more convenient for con-
structing well-defined unitary approximations than
the preceding procedure appears to be.

If we introduce the two-particle K-matrices as
solutions of

Ks(+):—K [1T iDpt (k)]

is also a manifestly connected operator. Equations
(2.10) can be derived directly from Eqs. (2.1) using
Eqs. (2."I} and (2.9) without going through the inter-
mediate step of the disconnected-kernel equations
(2.8). In component form Eq. (2.10a), for example,
becomes

r, „(+)= t, (+)6,„+[K;(~)],.
+ tg( t8(~) 5» +Q [K;(+)]»]D,r, „(~)

7

(2.11)

k=t(+)+i t(+)D kp

= t(+) ~ i', t(+),

we find using (2.8} that'

(2.V)

K =K (2.12)

which possesses a kernel which is manifestly con-
nected after iteration. It follows from Eqs. (2.10)
that for any K such that

r(+) = Kv iKD, (1+ 5)r(+)
= K+ sr(a)Dp(1+ 5)K,

where

K= k+ k5GK

= k+ K 66k.

(2.8)

(2.9)

K= I+K

we then obtain

The operators K&~ are linearly related to the three-
particle K matrices.

We observe that the kernels of Eqs. (2.8} do not
become connected upon iteration. Thus, while
Eqs. (2.8} are perfectly valid identities which im-
ply the ordinary three-particle Heitler equations'
they are not well-defined integral equations for
determining I (+) from a given K. The disconnected
structure arising from k is easily eliminated by
summing these types of graphs resulting from 4
and its iterations to form two-particle transition
matrices.

To do this we multiply the first of Eqs. (2.6) on
the left by [1+i t(+)Dp] Then if we .decompose K

into its connected (K') and disconnected (}p) parts,

the solution F(s) of Eqs. (2.10) will satisfy the dis-
continuity Eqs. (2.2). It is assumed, of course,
that the t(+) satisfy the correct two-particle dis-
continuity relations. '

Actually Eqs. (2.10) are not very convenient ex-
cept for formal considerations. This is because
the operators of physical interest are special lin-
ear combinations of the F z„(+) and only these need
be considered. A computational program based
upon (2.10) for the on-shell matrix elements

( $8~ F~ (+) ~ p„) would generate superfluous in-
formation. Here the channel states

~
&f& ) for n

=1, 2, 3 refer to a noninteracting two-particle
state comprised of a particle o. moving freely
and a bound state of other two;

~
&f&p) corresponds

to a three-particle plane-wave state.
It is much more appropriate' to consider the

operator

g(K) = 5r (Z)5.

The on-shell matrix elements (pq~ &8„(+)~ Q„)»e
essentially the reduced K-matrix elements. ' The
on-shell Heitler integral equations relating the
latter quantities to the physical scattering ampli-
tudes are of the standard two-particle multichannel
form and their solution may be regarded as trivi-
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We find from Eqs. (2.10) that

gs„(+) =(5[t(+)+~~(+)] 5}s„
+i +$5 sy ty (+) + [ 5 les (+)5 ]sy 5

y o}Dot y„(+)
y

(2.13a)

and

~,„(.) =(5[t( )";()] 5} .
+i P gsz(a)D, ( tz(+) 5&~,+ 5»[5''„(+)5]&„}

(2.13b)

One verifies that for any tc' satisfying (2.12) that

ps (+) —ps (-) = —2igso(+)D, 4„(+). (2.14)

Obviously (2.14) follows from (2.2) and conversely.
Equations (2.13) are our connected-kernel Heitler
equations. They constitute along with the reduced
K-matrix forxnalism of Ref. 1 the practical form
of the complete K-matrix formalism for the non-
relativistic three-particle scattering problem.
They also represent the solution of the discon-
nected-kernel problem in this particular case of
the multiparticle Heitler equations.

It is interesting to note that Eqs. (2.18) can be
written explicitly in terms of the connected part
of the three-particle K matrix, since'

K,„=5,.G,(+) '+(5 ~ 5),-„

so that

K~s„=(5z' 5) s„.
But

so

xe(+) = [I+i t(+)D,]z'

5~s(*)5 =K'+i [5 t(+) 5 ']D-,K',
where K' denotes the matrix (Ks„). Similarly,

5vs(+)5=K'+i K'D, [5 ' t(+)5].
%e note that in four dimensions

and that K' satisfies

K'= 5050k O+ akOK~.

Now given any connected Hermitian K', which
implies that

&@slKs~lg &=&&/& IK'sl Qs&*,

we generate via Eqs. (2.13) a unitary theory. We
will next outline how one goes about solving this
set of on-shell equations. The special case of K'
=0 was considered in Ref. 1.

Equation (2.18a) has the general form (in the
+ case)

g s„(+)=A s„(+)—i Dt s„(+)Dot„„(+), (2.15)

where the definitions of 3 and R are obvious from
Eq. (2.13a). Let us denote the channel states of
energy E by ~ Q„(q„,E)&, where q„refers to any
other labels needed to specify the state. The ma-
trix elements one wants to determine are of the
form & Q s(q s, E) ~ g s„(+)~ Q ~(q ~, E)&. It is evident
that for Pw 0 these quantities can be found by quad-
rature from (2.15) once one has computed the ma-
trix elements (Q,(qo, E)

~ rz (+) ~ f (q„,E)& since

&es(ns, E)l ~..(+)I y.(n., Z)& =&ye(ns, E) IA (s+)I y.(n., E))
—' 2 2 &4s(vs E)IE s, (+)I @.(V', E)&5(E'-E)&0.(n', E')

I &„.(+)I e.(n., E)&
y Z', &'

(2.16)

The computation of the matrix elements &g,(qe, E)
~ g s„(+) ~ P„(q E)& constitute the principal numerical

difficulty of the entire procedure. From Eq. (2.15) we see that these matrix elements are to be determined
as the solutions of the integral equations

&eo(no, E) I & s.(+) I e.(n., E)& =&to(no, E&l &s.(+) I e.(n., E»

Z 5 &e(n., E)tft, ( ) I e(n', E')&5(E'-E)&y(n', E')I ~„.(.) I y.(~., E)&.
@t yt

(2.17)

The (finite) range of the independent kinematic variables in these equations is over the three-body phase
space appropriate to a total energy E. For E &0, that is below the three-body threshold, Eq. (2.15) be-
comes trivial and (2.17) nonexistent. Cahill' has shown that an on-shell equation of the form (2.17) reduces
to a one-dimensional integral equation with a finite domain of integration after a partial-wave decomposi-
tion.
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It is shown why the ladder-graph model is special in allowing analytic continuation of the
deep-inelastic electroproduction structure functions to describe e+e annihilation. It is also
explained why this property cannot be expected to hold for more complicated graphs that also
contribute in the Bjorken limit.

P ~ q 2Mp
M q

In the physical region for electroproduction

q &0, v&0, u&1,

and in that for annihilation

q &0, @&0, 0&+&1.

(2)

The trouble arises because of the cut that is ex-
pected to appear in the variable q' along the posi-
tive real axis; evidently the continuation from (2)
to (2) will encounter this cut. Because the annihila-
tion cross section is a sum-integral of the squared
moduli of the amplitudes corresponding to the vari-

Drell, Levy, and Yan' have considered deep-in-
elastic electroproduction and 8'e annihilation,
where one final-state hadron is detected, in pertur-
bation theory with a cutoff, and have shown that for
ladder graphs the structure functions for the two
processes are related by analytic continuations. It
is known" that this is not the case for more com-
plicated Feynman graphs that also contribute in the
Bjorken limit, and the main purpose of this note is
to explain why the ladder graphs are special in this
respect. Thus one cannot expect that the compl. ete
structure functions are. related by analytic continu-
ation. 4

It is, of course, easy to see that the continuation
is not likely to be possible' ' without considering
any specific model such as Feynman graphs. For
either process the amplitude involved is the for-
ward virtual Compton amplitude. Let the momen-
tum of the virtual photon be q. Let that of the tar-
get hadron in electroproduction be p, and that of
the detected hadron in the annihilation be -p. De-
fine

ous possible final states, the correct prescription
for calculating its structure function is as follows.
Calculate the structure function in region (2) as in
electroproduction, but with different squared mo-
menta, q, and q, , assigned to the two virtual pho-
tons. Continue. q, ' from negative to positive values,
passing above the branch points in that variable.
Do the same for q2' but pass below the branch
points. Then make q, ' and q, ' numerically equal to
q'. This separation of the two variables is an es-
sential feature, and the same effect cannot normal-
ly be achieved by analytic continuation in the single
variable q'. In terms of the variable &, if co,
= -2Mv/q, and &u, = -2Mv/q22, this prescription
reads as follows: First calculate E(&u„&u, ), where
F(&d, &u) is the electroproduction structure function
F(~). Then the annihilation structure function F(+)
is E(&a+i &ocia) F-rom . this one can see that a.

necessary condition that F(&u) is an analytic con-
tinuation of E(v) is that E(~) has no branch point
at u = 1. However, this is not a sufficient condi-
tion; a counterexample is provided by

E( ) (~ l)1/2(~ ] )1/2 (4)

Thus by examining the properties of F(u&) alone one
can never be sure that the continuation is possible,
though it is perhaps unlikely that a situation such
as (4) will arise.

Turn now to the Feynman-graph model, with a
cutoff to give Bjorken scaling. The graphs that con-
tribute2 6 in the Bjorken limit are all those having
the structure of Fig. 1, where the internal line rep-
resents the field to which the photons couple, that
is, the parton field. T is any subgraph, whose am-
plitude depends upon k' and s' = (p -k)' in the inte-
gration over the loop momentum k. In the Bjorken
limit the electroproduction structure function Em(&u)


