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By adapting the methods of the preceding paper, we use the concepts of shadow states and
indefinite metric to construct a simple static theory of low-energy pion-nucleon scattering.
This theory of s- and p-wave scattering so constructed is both finite and exactly soluble.
Scattering at negative energy also is a well-defined process. The calculated scattering am-
plitude is found to satisfy the substitution law and to be covariant, unitary, and analytic in
almost all neighborhoods of physical scattering energies. When given the masses and cou-
pling constants as input, this theory predicts the scattering phase shifts in agreement with
experiment. The present limits on the s-wave pion-nucleon scattering total cross sections
are compatible with the induced cusps from the opening up of the pseudothreshold of the shad-

ow states.

I. INTRODUCTION

The unfinished quantum field theory of low-ener-
gy pion-nucleon scattering has had a particularly
long history. After all, it was over three decades
ago that the meson theory of nuclear forces with
Yukawa couplings was created by analogy with elec-
trodynamics® and it was as early as 1942 when, on
the basis of strong-coupling theory, the suggestion
was first made that an isospin-$ resonance might
exist.? In spite of many different theoretical at-
tempts since these earliest beginnings, the basic
challenge has remained: Construction of a conver-
gent, divevgence-free theory which when solved
exactly predicts the observed experimental parame-
ters of low-energy pion-nucleon scattering approxi-
mately. A true quantum field theory for this physi-
cal phenomena has not been constructed. As dis-
cussed in the preceding paper,® the concepts of in-
definite metric* and shadow states® are valuable
tools in the construction of a finite relativistic
quantum field theory, and therefore we wish to em-
ploy them here in our consideration of low-energy
pion-nucleon scattering. Before introducing these
ideas it is useful to review briefly some relevant

aspects of theoretical approaches to this problem
in the past.

In the early fifties® in the quantum-field-theory
approach to this problem a fundamental question
concerned the proper field-theoretic interaction to
be used. The pseudoscalar interaction was general -
ly preferred over the pseudovector interaction be-
cause the pseudoscalar interaction can be made re-
normalizable by adding a meson-meson interaction
to it.” A problem still remained though, as to how
to carry out calculations when the coupling con-
stant is large. Another aspect in the choice be-
tween these couplings was that in lowest-order per-
turbation theory both types of interaction were
found to yield identical results® provided the cou-
pling constants satisfied the relation G/2M = f/;
but then both were wrong in predicting that s-wave
scattering should dominate pion-nucleon scattering
at low energies.® Yet about the same time it was
recognized from the analysis of nucleon-nucleon
interactions that some additional s-wave interac-
tion was needed, specifically, a term

fdf Too? (1.1)
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corresponding to a short-range repulsive force.®''°

Discussion concerning the correct coupling con-
tinued, for while the pseudoscalar and pseudovec-
tor interactions are in some ways equivalent, they
were found to be quite different for the description
of virtual processes in the static limit: For ex-
ample, the pseudovector coupling of pion and nu-
cleon fields leads in this limit to a (G- _V>)¢> coupling
corresponding to p-wave emission of pions as had
been observed at moderate energies. Instead, the
pseudoscalar coupling directly described the an-
nihilation of a nucleon-antinucleon pair and the cre-
ation of an s-wave pion, and although the Tamm-
Dancoff approximation, among other methods, was
used extensively to study higher-order processes
for the pseudoscalar coupling, the dynamical de-
scription remained incorrect. As is well known,

a description for p-wave scattering which had some
contact with experiment was finally provided by the
Chew-Low theory*! which was based on the unre-
normalizable (5 - V)¢ interaction. It not only pre-
dicted the (3, 3) resonance but also was the first
serious attempt towards an extensive understand-
ing of nuclear forces, photoproduction, the static
properties of nucleons, as well as low-energy pion-
nucleon scattering. In the one-meson approxima-
tion the solution was nonunique,*? approximately ob-
tained, and cutoff-dependent.

In this paper we wish to rekindle the theoretical
search for a finite field-theoretic description of
low-energy pion-nucleon scattering. To do this we
shall adopt some of the methods of I, in particular,
indefinite metric and shadow states in order that
the static theory so obtained is finite with scatter-
ing at negative energies a well-defined process.

In accordance with the above discussion concern-
ing the choice of static interactions, for s-wave
scattering we use the &; . $ coupling and for p-wave
scattering the (§-V)7- ¢ coupling. To make the
theory soluble in closed form, the coupling to me-
sons is handled in such a manner that only one-
and no-meson states are considered, i.e., we make
the one-meson approximation. The substitution
law is still valid in this theory because we follow
the quantization procedure discussed in I for the
coupling of a Klein-Gordon field to a source. That
is, in order that the scattering amplitude is de-
fined for both positive and negative energies, we
will associate the entire meson field of both posi-
tive and negative frequencies with annihilation op-
erators corresponding to quanta with these respec-
tive energies. Such a formulation of quantum field
theory has been given previously'® and has been
very useful in both fundamental investigations in
field theory and in the quantization of tachyon and
infinite-component fields. By this method of quan-
tization, scattering at negative energies is a well-

defined process, and we achieve in our approach
a simple one-meson approximation which satisfies
the substitution law with the scattering amplitude
having a left-hand cut.

Because of this the pole terms, say for low-
energy p-wave pion-nucleon scattering, are of two
distinct types: On the one hand there are the con-
ventional direct-channel poles having positive met-
ric. But on the other hand, the exchange contribu-
tion which corresponds to a resonance for the nega-
tive-energy mesons is described by a second set
of poles which may or may not have a negative met-
ric. In the case of p-wave scattering the resulting
contribution of these poles in the Born limit is the
same as making the nucleon-pole approximation in
lowest-order perturbation theory.

The organization of this paper is as follows: In
the next section, we study s-wave scattering using
a direct-channel coupling of the second type to rep-
resent the exchange in the crossed channel. Com-
parison is made with experiment. In Sec. III the di-
rect and exchange contributions to p-wave scatter-
ing are given, and a number of properties of the
complete amplitude are examined. In Sec. IV we
show that the amplitude satisfies the substitution
law and study its analytic properties. Section V
then continues with a comparison of our exact p-
wave results with experiment. The paper con-
cludes in Sec. VI with some general remarks and
a discussion concerning relativistic modification.
We also examine the effects on the s-wave total
cross sections due to the pseudothreshold of the
shadow state.

II. s-WAVE SCATTERING

The interaction we take to describe s-wave scat-
tering is the two-meson-exchange term which was
mentioned in the Introduction. It is needed to give
a spin-independent repulsive-core contribution to
nuclear forces and provides a direct-channel de-
scription of p-meson dominance in the crossed
channel 77—~ NN. During the past several years,
current-algebra calculations'* have supported the
idea that the universal coupling of the p meson to
pions and nucleons’® is responsible for the s-wave
pion-nucleon scattering lengths being so small and
of opposite signs. We shall accordingly treat s-
wave scattering by means of a four-point-interac-
tion model similar to that constructed in Sec. VI
of I.

The static model is defined by the Hamiltonian

H=H+Hshadow ’ (2‘1)

where H=H,+H, and
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Hy= ; Jd§%[¢§(x)¢a(x) +VPL) Vo (x) + 12D L(x) P o(2)], (2.2)

H,= g [ d%aZp(RDOL (7o Tad ol IR+ [ AR ARp(RDGL () O~ 37 T)GulIp(R) . (2:3)
The meson fields ¢, and ¢}, are given by

bolx)= f (2—@% [ag(#, R)eiF K00 4q (o, _R)emilF %-un], (2.4)

$L0) = f % [al(+, B)e HF* K0 1 g1 (- _R)ei(R" XD, (2.5)

with o the meson-field isospin index. The commu-
tation relations are

>

[a,(+,K), abo (e, k)] = €0)5(k =K")b,
[a(x,K), ag: (+,k")] = [ay(s, K), al(F, k)] (2.8)
=0,
with
w(k) = ew)w(k),

wk)=(2+k*)Y2, ew)=+1 as w20, 2.7)

Notice that the entire meson field with both posi-
tive and negative frequencies is associated with
corresponding annihilation operators. This meth-
od of quantization for the above Hamiltonian yields
a one-meson approximation having a left-hand cut.
In the interaction Hamiltonian the nucleon fields
are suppressed since we shall be concerned only
with states which always contain one nucleon.
Since this is a static theory, we may set the nu-
cleon energies equal to zero. Because of Eq. (2.6)
the physical space is an indefinite-metric space.

The interaction Hamiltonian is used to simulate
p dominance in the crossed channel by means of
two direct-channel couplings. It is seen from H,
that g,? is the coupling constant for. the s-wave
pion-nucleon scattering states in a pure /=3 state
and that likewise g,? is that for a pure /=3 state.
These coupling constants will be determined in a
moment by the condition that the s-wave scatter-
ing lengths have the p-dominance values®®

/S
Y2 4mm® 1+p/m, 2.8)
Q372 = "%al/z .

Up until now, we have not introduced the con-
cept of shadow states. We do this by means of a
set of continuum channels which we take to be cou-
pled in the same manner as the physical pion-nu-
cleon scattering channels introduced above. To be
precise,

Hgogow =Ho(dL, 0 ) +H, (6T, 0 (2.9)

with H, and H, given by (2.2) and (2.3) where the
shadow-meson fields ¢! and ¢, are expressed in
terms of shadow creation and annihilation operators
which satisfy

[bo(,K), b0 (+, k)] = —elw) 5 - k'), ,

[bale,K), b (£, K] = [bo (s, K), 1(7, )] (2.10)
=0 5
with
wk)=ew)w, (&),
(2.11)

ws(k)=(usz+E2)”2, e€w)=+1 as w20.

First notice that we have chosen in (2.10) an oppo-
site metric for the shadow channels from that taken
above for the pion-nucleon channels. A second es-
sential difference from the normal channels is
made in the choice of boundary conditions for the
shadow states: For these states there are no run-
ning waves, but only standing waves. This pre-
scription applies to the entire shadow state and not
merely to the meson alone in that state. The con-
sequences of having such states are carefully dis-
cussed and examined in I via a number of multi-
channel soluble models.

The scattering amplitude is then calculated by fol-
lowing the standard procedure, say as given in I.
The “in” scattering states are determined by a
state with a plane wave and outgoing waves in the
normal channels, and standing waves (principal-
value Green’s functions) in the shadow channels.
The striking result is that the T' matrix is nonvan-
ishing only for the physical channels. We find

T,s=e'**3sins, 5, 2.12)
where
12mwl(w)
cotd, ;= ——5— 2.13
1,3 gl,azk ( )
with
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w_ 2 5(5)(g{,3)2 5(5')(8";,3)2
Rel, o) =127 @fk (253(£_w)_2£,3(5,_w))

where £= (B2 +12)"2, £’ =(k*+p2)"%. The subscripts “1” and “3” denote, respectively, I=% and 3, and in
Eqs. (2.13) and (2.14) the plus (minus) sign is to be taken for I=% (I=%). The Fourier transform, p(k), of
the s-wave form factor, p([%|), has been set equal to one for all % since a cutoff is not necessary. Notice
that the scattering amplitudes are given in terms of the renormalized coupling constants and that the direct-
channel renormalized poles are at A=0 in the static limit.

The s-wave pion-nucleon phase shifts then can be written in the effective-range form

(g73) cown 3
127w

(2.14)

=1 -wr, sw), (2.15)

with

e(£)(gls)?  e(E)(grs) ) ' (2.16)

o, 1 2 (
7’1,3(w)‘i12.n.2 (PJ’k dk 2t —w) 3¢ —w)
In the effective-range approximation the effective ranges are especially simple; they are
€ ) r \2 e(g’ r )2
o [ wa ( (Dl _ et
3 3
(&7 sV (. -
.—_iéi_(&s_“) . (2.17)
127\ peu
However, since Eq. (2.14) can be evaluated explicitly the phase shifts can be calculated exactly. We find
_ 1/2 2 _ 2)1/2 2 w?)1/2
7y sw) == G [—p’s 2“ 26 2) ln(u}+(wu w) )+( o ) /1+ sin ‘-Zf—)] (2.18)

6m w s w s

1
7, 3w=0)=% 1977

for p <w <p,, i.e., for physical pion-nucleon scat-
tering below the pseudothreshold for the shadow 0 — B | E— T T
channels. In the concluding section of this paper,
the behavior of 7, ;(w) near the shadow-meson
pseudothreshold is carefully examined and dis-
cussed. To determine (g7 ;)* we define the s-wave
scattering lengths by

-1 2 (2.19)
kcotd, , “ta +0(k?) . . -

I —— THIS PAPER s .
So by Eq. (2.15) we find e RWF N

PHASE SHIFT (deg)
T
/

( & ]_’:3 )2 ! | 1 | ! | 1

a3~ (o] 50 100 150 200
=12 1=pur, (w= ’
[l - urow=u) Tigp (MeV)

with 7, ;(w = ) given by Eq. (2.18). Thus, by Eq.

(2.8) (g7,5)* can be expressed in terms of f,”.
Using the exact result and not the effective- I —

range approximation, we now confront Eq. (2.15) — THIS PAPER -

with experiment. To take some account of nucleon | RWF -

recoil, we take

w—w*=w+k?/2m,

in the center-of-mass system where m, is the nu-
cleon mass. Then for a p(755 MeV) width of 145
MeV as input'® we find the scattering lengths to be

PHASE SHIFT (deg)

L | L

a,=0.166(1/u) [(0.176+0.009)(1/u) exper.], 0 50 100 150 200
(2.20) T|ab (MeV)

as=-0.083(1/u) [(~0.101+0.009)(1/u) exper. ] FIG. 1. s-wave phase shifts for pion-nucleon scatter-
ing. The empirical values are the best solution in the

as compared with experiment.!” We have taken p, 0-350-MeV range from Ref. 18.
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as determined by the threshold for the (3, 3) reso-
nance in Sec. IV of this paper. In Fig. 1 the phase
shifts are plotted as given exactly by Eq. (2.15)
with respect to the “best solution” of Roper,
Wright, and Feld.® There is agreement, and it
is better at the lower energies as one expects
since this is a static model. It is perhaps also
interesting that for the lower energies there is
little change as far as the phase shifts are con-
cerned if one follows the same procedure and uses
the effective-range approximation instead of the
exact solution. In that case the effective ranges
are constant, being

7,=0.058(1/p),
r5==0.032(1/p)

whereas for the exact solution the corresponding
effective -range functions are monotonic, averag-
ing to about these values over the lower energies
but changing sign at about 140 MeV.

(2.21)

III. p-WAVE SCATTERING

In quantum field theory in the perturbative ap-
proach to p-wave pion-nucleon scattering there
are both direct and exchange contributions in the
static limit from the (§ - V)7 - $ interaction. In our
approach, as discussed in the Introduction, the ex-
change contribution is described by an equivalent
set of poles in the direct channel. In the case of
p-wave scattering in the static limit the direct and
exchange I=3%, J=% poles are treated as one. This
is possible because in this limit they have the
same energies.

Thus, the static model Hamiltonian is defined by

H=H +Hshadow ’ (3'1)

where H =H je0n +H,; and the interaction Hamilto-
nian is of Yukawa type

H,=%2—- Lo J' AXpF)INTGE - V)7 N

+310- f AFPFN'T 5,7+ 0, 5N + A1, - V) o N]

+2 fo dep(X)A’Tsita3;¢aN +H.c., (3.2)

where N, N’, A, and A’ are (1,1), (1,3), (3,1),
and (3, 3) states, respectively, in the notation
(21,2J). The matrices s; and ¢,, labeled by spinor
(isospinor) and vector (isovector) indices in the nu-
cleon and pion spaces, are the generalizations of
o, and 7;, respectively. For example, the nonrela-
t1v1st1c s; couples the J =% nucleon to a p-wave
pion to form an object which transforms as aJ =%
state in the N’ spin space. Notice that if there
were only the direct-channel contribution, there

would only be the first term with /2 replaced by
unity.

The meson fields ¢, and ¢, are again quantized
in such a manner that scattering at negative energy
will be a well-defined process. They are given by

a0~ [ Gapriagysloatr D7 i
+ag(-, —E)e"(‘:';"‘")] ,

3.3

dk -
¢L(x)= IW[aZ‘H’kk i(k-x-wt)
+al(=, K)et kX -wn],

(3.4)

Notice that a,(+,k) is the annihilation operator for
a positive-energy meson having isospin « and will
be used to define the physical scattering amplitude
for scattering of positive-energy mesons. The cor-
responding positive-energy creation operator is
al(+,k), which occurs in the field ¢1(x). The lat-
ter field, ¢I(x), appears in the “H.c.” part of the
Hamiltonian in Eq. (3.2). If only these positive-
energy parts were included, the standard soluble
static theory having only direct-channel contribu-
tions from positive-energy poles would be the re-
sult. The negative-energy parts of the fields, i.e.,
the contributions from a,(-, -k) and al(-, -k), are
a direct consequence of the quantization method*?
adopted here. These components are essential for
the inclusion of the exchange contribution in p-wave
scattering and allow us to give content to the “sub-
stitution law” as applied to scattering processes.
This aspect is discussed in the next section. The
commutation relations for the meson creation and
annihilation operators are the same as for the s-
wave case,

[ag(+,K),al (+,k)] = €w)d(k =K")5 0 ,
[a(£,K), ay (£, k'] [aq(+,K), al (%, k')] (3.5)
=0,
with

w(k)=ew)w(k),
wk)= (2 +K2)Y?, ew)=+1 as w 20. (3.6)

The nucleonlike fields satisfy the commutation re-

lations
[N,NT]=[N;,N{]=[A, A"]= -[a;, A]]=1,  (3.7)

and all others vanish.
The shadow part of the Hamiltonian is given by

=H pgon (01, 0 +H (9], ) (3.8)

H shadow —
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with the shadow fields quantized as in Egs. (3.3) and
(3.4) with their quanta, b,(+,K) and b} (+,k), satis-
fying the commutation relations (3.5) with @, re-
placed by b}, etc., as for the s-wave case.

From the full Hamiltonian, by following the meth-
ods in I the unitary nonvanishing scattering ampli-
tudes for positive energies are found to be

(3.9)

where we have introduced the labels i=1,2,3 for
the three phase shifts 6,,, 6,3 = 8;,, 653 in terms of
the notation §,, ,,. The phase shifts are given by

> ‘6. :
T{ =e'® sind, ,

cots, _wReD,w)

MRS (3.10)
where in pionic mass units
"*=4L:<' 58, (3.11)
Rep)=1 -, 0 [ (SRS - 750 )
(3.12)

with &= (B®+2)Y2, &' =(k*+p2)"?, and p(k)=1.
Note that f? is the renormalized coupling constant.
The projection operators, P;,, for positive-ener-
gy states of definite isospin and angular momentum
can be used to express the observed pion-nucleon
states having positive energy in terms of these am-
plitudes. We label the meson indices by a single
index ¢ =(a,q), p=(a’,P) for the initial and final
mesons, respectively. Then for

T;p(w) 3 E P, )T ,w), (3.13)

the appropriate projection operators are (e.g., see
Refs. 6 or 10)

~ > A

P(p,q)=5T ¢> T <i> @-pGE-D,
PL(p,q) =57 ¢ [30+4-CG-DE-D],
P (p,q)= <¢>a é dxT$ )G PG4, (3.14)
Py(p,q)= (3% + bo =57 5T bo)
]

X[3p+4~ (G- D) -q)

Note that the isotopic wave functions, ¢ or ¢*,
for the pion in the initial or final state are given
by

‘iﬂ* =\/}?(lyii, 0);

$0=(0,0,1).

Restricting our attention for the moment to the
Born terms, we see that it is
3
T8 = _ik_

w (3.15)
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The projection operators, P,’,, then yield the con-
ventional nucleon Born term contributions from the
direct and exchange diagrams.

Scattering at negative energy is a well-defined
process in our theory because of the quantization
procedure we have employed above in which the
meson field contains contributions from a,(-, -k).
Consequently, content can be given to the substitu-
tion law and this will be done in the following sec-
tion; first, though, it is of interest to examine the
analytic properties of the amplitude, T;, particu-
larly in the region near the real energies at which
physical scattering takes place. For positive ener-
gies, w >, we have already found

A R3

> . =
T;@w +ie€) wD,@w +i€) ’

(3.16)

where

. 1 k2
D,(w +i€)=1—-wx, p <f k2dk —2§3(Z‘(-§)w —p

2 3t
- (Pfk dk——————zg,,,(g, _w)) )
(3.17)

Notice that along the real axis for w >y this ampli-
tude is continuous as a function of energy and that

it is indeed analytic in almost all neighborhoods of
real physical scattering energies. Because of the
shadow states in the theory, T of Eq. (3.16) is how-
ever a piecewise-analytic function with points of
nonanalyticity at the positive- and negative-energy
thresholds for the shadow mesons. At such a junc-
tion between two analytic functions, say at the shad-
ow state’s pseudothreshold at positive energy, the
explicit behavior of the amplitude and its corre-
sponding experimental observables, such as total
cross sections and polarizations, merits special
study. In Sec. V we show by explicit calculation
what happens to the total s-wave pion-nucleon

cross section at the shadow meson’s pseudothresh-
old.

IV. p-WAVE SCATTERING:
THE SUBSTITUTION LAW

This theory of p-wave pion-nucleon scattering
contains the meson field, considered in the one-
meson approximation, which contains both positive-
and negative-frequency mesons. It therefore has a
left-hand cut. In this section we show that the theo-
ry is also crossing-symmetric even though this
crossing symmetry is obtained by substitution rath-
er than by analytic continuation.

Consider the p-wave Hamiltonian and meson field
¢o(x) as defined in the preceding section by Egs.
(8.2) and (3.3). Since a static theory is invariant
under [ —J, with no loss in generality we can
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show the crossing symmetry for each separately.
Let us pick a definite J value, say J=1. Notice
that like in the Klein-Gordon theory of charged me-
sons the corresponding charges for positive- and
negative-frequency mesons in the field ¢ ,(x) must
be opposite. This follows by gauge invariance of
the first kind and is analogous to the correspon-
dence of negative metric for negative-energy me-
sons. So in the p-wave Hamiltonian the “7* field”
(coupled to an “n” to get a “p,” by the first term of
the Hamiltonian, and coupled to a “p” to get a
“A**,” by the third term of the Hamiltonian) has
positive-energy 7* quanta and negative-energy m”
quanta. Hence the 7™z with a negative-energy pion
is coupled to the “p” but not to the 7°» negative-
energy channel. Similar comments apply to the
other meson channels. For example, for positive
energies the 7*p amplitude is proportional to the
T;-4,, amplitude and entirely independent of the
T;-., amplitude whereas for the negative-energy
scattering processes it is the 77p amplitude which
has this property.

The projection operators, Pj,, for negative
states of definite isospin and angular momentum

ke

are therefore different from those used at positive
energy. For negative energy for

T, w)=32 P, (b, )T, w), (4.1)
17
the appropriate projection operators are
P(p,q) =57 o7 5@ DG -H),
P50, a) =37+ $oT ¢ [34-5-E-DE -D)],
P50, 0)=($o $2 — 57+ $o7+ $2)0 - DG D), (4.2)
P::s(p,q)z(&;a '(i);' _é?'q’sa?'é;")
x[34-5 -G - DG )]

The mesons are labeled by the single index ¢ = (o, §)
p=(a’,p) for the initial and final mesons, respec-
tively.

We can now proceed to do the explicit calculations
at negative energies by the methods used in paper
I. It is crucial to recognize that at negative ener-
gies the pions have negative norm and that the
Klein-Gordon propagator dictates that the physical
scattering there is at —|w|—ie just as it is at |w|
+ie for positive-energy processes. The resulting
I,J amplitudes at negative energy, w=-u <0, are

T w=-u<0)=

€(£)r?

or, since the metric is negative (¢=-1),
AR

1 2
w[l Wk, ;(fk dkzga[g —w —ieew)] ~

T (—u—i€)=

e(&)R?

Then from Eq. (4.1) it is seen that
Ty o (=lw) =33 Ps,(q, )T (= |w])
1J

=T, ,(lw).

- o SO\
u[l —uN <fk &253(3; —u—i€) _(Pfk &25’3(5' —u))]

, (4.3)
2 g, (K ’
¢ [ra gt )
(4.4)
(4.5)

This is the substitution law. Hence for the calculated transition amplitude at negative energy, the negative-
energy meson in the initial state is to be identified with its positive-energy antiparticle inthe final state. No-
tice that we have shown here only that crossing symmetry is meaningful for transition amplifudes, rather
than being a property of the negative-energy states themselves.

Now it is natural to consider the question of the analytic continuation of the positive-energy amplitude,
T;w), as given by Eq. (3.16) as w is continued from w >pu. It is natural to take the amplitude in the domain
0 <w <y to be the analytic continuation of 7;(w), and similarly to take for the domain —pu<w <0 the analytic
continuation of T;(w) from the negative-energy domain. Their leading terms (the Born poles at the point

w =0) will be the same.

V. p-WAVE SCATTERING: RESULTS

Given this simple, finite theory of low-energy p-wave pion-nucleon scattering we must now confront its
exact quantitative predictions with experiment. The p-wave pion-nucleon scattering lengths and phase

shifts can be computed from

hiks cotﬁi

w* =1—w*r‘(w*),

(5.1)
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TABLE I. p-wave scattering lengths,
Type Predicted length (1/u)3 Hamilton-Woolcock 2 (1/u)?
ay -0.121 —0.1010.007
ags -0.045 -0.029+0.005
ag —0.045 —0.038£0.005
Aass 0.178 0.215+0.005
2 Taken from Ref, 19,
where we find forv e <w*< g
A e(§)r? (&K
*) = = 2 -
riw?) 21:‘?] ¥ dk(&*(g—w*) E3(E" —w™)
_ ws® = 2 [s?=p? 2 2 (w2 —p2)3/2 w* + (w*2 = p2)L2
_7\,[<—1;;§~—> +-7; T" +-1;w*ln(u,s/u)—-; e In m
(“_32 - *2)3/2 2 . Lw*
- = — 5.2
o 1+ - sin . (5.2)

with w* =w +%2/2m, in the center-of-mass scatter-
ing frame. In comparison, evaluation in the effec-
tive-range approximation gives

riw*=0)= g—;f k%k(M - 6(_51’22_)

§4 £I4
=3nps =p).

(5.3)

Using this, from Egs. (5.1) and (5.2) one can see
that the (3, 3) resonance is predicted to exist.

For comparison with experiment!® we take f2/47
=0.081 and use the exact result as given by Eq.
(5.2). Requiring 6,, to pass through 90° at the posi-
tion of the (3, 3) as determined by the Roper-
Wright-Feld (RWF) phase-shift analysis,'® we find
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FIG. 2. p-wave phase shifts for pion-nucleon scattering. The empirical values are the best solution in the 0-350-
MeV range from Ref. 18.
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the mass of the mesons in the shadow states to be
2.7u. Notice that the value for the corresponding
“shadow threshold” is T, =288 MeV to be compared
with the N* threshold of 7', =193 MeV and the low-
er inelastic 7aN threshold at 7, =170MeV. The
precise mass value of the “shadow meson” should
therefore not be taken too seriously as the effects
of these and other intermediate states have not
been included in our present analysis. (In the ef-
fective-range approximation the shadow mass is
shifted to a higher value.) The p-wave pion-nu-
cleon scattering lengths are defined by

£ cotd, = al L0, (5.4)
i

and we find the numerical values given in Table I.
They are in agreement with the Hamilton-Wool-
cock values.'®

The exact theoretical predictions for the p-wave
phase shifts can be determined from Egs. (5.1)
and (5.2) and are plotted in Fig. 2 against the “best
solutions” of the RWF analysis. One can make
several remarks: First notice that a standard by
which to judge the success of the theory is pro-
vided by the experimental difference between the
6,5 and §;, phase shifts because this theory, as a
static theory, predicts 6,,=06;,. We are pleased by
the fact that the theoretical 6%, =6, falls about half-
way between the 6, and 63, phase shifts. A better
fit to experiment could be obtained by altering the
coupling of the (1, 3) and (3, 1) poles but this will
introduce a new parameter. We resist the tempta-
tion to do this. The p,, empirical phase shift in-
dicates that an attractive contribution is needed as
a next order correction, i.e., the attractive inter-
action due to N* exchange. By following the same
procedure but making the effective-range approxi-
mation, one obtains almost identical p-wave phase
shifts with constant effective ranges of

7 =(~0.94, -0.23,0.47)(1/u) . (5.5)

For the exact solution the corresponding effective-
range functions maintain the same signs and aver-
age out to about these constant values over the en~
ergies below the (3, 3) resonance.

V1. DISCUSSION

Armed with the concepts of indefinite metric and
shadow states we have constructed in this paper an
extremely simple static theory of low-energy pion-
nucleon scattering. This theory, both finite and
exactly soluble, applies to both s- and p-wave
scattering, and when given the masses and cou-
pling constants as input, it successfully predicts
the scattering phase shifts in agreement with ex-
periment. The most striking facts are that the

scattering amplitude so obtained is unitary, satis-
fies the substitution law, and is analytic in almost
all neighborhoods of real physical scattering ener-
gies.

Nevertheless, since we have worked here com-
pletely in the static limit, there remains questions
concerning the relativistic generalization of this
theory. That is, “What is the connection of this
simple static theory with a fully relativistic quan-
tum field theory?” As our viewpoint stresses the
importance of the concepts of indefinite metric and
shadow states for construction of a finite and con-
sistent theory, it is especially imperative for us
to inquire as to the correct treatment of the shad-
ow states, needed for the finiteness but which
should not contribute to the probability, i.e., not
enter the unitarity sum. This question has already
been investigated elsewhere® %! so we make only a
few brief remarks here in review. The crucial
point regarding the shadow states in both the static
theory as well as in the relativistic theory is to
use a standing-wave propagator for the complete
state and not merely for the shadow principle
alone. If it consists exclusively of physical quanta,
then the usual forward propagator is used and
these physical states by themselves lead to imagi-
nary parts for real momenta. For states involving
shadow quanta there thus should be no imaginary
part. The shadow quanta affect the scattering am-
plitude only through its real part and in this man-
ner contribute to the dynamics so as to have a
finite theory. For example, consider the single-
loop diagram, say, for the field-theoretic equiva-
lents, to the second order, to our model for p-
wave pion-nucleon scattering. This is shown in
Fig. 3. For the physical state, (a) the propagating
Green’s function is given by the product of the two
causal propagators:

» - -1 -7
G*(q,p) F-pitic pP—mPtic " (6.1)

But for the shadow state, (b) the standing propaga-

physical meson

7
\\ i //
\\ ) // \\ s

~ q i

FIG. 3. Field-theoretic equivalents, to the second
order, to the p-wave pion-nucleon static model.
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tor is used which is obtained by taking the average
of the forward and backward propagators?®?:

-1 -1
P -ul+ie pP-mi+ie

G*(q,p)= %(

_ -1 -1
-us—ie pP=-mP-ie/’
(6.2)

With this prescription, diagram 3(b) has no imagi-
nary part and thus the shadow state does not con-
tribute to the unitarity relation. For more compli-
cated diagrams, the calculation has to be arranged
such that physical and shadow intermediate states
are explicitly displayed. When this is done, the
net result is that all the imaginary parts are as-
sociated with the physical intermediate states and
the resulting amplitude is fully unitary.

As discussed in Sec. III the onset of the shadow
channel is a point of nonanalyticity as it is the
point of join between two different analytic func-
tions. We shall refer to this point as a “shadow
pseudothreshold” since it may only be observed in-
directly through its effects on normal channels,
say for example on their total cross sections. As
the cross section for a new channel at threshold is
primarily s wave, we expect the anomaly in the
physical channel to occur only in those partial-
wave cross sections which are allowed to couple
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FIG. 4. Behavior of s- and p-wave “proper effective-
range functions” near-the shadow pseudothreshold. The
relations between R; (R,) and 7y 3 (7;) are given in
Sec. VI of the text.

to the s-wave shadow partial wave by angular mo~-
mentum and parity conservation. This is indeed
the case for the theory studied in this paper as is
apparent directly from the integral expressions
for the s- and p-wave effective-range functions,
Eqs. (2.6) and (4.2). Whereas above the shadow
pseudothreshold the principal-value prescription
smooths out the singularities, below it the first
derivative of the s-wave effective-range function
can be infinite and likewise the second derivative
of the p-wave effective-range function. The pre-
cise behavior of both of these functions at the
pseudothreshold is displayed in Fig. 4 where the
proper functions R, and R, are defined by

gr 2

1,3

7y 3= ——R
1,3 6 CE)
—1

7’;—2)\(Rp-

To understand the physics of this cusp it is use-
ful to recall the well-known fact that in the usual
case of a normal threshold similar cusps are ex-
pected to occur. For example, let us suppose
there is only one channel open below the threshold
T,. Then, if the new channel starts to diminish
the flux in the old channel at a rate having an in-
finite energy derivative, the old cross section will
decrease above T, at an infinite rate. This isa
classical argument based on flux conservation and

[oX] T T T T T T

s-WAVE CROSS SECTION (mb)

250 300 350
T lab (MeV)

FIG. 5. Predicted s-wave cross-section behavior near
the shadow pseudothreshold. Empirical observation of
such an effect would indicate that a real shadow state is
being dynamically excited.
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so we do not expect such a cusp above a sZzadow
thveshold. However, below T, the physical and
shadow thresholds are physically identical, and
thus there are quantum-mechanical virtual transi-
tions into the new channel which can produce an in-
finite slope below in both cases.

The important question of course concerns the
shape and magnitude of the corresponding cusp in
physical observables, such as the total s-wave
pion-nucleon cross sections. Experimentally, the
s-wave cross sections corresponding to the favored
RWF solutions vary at 345 MeV by 0.5 and 1.5 mb
for o, and 0,, respectively. The predictions based
on our s-wave static model are given in Fig. 5.
The shape and magnitude of the cusps should per-

haps be noted, but one should ignore the over-all
slope of the cross sections, as well as their total
magnitude, since we do not expect the static the-
ory to predict such features accurately at such
high energies. Here we have assumed the shadow
meson to be stable; if it were unstable we would
expect instead a “woolly” cusp.
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