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A model is presented for the decay K&—w yy, in which the amplitude is determined in
terms of the amplitude for Kz- x+x m . The decay rate is found to be 13 sec . Using uni-
tarity, a model-independent lower bound is obtained on the spectrum and decay rate of this
reaction in the kinematical region s &M —7p. , where s is the invariant mass squared of the
photon pair and M and p are the kaon and pion masses.

I. INTRODUCTION AND KINEMATICS by the curves

The radiative nonleptonic decays of the K meson
hold interest for the possible insight that they
might offer into the dynamics of weak nonleptonic
processes. ' One such decay is K, -vi'yy. In the
limit of CP invariance (which we assume), this
process involves only the parity-conserving part
of the nonleptonic Hamiltonian. Therefore, the
general form of its matrix element is similar to
that for a parity-conserving process like mm-yy,
and is given by

M=@(e e'k ~ k' —e k'e' k)

+ G( e ~ e'k ~ Qk' Q+ k ~ k'e ~ Qe' Q

—e ~ Qe' ~ kk' ~ Q -e k'k ~ Qe' ~ Q),

where the symbols are defined in Fig. 1. The ex-
pressions multiplying I' and G are the two possible
Lorentz- and gauge-invariant amplitudes that can
be constructed from the available four vectors. '
E and G are, in general, functions of the two in-
dependent invariants s and t, where we define

s = (q —p)'= (k+k')',

t=(q —k)',

t' = (Q —k')',

s+ t+t' =M'+ ~',

Mand p, being the K-meson and pion masses, re-
spectively. The physical region of the invariants
is shown in the Dalitz plot of Fig. 2 and is bounded

Note, in particular, that s, the invariant mass
squared of the photon pair, lies in the interval

0&s&(M- p)'. (4)

2

Pne model that has been proposed for K, -m'yy is
based on the assumption that the process is domi-
nated by the g pole; K, -g-~'yy. ' In such a model
the amplitude becomes proportional to the ampli-
tude for g-m'yy. The latter has been studied in a
vector-meson-dominance model4 which yields a
structure of the form (1) with both E and G depen-
dent on s and t. There exists, unfortunately, no
reliable estimate of the K,-q vertex, nor is it clear
that other intermediate states (such as v' and q')
are unimportant. In any event, it seems worth-
while to consider alternative models that can be

Q
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FIG. 1. Kinematic notation for K2- x yy.

s=O

FIG. 2. Dalitz plot for K2—~ yp. The physical region
is bounded by the curve and the line s = 0. The shaded
area (R) is the region in which unitarity constraints are
obtained on the Dalitz-plot density of this reaction.
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calculated unambiguously and which can be made
plausible from the point of view of current algebra.
A further question of importance that deserves in-
vestigation is to what extent one can make a model-
indePendent statement about this process on the
basis of general arguments like unitarity.

We present here a model in which the amplitude
of K2 m yy is completely determined in terms of
the known amplitude for K, -m'm m'. A feature of
the model is that it produces an amplitude con-
taining only the first of the two gauge-invariant

forms given in (1}. Furthermore, the function F
that emerges depends only on s and not on t, im-
plying that the Dalitz-plot density varies only in
the vertical direction, and not in the horizontal
direction. The amplitude (which is obtained in
closed form) is shown to possess a plausible soft-
pion limit. Finally, we extract from the calcula-
tion that part which is a consequence only of uni-
tarity, and derive a model-independent lower
bound on the decay rate of K, -m'yy into a specific
region of the 2y invariant mass.

II. THE MODEL

The model is illustrated in Pig. 3. We assume a point coupling for the K, -m'm m' vertex and minimal
electromagnetic coupling of the pions to the photons. The assumption of a point-coupling for K, -m m 7 is
justified to the extent that the Dalitz plot for this reaction is fairly uniform, there being a small variation
along the vertical axis (that is, with the energy of the s ), but no discernible variation in the horizontal
direction. (We attempt later to take some account of the nonuniformity. ) The graphs (a) and (b) in Fig. 3
are divergent but this divergence is exactly cancelled by the divergence of the "seagull" graph (c}. We ob-
serve in particular that for s &4p.', the amplitude has an absorptive part which can be obtained by setting
the intermediate pions on the mass shell. Defining the invariant amplitude by

(» (p)y(k, e)y(k', e')(M(K2(q)}=A(s, f)F„„F'"'=2A(s, f)(e e'k ~ k'-e ~ k'e'k),
we have

x(v'(p, )s (p )IMIK, (q)s'(-p)}(2s)'('&'(q —p, —p ),

where P stands for an integration over the phase space of the intermediate»'s state Carr.ying out this
integration, we obtain

lm(s'yylMIK, )= in 8(s-4l(, ')(e ~ e'k ~ k'- e ~ k'e'k},ge' 2p' )ts+(s —4p')"'
4s s vs -(s —4 p')'"

where g is the coupling constant for K, -m'w n',

(7('&(-&(o[M ~K,) =g,

and is numerically equal to 0.71x10 8.' Equation (7) implies that

(8}

lmA( )- —" 1 " &(s-4 ')
4s s' )(( s —(s —4p')'"

(Qbserve that the function A is independent of t This is. a direct consequence of the fact that the Dalitz
plot of K2-w'v w' has no horizontal variation. } To obtain the real part of the amplitude corresponding to

K2 K2
+ "2 +

y K2

(b) (c)

F1G. 3. Model for K2 s'(ry.
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the Feynman diagrams of Fig. 3, we make use of an unsubtracted dispersion relation for A(s), ' that is

1 " ImA(s'}ds'
ReA s) = — P (10)

The result is'

4s 4w s s Ws (s 4g2p»

+ ~ tan ', , )„, -2 8(4g' —s}
S (4 2~ 1 1»

Note in particular that

2

ReA (s = 4li, '}= (-,'w' —2)
4n 4' 4P2

2 1 ge2 1
ReA(s = 0}= ——

3 4m 4m 4p,

A plot of the real and imaginary parts of A(s) is shown in Fig. 4.
The decay rate of K, -v'yy (in the rest frame of the K meson) is

(13)

2 (N- iI)
ds [(M+ p)' —s]'"[(M—p)' —s] '»(I'+ R'),

0

where I and R are related to ImA and ReA by

e2
I(s) = 4s ImA(s)

4m

R( }=4sR A(sif( )

(14)

(15)

The differential decay rate dI'/ds as a function of s, the 2y invariant ma, ss squared, is exhibited in Fig. 5,
where the contributions of the absorptive and dispersive parts of the amplitude are shown separately. A
notable feature of the spectrum is that dF/ds is small for low values of s, but rises sharply near s = 4p'.
The integrated rates are

I.b =7.5 sec ',

I'„, =5.6 sec ',
I' «&,~

= I',b, + I'z;» = 13.1 sec '.
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FIG. 4. A plot of the real and imaginary parts of A(s).
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FIG. 5. A plot of dI'/ds, the 2y invariant mass distri-
bution of E

&
—710yy. The full lines show the absorptive,

dispersive, and total spectrum predicted by the model of
Fig. 3. The dashed curve is the absorptive contribution,
corrected for the variation of the T& decay amplitude.
The shaded area under the dashed curve is the lower
bound obtained from unitarity.
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It will be interesting to see whether or not experiments find any significant enhancement over such a low

value.
Let us now examine the soft-pion limit p-0 of the model. This limit is equivalent to taking s-M, and

from Eqs. (9) and (11), we find

ge' p' vM +(M —4p.')'~'
4 0 4 M4 vM —(M —4p, }

(17)
1 ge' 1 2p,', , vM +(M' —4p, ')"'

4w 4w M M ~M (M' 4 }'~ReA) = — — w' —ln'

where g is the limit of the K, -m'm m' amplitude as p-0, that is,

g=lim (w'w w'(P)~M~K, ). (16)

(Notice that the invariant amplitude for K,-w'yy does not vanish when the pion is made soft. ) To make the
result (17}meaningful, we recall a model of K, -2y which assumes the reaction to proceed via a w'w inter-
mediate state (Fig. 6). Defining the invariant amplitude for K, -2y as

(y(k, e)y(k', e ') ~M ~K,) = BF»F'""= 2B(e ~ e'k ~ k'- e k'e' k), (19)

the real and imaginary parts of B may be calculated in exactly the same way as for K, -m'yy. If h is the
coupling constant for K, -m'm,

&w'w-~M ~K,) =k,

the result is

(20}

ImB= 4 ln
ke' p' vM +(M' —4p, ')'"
4w M' vm -(M2-4i')'"

] 2 p2 ~~+ (M2 4/~)~/2
ReB = — —

»
m' —ln' 2 0

4w 4w M' M' ~M (M' 4~')'~'

Comparing (17) and (19), we see that

lim 0(w (P)y(k, e)y(k', e')~M~K2) g lim& 0(w+w w (P) ~+2)
(y(k, e)y(k', e') grIQ, ) h &w'w gfQ, )

(21)

(22)

But this is precisely the relation between K, -m yy and K,-~ predicted on general grounds using current-
algebra and soft-pion techniques. ' We conclude that our model of K,- n'yy, when coupled with a reasonable
model «K,- yy, satisfies the constraint of current algebra.

Finally, we consider the corrections to the above model arising from the fact that the Dalitz-plot density
for K, -m'm m' does show a variation with m' energy. Empirically, it is found that the density can be para-
metrized as

2
= lal' 1+o, ' + & (23)

where s is the invariant mass of the m'm pair, related to the m' energy E by s=M'+ p.
' —2ME, and s, is the

value of s at the center of the Dalitz plot. From the data of Albrow etal. ,
"we infer that 4=7.66 p'/M2 and

B= -1.56g'/M'. Since the absorptive part of the K, -w'yy amplitude in our model involves only the physical
(mass-shell) amplitude for K, -w'w w', we obtain the correction to the absorptive part of dI'/ds by simply
multiplying the previous result by the factor

K, KI L y Ki

FIG. 6. Model for K&—~, related to the model of K2- m yy in Fig. 3.
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The corrected distribution (dI'/ds), R„„,is

+ ' —s'" — ' —s'" I"
1 ~ Ds ' (24)

and is shown in Fig. 5. In particular, the integrated absorptive contribution is now

-1I abs carr 9 ~ 3 sec (25)

The correction to ReA(s), and consequently to the dispersive part of dI'/ds, is more problematic. In
order to agree with the empirical distribution (23}, an expansion of the amplitude (v'v v'IM IK, ) in powers
of (s —s, ) must go up to at least the quadratic term. However, any such expansion is valid only in the
limited region 41(,'& s& (M- p}', and the behavior of the amplitude for large s remains essentially unknown.

Indeed, if a quadratic form is assumed for all s, the high-s behavior of ImA(s) is affected in such a way
that an unsubtracted dispersion relation (UDR) can no longer be written. A UDR is still possible, however,
if the matrix element (v'v v'IMIKR) is approximated by an expression linear in s. We mention here the re-
sults obtained if we adopt the parametrization

(v'v v'IM IK, ) = g(a + bs) (26)

and assume it valid for all s. [The parameters a and b are chosen to agree with (23) as far as the linear
term. ] The dispersion relation for ReA(s) gives

RA()= —( )
—( +24) (« —I «) —2 4( —4 )

8 2 2

+ a+8b tan ', , », -2a g(4p' —s).
S 4p, '/s —1)'" (27)

The principal effects produced on the dispersive part of dl /ds are: (i) There is a general enhancement of
the distribution, especially for s&4p, '. (ii) The sharp peak at s=4i(2 broadens. (iii) The integrated dis-
persive rate is larger by a factor of about 6 compared to the prediction (16) of the simple model. Because
of the simplisitic form chosen in (26), however, these corrections to the dispersive part cannot be regarded
too seriously, and we have chosen not to exhibit them.

III. A LONER BOUND FROM UNITARITY

It is clear that a knowledge of the absorptive part of the K, -7t'yy amplitude in any part of the physical
region would enable us to give a lower limit on the decay rate into the corresponding portion of the Dalitz
plot. In general, the absorptive part at any point (that is, for any value of s and t in the physical region)
will receive contributions from all real intermediate states that can appear in any of the three channels s,
t, and t'. To order GE', the only relevant intermediate state is the two-pion state, which can appear jn
the s channel for s&4p' and in thet (t') channel for t (t')&4}(,'. The absorptive part in the s channel is amen-
able to calculation, as it requires only a knowledge of the K, -3m and 2m-2y amplitudes. On the other hand,
the absorptive parts in the t and t' channels are difficult to estimate, since they involve the amplitudes
K, -mm'y and my-m7t. To circumvent this difficulty, we restrict our attention to that part of the physical re-
gion for which s)4p' and simultaneously t, t'(4p, '. This region is indicated by the shaded area in Fig. 2,
and represents a portion of the Dalitz plot in which the absorptive part of the amplitude arises solely from
the presence of a real 2v state in the s channel. [Note that the lines t=4i(, ' and t'=4(u' in Fig. 2 intersect
at s =M' —7p, ' and cut the upper boundary of the physical region at s = 4(MR —4i(, ').]-

In the restricted region defined above (which we will call R), we may obtain the imaginary part of the
K, -m yy amplitude by means of an s-channel unitarity relation, in which the intermediate states m m and
m'm' are included. In principle, therefore, knowledge of the amplitudes K2 77+77 7r', K2 w 7r 7r', 71+m yy,
and v'v'-yy determines ImA(s) in a model-independent way. For the present purpose, we assume that the

yy amplitude may be neglected in relation to m'm - yy, aIld that the latter is adequately represented by
the Born approximation. This l.eads to the result

ImA(s} = —, In»~, D(s) (valid in II),
geR pR 2) s + (s —4p')'~'

bus- (s —4P )
(28)
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where D(s) is defined in Eq. (23), and )D(s)~' is known empirically. On the basis of Eq. (27), we are thus

able to obtain a lower bound on the Dalitz-plot density in the region 8, given by

d'I' 1 dI
dsdx X(8) ds abc corr

(29)

where x= (I/v 3 }(t'- t) is the horizontal coordinate of the Dalitz plot, X(s) is the total horizontal width of
the physical region at a given value of s,

X(s) = (2/v 3 )[(s —p' —M')' -4p, 'M']"', (30)

and (di'/ds), q„„,is given by Eq. (25) and plotted in Fig. 5.
If the Dalitz-plot density of K, -v yy is not measured, but only the 2y invariant mass distribution dI'/ds,

the above analysis provides a lower bound on dl /ds in the region s &M' —7p, ~. We obtain

dI dI') W(s), s &M' —7 p,
'

ds ds ass con
(31)

where W(s} is a "reduction factor" expressing the fact that the shaded area of Fig. 2 is only a fraction of
the allowed physical region. Explicitly,

W(s}=

s -(M' —7q') 2 2( (3 M2 4 2
[& 2 2i2 ~ 2 211/Ri M I j( 0 )

v3(M' —4p~)& s& (M- p, )'
(32)

The "unitarity bound" on dl'/ds is shown in Fig. 5 by the shaded area. As is obvious, the bound is use-
ful only for the very highest values of s. Integrating the unitarity bound, we find

I'(K, -v yy;s &M~ —7p, ) & 0.28 sec (33}

IV. A COMMENT ON THE DECAY E'~m'yy

Unlike the decay K~-m'yy, the reaction K '-m'yy can proceed both by the parity-conserving and parity-vio-
latingpartsof the weakinteraction. However, insofar as the total decay rate or the 2y invariant mass dis-
tribution is concerned, there is no interference between the parity-conserving amplitude and the parity-
violating one. Thus a model similar to that discussed in Sec. II can be used for estimating the parity-con-
serving contribution. The shape of the dl/ds distribution is the same as in Fig. 5, and the integrated rate
1S

1"(K'-v'yy, parity conserving) =76 sec (34)

(where the K'-v'v'v coupling constant has been taken to be 1.72x 10 ', ' and the small variation of the v'
Dalitz plot has been neglected). By the reasoning of Sec. III, a lower bound based on unitarity can also be
obtained for this reaction and the results are closely similar, the only difference arising from the differ-
ence in the K'-m+m'm and K, -m'p'm coupling constants, and the slight difference between the m' and m'

masses.
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