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To construct a finite local relativistic quantum field theory we may introduce an indefinite-
metric vector space, but then to avoid conflict with unitarity we must consider only a select-
ed subset of states to be physical. The remaining states participate in the dynamics but are
not among the complete set of physical states as far as probability interpretation is concerned.
These states are called shadow states. The S matrix should be unitary when restricted to the
physical states. In this paper we formulate and solve several simple models of field theories
with shadow states and demonstrate the manner in which shadow states influence the dynam-
ics and the structure of the scattering amplitude. The choice of a standing-wave boundary
condition for the shadow states is shown to be completely consistent with the physical de-
scription of the scattering process in terms of wave packets. These methods are adapted
to the study of low-energy pion-nucleon scattering in the following paper.

I. INTRODUCTION

In the quantum-field-theory approach to particle
physics, the quanta of the fields play two roles:
On the one hand the real quanta are the physical
particles which constitute the initial and final states
of any process, and through unitarity they generate
kinematical constraints on the scattering ampli-
tudes. On the other hand the virtual quanta supply
the basic mechanism of the interaction between the
particles and therefore determine the dynamical
processes. ' These ideas have formed the central
theme of S-matrix theory of particle reactions, '
the geometry of the singularities of the analytic
functions describing the scattering being entirely
determined by the spectrum of particles, while the
strength of the singularities is determined by the
coupling schemes. The principle of crossing sym-
metry, along with the interrelationship between
singularities and spectra of particles, serves to
specify the scattering amplitude as an analytic
function. It is the expressed hope of the proponents
of S-matrix theory that crossing symmetry and
analyticity together with unitarity delineate the am-
plitude and perhaps even determine the scattering
amplitude completely.

Despite these hopes, quantum field theories have
tended to yield enigmatic answers to several funda-
mental questions; in particular, the question of the
existence of interesting nontrivial interacting-field
theories is still undecided. It is therefore worth-
while to examine the degree to which we are free
to explore and develop the basic structure of the
theory. In particular, we are interested in the

possibility of having fields which contribute to the
dynamics and serve to determine the scattering
amplitude but which do not have any physical par-
ticles associated with them. This would mean that
not all vectors of the linear vector space on which
the field operators are defined are to be considered
to be physical states. ' There is a preselected sub-
set of these states which are identified as physical
states; the remaining states are called "shadow
states. "' A shadow state, then, is a state which
contributes to the dynamics and hence may be as-
sociated with certain singularities of the scattering
amplitude, but which does not enter the unitarity
relation. In this and subsequent papers we would
like to call attention to this possible generalization
of quantum field theory and to explore the experi-
mental consequences by studying several relevant
models.

Much of the interest in shadow states arises from
the possibility of providing a satisfactory probabil-
ity interpretation of relativistic quantum field theo-
ries with indefinite metric. It is becoming in-
creasingly clear that to construct a finite field the-
ory we may have to use an indefinite metric, but
then to avoid any conflict with unitarity we must
consider only a selected subset of states to be
physical states. " The metric of the nonphysical
states is of no real interest with regard to proba-
bility interpretations, and hence the shadow' states
may have, but not necessarily, an indefinite met-
ric. The use of an indefinite metric is particularly
welcome to provide the requisite degree of conver-
gence in any perturbation-theoretic calculations.

In this paper we shall study nonperturbative mod-
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els involving shadow states. All the models that we

are studying are exactly soluble in the sectors in
which we are interested. We shall, in general,
display exact solutions both for the wave functions
and the S matrix in these models. These models
are also of interest in that they all possess nega-
tive-energy mesons and hence a "left-hand cut" in
the scattering amplitude. ' These models are of in-
trinsic interest as examples of'quantum-mechani-
cal systems with shadow states, but they also
serve as yrototypes to the study of interesting
physical processes. The next paper of this series
will apply some of these results to low-energy pi-
on-nucleon interactions.

The plan of the paper is as follows: In the next
section we give a general discussion of the problem
of coupling a scalar field with a source in such a
manner that we get a "crossing-symmetric one-
meson approximation. " The role of positive- and

negative-frequency components of the field should
be carefully examined. Section III deals with the
two-channel problem, with one physical channel
and one shadow channel. We note the analytic
structure of the scattering amplitudes. In Sec. IV
it is shown that the choice of a standing-wave
boundary condition for the shadow states of this
model is completely consistent with the physical
description of the scattering process in terms of
wave packets. Section V deals with two distinct
three-channel models and Sec. VI discusses the
role of the substitution law' in the presence of
shadow states. Section VII deals with a.multichan-
nel generalization of the program. The concluding
Sec. VIII discusses the general features of the am-
plitude and reviews some questions like the role of
boundary conditions and the analytic structure of
the amplitude.

II. THE ONE-MESON APPROXIMATION IN THE
COUPLING OF A KLEIN-GORDON FIELD

TO A SOURCE

We consider here the coupling of mesons to nu-
cleons in such a manner that we consider only
states with one meson or no meson at all. Never-
theless, we would like to have the interaction in
such a manner that the scattering amplitude is de-
fined for both positive and negative energies'and
the substitution law which is characteristic of
quantum field theory hold. This is accomplished
in a Lagrangian scheme by associating the entire
meson field with both positive and negative fre-
quencies with annihilation operators for quanta
with positive and negative energies, respectively.
A conjugate field with positive and negative fre-
quencies should be introduced for the inverse tran-
sition. We shall, therefore make use of a space of

states which contain both positive- and negative-
energy mesons. "

For wave functions obeying the Klein-Gordon
equation, the natural scalar product is given by

( („().=i J(g", (), —(,(,)1'r, (2.1)

which is indefinite: Positive-energy wave functions
have a positive (norm)', and negative-energy states
have a negative (norm)'. In a second-(Iuantized
theory we choose accordingly the free field of an-
nihilation operators P and the field of creation op-
erators Pt with a commutation relation

[Q(x), ((() t(y)] = 2in(x —y) . (2.2)

Expressed in terms of creation and destruction op-
erators, we get

[a(k, +(()), at(k', +(()')] =+2(d5(k -k'),
[a(k, -(d), a (k', -(()')] = -2(d5(k -k'), . (2.3)

[a(k, +(d), at(k', -&u')] =0,

or, more succinctly,

[a(k), at(k')] =2(ko+kt)5(k —k'). (2.4)

This theory then automatically contains an indefi-
nite metric. This method of quantization has been
used in the past in the context of quantization of in-
finite-component fields and of the quantization of
tachyon fields as well as in fundamental investiga-
tions in quantum field theory.

For a model we shall choose the system of a con-
tinuum of states coupled to a single state treated
by Dirac in the context of the problem of line width
in atomic physics, and formulated as a field-theo-
retical model by Lee.' We shall however make use
of the relativistic version of the theory with both

positive- and negative-energy "meson-nucleon"
continua. Since negative-energy mesons are de-
fined we can give content to the "substitution law"
as applied to scattering processes. This aspect
will be dealt with in more detail in the paper deal-
ing with the scattering of pions on nucleons.

The basic interaction therefore consists of the
following: A source (excited atom or the V parti-
cle of the Lee model) is coupled to a continuum
(ground state of atom plus radiation or the N8

states of the Lee model). The continuum states
have positive or negative (norm)' depending on
whether the meson energy is positive or negative.
The excited state may have either positive or neg-
ative norm. We shall deal with both kinds of
states.

So far we have not introduced the shadow states.
We now introduce one or more such continuum
channels, coupled in essentially the same manner.
The basic difference is that in discussing the
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III. SOLUBLE MODEL WITH ONE PHYSICAL

CHANNEL AND ONE SHADOW CHANNEL

We consider the simplest such model which has
two continuum channels N, 8, and N202 with a dis-
crete "bound state" V with the possible transitions

N10, V N2B2 (3 1)

and displayed in Fig. 1. Here V= N, o, is a shadow
process and the model is defined by the Hamilto-
nian H = H, + H, with

boundary conditions as applied to the shadow chan-
nel there are no running waves, but only standing
waves. There is no flux of radiated mesons from
such a state. This is brought about by the use of
a time-symmetric half-retarded half-advanced
propagation function for the shadow states. It is to
be noted that the standing-wave prescription ap-
plies to the shadow state and not to the meson alone
in that state.

The scattering matrix is then calculated follow-
ing the standard procedure. We determine the "in"
states of scattering by considering a state with
plane wave with outgoing mesons in the normal
channel(s) and a standing wave in the shadow chan-
nel(s). The scalar product of these states with
their time-reversed "out" states yield the scatter-
ing matrix.

We could also determine the scattering amplitude
by computing the singular outgoing part of the me-
son wave function in the physical channel(s). We
show by direct computation that the same expres-
sion is obtained for the scattering amplitude from
both methods.

We also show that this is the physical S matrix
as determined by the construction of wave packets.

The remarkable result is that the scattering am-
plitude is nonvanishing only for the physical chan-
nels and is unitary. The unitarity condition on the
scattering amplitude is satisfied within the physi-~

cal channels alone. This is an instance of the gen-
eral feature of quantum theories with shadow
states. '

+ 40

N, e, Physical

~ V

l

negative
metric

positive
metric

Ng8g Shadow

FIG. 1. Shadow diagrams having one physical channel
and one shadow channel.

ization. As in the Klein-Qordon theory the meson
fields contain both positive and negative frequen-
cies so we take

[a;(k), a, (k')] =e(w;)5(k-R')

with

w;(k) = e(w;)~, (k),
(o, (k) = (@2+k')"', ~(w) =+1 as w (~0.

(3.4)

(3.5)

4A(&)
Iv)= c (3.6)

Applying the Hamiltonian, we have H
I V/1) = A

I VA)

or

C f1(w)
(A w) 4(~) (41/)1/2 (2~)1/2

(3.7)

C f2(w)
(A )AA(k)

(4 )1/2 (2 )1/2

According to Eq. (3.3) the interaction only takes
place in S waves, so we may put

AA(k) =
k(4&)1/2 4/1(w ) ' (3.8)

Since (A -w) can have no zeros for a bound state,
its normalized wave function is

We denote the V-particle bound-state wave function
by

Ho=m dpV~ V + dkv; kafka k,
3=1,2

(3.2)

If/=
(4 )1/2 g ) dpd~ )1/2I. V (P)& (p —k)a (k)

1 f;(w)
i=1,2

+ N,'(p —k)v(p)a,'. (k)].

(3.3)

(f, (w )k/[(2(u)1/2 (A -w )])
VA(w) =C~i 1

, zv k 2(u '" A-~
with

(3.9)

(3.10)

Since this model is exactly soluble by well-known
methods, we discuss those aspects more fully in
the following section when we consider its general-

a(X) =-X+m'+ (k2dk (»)(~- 5)

(3.11)
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where the bound-state discrete eigenvalue is de-
termined by

k plane

o(A) =0, 0&A& i/, . (3.12)
mA PE

esv'

Q'„(w)-principal-value Green's function,

dtI2~ (w ) -noninteracting standing wave,

or explicitly

(3.13)

This brings us to the crucial matter of the choice
of boundary conditions for the scattering states.
Up until now we have followed the conventional ap-
proach. Our point of departure with the usual for-
mulation is to introduce into this model the idea of
shadow states. Therefore, we do not choose the
same boundary conditions for both channels; in-
stead, while we take the first channel to contain a
physical state corresponding to outgoing-wave
boundary conditions, the second channel will con-
tain a shadow state. The shadow state is defined
in this model by using a principal-value Green's
function for the shadow channel with a correspond-
ing shadow ghost channel. " The latter contains a
noninteracting standing wave whose purpose is to
properly orthonormalize the physical state vector.
The need for two standing-wave components and
their physical significance can be simply under-
stood in terms of wave packets (see Sec. IV):

Q'I(w) -plane wave plus outgoing wave,

FIG. 2. Analyticity of cJ and v.

cf, (w )k
(2&v)"2(X —w+ie) '

cf2(w)k
4X( )

(2 )I/2(g )
I

P~(w)= 2~ „,5(z-w),
IICf2(A)k.

(3.14}

where

r
(ff 0

k2dkH' = k2dk

( 0 5(w —()/kf

and the metric matrix|'q 0
n'=

(0 -e(w)5(w -w') Iw/k I J

(3.15)

(3.16)

define the shadow ghost (negative-metric) channel.
Proceeding as for the bound state, we have

ef IA f,(w)k
I+(2y)" (2III) ' (y —w +is)

4 II(w) =

0 I.(w)

+ (2g}1/2

ef Iaf, (w}k
'

I '(»)'"(2~)"'(~—w)

(3.17)

&~(~)
fIf2 5(y }2v

as the properly normalized state vector with

v'le=-Atm +Pl dk :'" -'+O' I(d'dd
(2(u)(X —$ + ie) J (2&v)(x —()

' (3.16)

The phase of the shadow ghost component is independent of the phases of the other components. These
state vectors are also orthogonal with the scalar product given by

(4"~IC"~ &
=c*c'+ g k dw~(w)K(w)*K (w) - —„d&(w)4'(w)*A~ (w)

~ oo 20
3 =1,2

and are found to be orthogonal to the bound state by using o(A) = 0 and

(3.19)

V'(X) = II'(X) + e(X)iIIf2(A)22k (3.20)
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«r &c{[-~,-p], [p, ~]]. The analytic properties of o' and v are shown in Fig. 2.
To fully understand this model, it is necessary to construct the state vectors corresponding to the shad-

ow channel and the shadow ghost channel. Supposing an initial standing wave in the shadow channel 2, we
find

422), (w) =

P~ (w) 2'„v'v (22)"' (22)"'(2 —vv ~ (2))

ef,xvp

I(t„v'v (2A.)'~'

ef, Xv~ f (2w)k
(22)"* (2tv)"'(2- ))

(3.21)

which is palely ~eal, as well as orthogonal to the physical scattering states of channel 1 and also the V-
particle bound state. Here

p 2f 2f 2k2
N„=1+

+V V
(3.22)

22f 2(f 2+2f 2)k2
N22 —1 +

4v v
(3.23)

The orthonormal, zeal shadow-ghost-channel wave function is found to be

C~ (w)=

4~,(w)

0 ~,(w)

4'~, (w)

if, Xf 2(w)k
v'(»)"*(2 )"'(2-~ ))

if2A.
p+ 2g ~f2

if, A, f ( 2)kw

v'(22)"' (2v )"*(2—vv))

-e I(t» 5(w —X)

(3.24)

Computing the generalized S matrix for both the physical and shadow channels, we find a diagonal matrix

S = diag(v jv', 1, 1),

where

(3.26)

S, , =(out state, I~in state, I')

dzvQ se pm Q

as discussed in Secs. II and IV, and it is obviously fully unitary in the physical channel 1.
Having demonstrated the unitarity, it is now natural to demonstrate the related relationship of complete-

ness. To do this, it is convenient to introduce a matrix A, called the generalized Mgller matrix, which is
defined by

(3.26)

with indices X and Ml such that A, is an index with both a discrete part, A, and a continuous part,
& e {[-~,—p, ], [ p, , ~]j, and w is similarly an index with both a, discrete part and a continuous part,
w g{[-~,—p, ], [ g, ~]). For instance, for the two-channel model we have
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(t)A(w} (t)A(w) 0

Cy Q y(w)

4~, (w) K, (w)

0'x, (w )

R(w)

A, (w)

e,A.

v'(2X)1f2

Ef2A. V

N»v'v (2A.)'"
if 2)(.

v+

Cf, (w)k
(2(d)'f2(A -w)

2f, XQ;
5(w —A.)—

sf2x Re'(a Q1+)

(2AN»N2 )"' v' v

if2'.Q;2' "'t+

Cf, (w)k
(2(d)'f2(A -w)

ef, AQ2

v'(2X)"'

if2)(.
R 2~~ if a&+

f lf2 5(y }2v+

-e )('N„5(A.—w)

where

f,(w )k
(2(d)"2(X -w + i@) '

f, (w )k
(2(d)"'()(.-w) '

(3.27}

Now, if we use the summation convention with the understanding that summation over a continuous index
corresponds to integration, the completeness relation is A A. =1 or

Z4) (w')nP)4~(w)*=n (3.28)

It is straightforward to verify that this is true for the A given explicitly above.
For comparison with the diagrammatic approach of quantum field theory we need the T amplitude. From

E(l. (3.25) it can be found for physical A, via

S =1+i2T

and is (A. &0)

wf, (~)2k

(3.29)

(3.30)

where k(A) =(X2 —V2)"2. The analytic extension of this piecewise-analytic function from domain
A. C ([-~, -i1j, [i1,~ j $ for complex X is

~f,(~}'k(x)
2v(Z}

(3.31)

where vP) is real-analytic. Notice that the original Hamiltonian contains bare coupling constants and the
bare V mass, m'. Mass renormalization can be carried out in the usual manner, so from Eq. (3.12) we
have

(3.32}

as an implicit e(luation for the physical V mass, m), . Thus from Eq. (3.31) we have

T(X =
&f, (A.)2k

g(m y)() ~ J(y d1 (()lf,(()' f*(1)')
(2(d)( $ —m „)(]—X)

(3.33)
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Hence, if as A, - m „werequire

( )
vf,". (m v)'&

2(m~ —A)
'

it is natural to define the renormalized coupling constant by

(3.34)

(2(u)(t —mv)'

(3.35)

and similarly for f,"(z)' and f,(z)'. If we assume a universal form factor, p(z), i.e., that f»(z) =f»p(z),
this equation can be inverted

2=
122

7 2
1,2

1 —(f"+f")fk'dk
(2(d)($ —m )'

(3.36)

and the T amplitude can be explicitly displayed in terms of the renormalized quantities

T(~)
'f) p( ) o

2(m„—1)(1—(f f )(m —k)fk dk 'm,
)

The physical significance of this result can be seen by expanding it in powers of f,"' and f,"'. We get

vf"2 p (m(, )k „,„, 2 &p(])'
Tlk}=

2( ") 1+(f +f )(m —1) k'dk(2 )(1 ),(( 1) ),

(3.37)

(3.38)

corresponding to the field-theoretic expansions"' in Fig. 3(a), which should be compared with the conven-
tional expansion, Fig. 3(b),

2(m —1) ' ' (2tk)(k —m )'(( —1) ) ' (3.39)

which is also the limit of (3.38) when (f,")'-0. This property illustrates the fact that the shadow states
are dynamical states, for they cease to exist when the coupling constant is allowed to go to zero. Also it
is obvious from the diagrams that the dynamics involves both the physical and shadow states in spite of
the fact that the unitarity of the S matrix involves only the physical states.

IV. THE SCATTERING OF A WAVE PACKET

IN THE PRESENCE OF SHADOW STATES

We employed the standard results of the formal
theory of scattering in our treatment in the pre-
ceding section of a simple soluble model with one

physical channel and one shadow channel. As is
well known, when no shadow states are present,
this formalism has been justified on physical
grounds by the construction of wave packets. The
question can be raised, however, as to what hap-
pens to this justification when shadow states are
present. In particular, is the formal definition of
the S matrix as used above still correct and, if so,
what is the physical significance of the two stand-
ing-wave components of the physical wave function
for the normal channel?

The formal definition of the S matrix remains
correct: Consider the physical wave function for
the normal scattering channel. It was derived
above in the energy representation, Eq. (3.17), as
a solution of

C, f,(u)
( )4 X.( ) (4 )1/2 (2 )1/2

f.(~)
( -~)4~(1)-

(4 )1/2 (2„)1/2

(~-~)y', (k) = 0,

(4.1)

/

T(X) + ~ ~ ~

(0)

2$

+ ~ ~ ~

To(X) = + ~ ~ ~

(b)

FIG. 3. (a) Field-theoretic equivalents to shadow
diagrams. (b) Conventional diagrams.
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with C& determined by

f1(5)
(/( —m, )Cg ——

(4 ),/ J dke($)(2
) / (p'„(k)

f (h)
(4)/)1/2 (~}(2(d)1/2 p k(

(4.2)

with the boundary conditions that the normal com-
ponent (t)~z(k) is an incoming plane wave and outgo-
ing spherical wave at large distances. For the
shadow components, (P z(k) and (())'1 (k), the boundary
conditions respectively are that they are the time-
symmetric solutions of the inhomogeneous differ-
ential equation (principal-value Green' s function)
and of the homogeneous differential equation (a
regular solutiop). Equivalently, in the nonrelativ-
istic limit, (o ='

tl +k2/2 p, + ~ ~ ~, /(. = p, +p~/2 p, + ~ ~ ~,

(»2 k2)pl (k)
V' x. f1( )

P
P (42/)1/2 (2(d )1/2 r

then gives (l =0, s wave}

(t),'(p, r) =sin(pr)

+ 3/pC „r'dr'G,'(p; r, r')f,(~r'
~ ),

0

(p2(p, r) = 2/pC l r' dr'G22(p; r, r')f,( ~

r'
~ ),

0

Q,'(p, r) =»n(pr)'/pc, 2'„„,,

with

(4.8)

G2 (P, r, r') = ——sin(P r &) e

1
G22 (P, r, r') = ——sin(Pr, ) cos(Pr, ),

where r, (r, ) is the lesser (greater) of r and r'
Hence at very large distances, r- ~, we obtain

the simple and transparent form (s wave}

(»2 k2)y 2 (k)
V' k f2( )

P
2 (41/) 1/2 (2(d )1/2

(p2-k2)yZ (k) =0,

or, defining

(4.8) y,'(p, r)= -2'i(e "" s), e-""),

y', (p, r) = cos(pr)
'

2
', ',

y", (p, r) = -sin(pr)

(4 7)

(t)'(p, r) =
),/, dk e'" ' '(t)-'(k),

f; (r ) = (41() 2„JId" e' ' '
(2

')„,
we have (E =p'/2v, )

yl(»») (VP) i P r

(27I)3/2

(4 4)
for the wave function which describes the physical
scattering state. Notice that we have identified
Sq = v (A)/v'(A. ) which we interpreted formally in
the preceding section as the S matrix for the phys-
ical scattering channel. This should be compared
with the normal asymptotic solution when no shad-
ow states are present (l th angular wave),

i/2
+ 23/2 1/2 Jtdr G (E' r r )f (r )

2

(4.5)
1/2,

0'(p, r) = — „,„,Jldr'G'(E; r, r')f,(r'),

p, exp(ip I r —r '
I )

p, cos(pir —r'I )

and the wave-function renormalization is with re-
spect to the measure dEdQp Partial-wave re-
duction using

G'2 (E; r, r') =2tip Yl (r)Y(*(r')
tm

r'(2, )=(, r—,Er, ( )r '(i)
xt'y, '(p, r),

yl(P )
1 el 2(!+1)/2( (2r irlS ik-r)- (4.8)

&,'(p, r)= —,'t(e ""-S,e""),

where S& is the partial-wave S matrix as inter-
preted by construction of wave packets. Thus,
here in Eqs. (4.7) the only change asymptotically,
except for the naturally different 8 matrix, is the
presence of the extra standing-wave components
which have a common amplitude proportional to
the strength of the source. Consequently, when
one averages over many shadow wavelengths in r

space, the two standing-wave components cancel.
Recall that this is just the essential assumption
employed in the construction of wave packets, i.e.,
that the wave packets are supposed large on the
microscopic scale of the particle wavelength h/P.
Note, too, that the largest shadow wavelength will
occur for the lightest shadow mass, which may be
quite large in nature. Hence, the standing-wave
components are irrelevant for the macroscopic
justification of the S matrix. The usual wave-
packet construction for the remaining component,
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assures one that S~ is indeed the physical S matrix.
Some additional physical comments are also ap-

propriate. The asymptotic physical interpolating
field for the scattering state, unlike in normal
scattering theoxy, is not only composed of free-
field components from normal mesons but also
contains standing-wave parts from the shadow me-
sons with amplitudes proportional to the strength
of the source. This action at a distance is, as we

have shown, a small effect in terms of the wave
packet but a large one in ridding field theory of its
infinities -by solving the problem of interpretation
of the negative-metric states in indefinite-metric
theories.

Concerning the physical wave functions for the
shadow, (I)2),(u)), and shadow ghost states, (P'„(u)),
recall that they are pggmly ~gal in the energy rep-
resentation. They are also pure/y ~eal in the (par-
tial-wave-reduced) coordinate representation, and

hence, when multiplied by e ' ', they form waves
whose nodes arefixed in space, i.e., they are
standing waves. Their asymptotic form can be de-
termined as was done above for the physical scat-
tering state, (Pk), (u)). Generalizing the concept of an

S matrix to such objects, the formal S matrix used
in the preceding section seems most appropriate:
Their diagonal c'~ments are unity (i.e., there is
no scattering for nothing is traveling) and their
off-diagonal elements vanish (i.e., they do not

overlap with the physical states and do not appear
in the unitarity relation for the physical states).

Finally, since the scattering amplitude can be
computed by computing the singular outgoing part

(. v,

v, .)
FIG. 4. Three-chanel shadovr diagr~.

of the meson wave function in the physical chan-
nel(s), one can directly study formally the 8 ma-
trix of shadow theories by integral equations or
other means which do not explicitly involve the
corresponding wave functions but only their bound-
ary conditions. Because of the physical arguments
given in this section, such a formal approach is
justified.

V. MODEL WITH THREE CHANNELS

%~8, V, %282 V~ N383 .
The Hamiltonian is

H=HO+IJI,

where, with t =1, 2, 3,

(5.1)

(5 2)

%e begin our analysis of the dynamical effects of
shadow states in multichannel processes with a
simple three-channel soluble model. The comple-
mentary roles of the shadow channel(s) and shadow
ghost channel(s) are especially interesting here.
Figure 4 shows the noninteraction spectrum in this
model and the couplings between the fields which
produce the interactions

}},=I', I p d(pv) t(pv)+ If p d(pv) t'(pv)+Qf k d( p)k(k))k(kp), (5 2)

Ifi =
J J

dpdk 2' '„,[ y( )pi((p)k)-a, (k) N+(pktk)—V, (p)a (ktk)]
2(d)

+ f fdpdk( ' '„,(V, (5)k(,(p -k), (k)+}(,(p —k)v, li). , (k}]
2(d)2

+ ' ',"„(v,'(P)}},(5-k)k, (k) ~ (v,'(P-k)v, (P)P,'tk)I)
2(02

+ dpdk ' '„,V2~ pN p-ka3k +N, -k Vpa, k
2(d)

&

(5.4)

u);(k) = e(u),.)(d, (k), i = 1, 2, 3

cu, (y) (p3+k2y&2 (5.5)

so that m& runs over the two ranges -~ &m & —p.

The unrenormalized energies for the fermion V
fields are E,(p) = m'„E,(p) = -m,', and for the i(i

fields for convenience we take E";(p)= 0 with no loss
in generality since this is a static model. Again
we take the unrenormalized meson energies to be

and p &u), & ~, with e(u);) being the sign function
taking the values +1, respectively. The commuta-
tion relations for the fields are

[l',(p), ~,'(p')], = 5(p -p'),

[t.(p), ~.'(p')], =-5(p-P'),
[iv;(p), &';(p')], = 5;,5(p -p'),

[a;(k), at(k')] = e(u);)5(k —k'),
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and all others vanish. The physical space is an in-
definite-metric space with the metric operator

g=exp -i& dpV2~ p V, p

P fdtaa(-aa;)at(ta)a;(ta)

(5.7)

where 8(x) =1 for x&0, zero otherwise. Notice
that the negative-energy mesons have a negative
metric which, as discussed in Sec. II, is consis-
tent with the covariant scalar product of the Klein-
Gordon equation. Since the masses and form fac-
tors are all real, the Hamiltonian satisfies the
pseudo-Hermiticity condition

qH*q= H. (5.8)

+P»}(p)»(p)) (5.9)

Q= dp V~ V, —V2 V~

There are two operators which commute with the
Hamiltonian and are therefore constants of the mo-
tion,

B = fdp(P,'(p)P, (p) —V, (p)V, (p)

y'(k)

C,

C2

0'(k)

Applying the Hamiltonian, we have

(a, +a, ) ic) = ~
i c)

or

(X-w)P'(k) =
2(d)

(X —m', )C, = Jrdke(w)
' „,{t}'(k)

+ dk6 s6 &/2

F,(k) G, (k)(&-w)0'(k) =Ck (2~)u2 C2 (2&)a(2

(k+m', )P, = fdkatp) k' „,P'tta)

(2(d )

(5.14)

(5.15)

(5.16)

+ g Jtdke(w;)adt(k)a;(k) . (5.10)

The lowest few sectors are trivial since the state
vectors coincide for the bare and physical vacuum,
the one-N fermion states, and the one-meson
states, so we consider first the NB scattering sec-
tor fB = 1, Q = 1}.

In order that the model be explicitly soluble, we
make two simplifying assumptions: that the form
factors factorize

Now, it is simplest to work in a spherical basis,
so we define

a;, {k}-=i'fd(}p(ad),.(k,). , (5.17)

Thus,

[a;, (k), a;.) ~ (k')] =, 5;;.5„5 ~ 5(k —k')e(w)

(5.18)

&r(p k) =Fr(p)&l(k),

G (p, k) = G (p)G (k), I= 1, 2

(5.11)

(5.12)

with the metric operator

q=exp -i~ dpV2~ p V, p

and that the form factors for the V fields are uni-
versal, i.e., F,(p)=u, (p), G, (p)=u, (p). With these
assumptions, the model is soluble in all partial
waves.

The most general state for the NB scattering sec-
tor can be represented by

I 4 (p)) = g Clu&(p)&l'(p) I»

+ g Jtdk{t)'(k)N{ (p -k)a, (k) ~0), (5.13)
i

which we denote by

fk'dka(-iu)I at, {k)a„(k))
l 1'

(5.19)

The 1; 's are normalized conventionally,

(5.20)

Y,* B, F&~~ B', ' =5 cosB —cosB' 6

From Eqs. (5.13)-(5.16) it is apparent that with no
loss in generality we may confine our calculation
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to g particles in the "lm" partial wave. Doing this, we have

4 '(k)-k ~i (~ 4 )4 I (w), &&(k)- & (8, p}f' (w), (5.21)

and likewise for Gz(k) and g, (w). Then in a convenient matrix notation the eigenvalue equation becomes
(cf. the shadow diagram of Fig. 4)

fg($}k—5(w —])
(
')„,

&(&)f)(&) 0

k (2(())"' e($)f,(&)
k(2(o)"'

f.(&)k 1,
&

g, (&)k
(2(d)"' k (2(d)'"

e(t') g, (&)
k(2(u)"'

e(&)g, (&)
k(2(d)"'

R(&) = ~ R(~) (5.22)

g, (t'}k 1
)I/O k

5(w $)

where we have suppressed the lm superscripts and

subscripts. Notice that the Hamiltonian matrix is
pseudo-Hermitian with x'espect to the diagonal met-
ric matrix

fj=dlag 6 $8 O'N —'N —
~ lp 6 'N 5K —K

given by

f, (w )k

(2~)(A —w )

-(, e(w)()(w —w') —). (5.23)
Vg(w) =G, I.f.(w)+ (o/r) g.(w)1k

(2~)"'(A —w)
(5.2 V)

The only single-particle states which differ from
the bare-particle states are the V, bound state and
the V, ghost state with discrete eigenvalues deter-
mined respectively by

q(A)=0, 0&A& p,

q(K) = 0, -i(, & K & 0
where

og, (M )k
r(2(d)'"(A, —w)

vf,(w)k
T(2&v)"'(K —w)

( ) ( )
0(A.)v(X}

r(X)
(5.25) [g, (w)+(v/r) f,( )]wk

(2u))"'(K -w)
(5.28)

is given in terms of several useful spectral func-
ti.ons. These representations, which will be used
to express the physical state vectors in a simple
x'atlonal form ax'e

'(A. )=-A. + ' (tk'dk
' ~

J (2&v)(X —$ a ie)

"(~)=. ~ k dk'"'g ("'+g ("'
(2(u)(A. - t' + ie)

g, (w)k
(2u))"'(K -w)

where for proper normalization

v(A), r(K)
II (A) l(A) 0 I QI (K) I(K) ( )

,, (~) }'„.q„~(()f.(()(;.(()
(2(d)(((. —$ + ie)

'

(5.25)
Their respective eigenvalue equations are

r'( ) —Ao(A)v(A) =0, r'(K) —o(K)v(K) =0.

Explicitly, the single-particle state vectors are (5.80)
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A. Scattering Sector: One Shadow Channel

Again, as in Sec. III, we introduce the notion of
shadow states by the choice of boundary conditions.
We will first consider the case when there is but
one shadow channel.

Suppose, say, channel 3 contains a shadow state.
Then for an incident plane wave in channel 1, we
have, for A, &0,

P'„(w)-plane wave plus outgoing wave,

Qz(w}-outgoing wave,
5.31

$2„(w)-principal-value Green's function,

Q'z(w ) -noninteracting standing wave,

C"~(w) =

where

F+ i/, +f, (w)k
(2&d)1/2(X -w +i@)

g+ ~+

F'[p'f (w)+r+g, (w)]k
(2(d) (X-w+if)

F'7'g, (w )k

(2u)) 1/2(X —(u }

5(w —X)
(2g)1/2

(5.35)

or, explicitly,
+ cf,A

1-+ ~+(2~)1/2 (5.37)

C1 1w}k
yy(w)=5(w -A.)+

( ),/,'(
' . ),

[C,f,(w) —C,g, (w)]k
(211/)'/2(A. -w + ie }

Similarly for channel 2 which is also physical

H'f, (w }k
(2&d )'/2(X —w + ie)

C g(w)
(211/)1/2(A. -w) '

$2„(w)=— ' '„,5(z-w},&C2 g, (A,)k

where

II'=
(0 (I//k)5(w —$) )

(q 0
rI' =

0 -e sv 5 m -ce' zo k

(5.32)

(5.33}

K(w) =

where

C (7'f 2 + C'g2)A.
T' ('(2x}1/2

H+ &(P f +r 2')&
~+ (+ (2~)1/2

[&'f,(w )+G'g, (w )]k
(2v)1/2(X -w +is)

G'g, ( )kw

(2(u)1/2(X —w)

mG+g, k
(2/1}1/2

(5.33)

(5.39)

define the shadow ghost channel. To express the
physical state vectors simply in a rational form,
also define

(5.34)

These state vectors are orthogonal" with the sca-
lar product given by

dwA'(w)'n(w)4' (w)

where

~(()a2'(5)
(&)=&+2/22+

Jl
k'dk

(2 )(X- &+
'

)
+Q —d(de(w)PI (&o)*P~ ((u)

k

(P Jtk2dk (»)(&- ()
' (5.35} dwe(w}$21 (w}*$21, (w)

k
(5.40)

Then we substitute (5.32) into (5.22), obtaining the
properly normalized state vector

and are also orthogonal to the bound state, VA,
and ghost, V~.
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For these physical scattering states, then, the
S matrix for the positive-frequency solutions can
be found by (see discussion in Secs. II and IV)

S// = (out state, I j in state, I ')

// N / P+I /

l,2,3s 2

'kk +r
/ i

and for

S =1+i2T

4% XU 'gK W (5.41)
2,3s

FIG. 5. Field-theoretic equivalents, to the first and
second order, for elastic scattering in charnel 2.

we obtain

TT+ = 2i(T+ —T) . (5.43)

Renormalization can again be carried out. For
complex A., v is the piecewise-analytic extension
of p, from the domain A «Q-~, -i2], [p, , ~]j. To
simplify the algebra now, and to make contact
with the substitution law later, we assume the
symmetric relationship

mQ

2v' $'

r fk(& f2+7 g'»
X

) p. ~ + T g~ p, ~ + 27 ~g~ +0

(5.42)

where k =(A2 —p,2)"'. It is easy to verify using
(5.26) and (5.35) that T is unitary, that is,

mo
(2&v)(m —()

o = -A. + M+ (m —A.) ~)k'dk (2~)((—~)(5 —m )
'

2 2 (5 45)
=k M (m„-k)fk'kk (»)(t'- &)(t - s2~) '

7' =6 k fk
((2 )( )

as f2 =+g2 k

where

gf 2 2 I/ 2

holds. Then it follows from E(I. (5.30) that, m~ =A
= -K. The spectral representations can be reex-
pressed as

(5.44) The important denominator spectral function is

D—= 7 —vo

= A. —m A. + m + 2M+ k'dk ' + k2/Ik k'dk gf 2

(»)((-~) (2~)($-2)2F) (»)(5- ~)(t'-)22Y)

(»)((-k)((-~.)
" (»)( - )( (kkI.())

(5.47)

which is symmetric under m), —-m), and also under A.——A.. Thus, from E(I. (5.42) we have the corre-
sponding elastic amplitudes

7„(k)=— ' k+M ( —k) k'dk
( )(

'
)(

' )),
(5.48)

Requiring

and

&f"'k
2(m ~ —A.)

wf,"'k
2(mv-~) '

(5.49)
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the renormalized coupling'constants are given by

f,2(M+ m „)
2 , 2

2 A+ M+ (k2dk '
J

k'dk(
)(

'.
), +M

J k'dk(2 )(]
'

)2

f22[M+ fk2dkc f22/($- m„)]
A+ M+ k dk k dk( )( ), +M k dk(2 )( )

(5.50)

It then follows that

)Tf k

2(m2+ Z)
(5.51)

and that the inelastic Born term is

Wf", f2 .

2(m~ —A.)
' (5.52)

These same expressions are obtained in the weak coupling limit in terms of the bare coupling constants,
and in that limit the second-order expansion terms involve both the physical channels and the shadow

channels. In Fig. 5 the field-theoretic equivalents to the first- and second-order diagrams for elastic
scattering in channel 2 are given.

Again it is interesting to notice that a Purely ~eal state vector corresponding to the shadow channel can
be constructed which is orthogonal to each of the physical N8 sector states. The normalized state vector
is

~1(~)=
&4N~

X f, (sv)k
(2~8'{)-I +'a))

Re(l)I )

5(~ ) R
& f,(N))k oIg, (N))k'

g1 5 $ (2(()) (X-s) +2E) (2({)) (A. -K +26)

-Re(o I )

eg~A,
~+t+(2y) 1l2

(5.54)

(5.55)

The wave functions can be verified to be complete where now both the VE bound state and V2~ ghost state
are included in the generalized Mgkler matrix along with the ghost shadow (negative-metric) state. Like
the Shadow state, )t is orthonormal and pgrsly 2eal and is given by
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i ~'I'f, (w)k
(2~)'"(A, -w+ ic)R

iI' 7'
~ se +0'g2 so

4~(w) = 1 "' (2~)'&'(A. -w+ ie)
Nq

He(i-o'I')
(5.56)

g, (w)kRe('s I )t „,
~)

=', eNvk5(A, -w)

Nu =1+m'g, '(7'E'7E+G. 'G )-,' k'. (5.57)

B. Scattering Sector: Two Shadow Channels

We consider the case vrhen channels j. and 2 contain shadow states and channel 3 contains a physical state.
%hen a physical plane wave is incident, the boundary conditions are

gz'(w) -principal-value Green's function,

y'q(w) -plane wave plus +is prescription,
Igq' (w) -noninteracting standing wave .

(5.58)

(2+)(X —
& + is) J (2&v)(A, —$)

(5.59)

(5.60)

where the superscript I' denotes the principal value, i.e., 7 = —,'(v'+r ). Substitute (5.58) into (5.22) to
obtain again the properly normalized state vector

M'~ f,(w)k
(2(u)"'(4 -w)

-I r

+M'[7 f,( )+w6 g,(w)]k
(2(u)'~'(X —w )

Xz(w) =

M'a' g,(w)k
(2&v)"'(A. -w+i~)

(5.61)

vM+(7' f2+g+g2)k
5 A. -w
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where

M+ &8'+~
(2~)l/2 +PE+ )

which is orthogonal to the V-particle states. The corresponding T-matrix element is

(5.62)

w9 @~k
2TPf

and it is unitary.
In terms of the renormalized quantities

T(A.) ~- v 2(mv+X)'

where

wf ~s(M+mv)k

(5.63)

(5.64)

(5.65)

VI. SHADOW STATES AND THE
SUBSTITUTION LAW

where

( )
wkf (A.)
2m+(X)

(6.1)

In this section we wish to discuss the role of the
substitution law in the presence of shadow states.
Historically, in radiation theory special cases of
this law were first recognized, "e.g., the relation
between pair production and bremsstrahlung, and
then quite some time later in the framework of
quantum electrodynamics it was appreciated that
this law is a general consequence of the structure
of S-matrix elements as obtained by iterative solu-
tion. ' Not so well known is that the law also fol-
lows in simple soluble models having meson fields
of both positive and negative energy, say, as in
the conventional charged scalar theory of m-P and
w'P elastic scattering. (We briefly review it here
as presented in Ref. 6.) In Fig. 6 this theory is
described by two of our diagrams which are re-
lated by the substitution law; in fact, they are
crossing-symmetric. For the first diagram, the
m P scattering amplitude is given by

and thus by inspection it is seen that

w p = n - 8s Ns(shadow),

w'P = n~ = HsNs(shadow),
(6.6)

say, as in the two-channel model considered in
Sec. III. ( n denotes the physical neutron "bound
state" and n~ the similar "ghost" or negative-
metric state. ) From the scattering amplitude
which was obtained for the two-channel model,
Eq. (3.31), it is seen that the w P amplitude (6.1)
is unchanged when the shadow process is coupled
in except for the replacement of (w'(A. ) with

T, ~(-A. -ic) = T,,~(A+ie)

does hold for f ($)'=f, (-()'.
The remarkable thing is that when shadow states

are introduced in the simplest manner into the
charged scalar theory, this substitution-law re-
lationship is maintained. It is natural to assume
that both charged processes are dynamically cou-
pled to shadow states, with possible transitions
being

and for the second diagram, the w'P amplitude is
(6.7)

wkf, (A)'
v+P( )

2P (

where

(6.3)

1f' p

l
1F p

p

(6.4)
FIG. 6. Crossing-symmetric charged scalar theory.
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where

( )
))kf„(A)2
2)I'(X) (6.6)

, (.)=" ""krak
(2&v)(X —$ + ie

(6 9)

For the m'p process, n~ is a negative-metric
"bound state" of mass -m' so when shadow states
in the two-channel model also mediate this pro-
cess, the amplitude is

t
Ng8p

t
Ni8(

/

~ )
/

~)

) N)8I

l Na82

Shadow

Shadow

Ny8p

Notice that g has the same analytic structure as v

and 0 as shown in Fig. 2, and is the piecewise--
analytic extension of them along the "left-hand
cut. " Hence,

for

T, ~(-A. -ie) = T,+~(A+ic).

N, 8,= V, =N, 62= V2: N38, (shadow), (6.11)

The transformation involved here is one of substi-
tution and not analytic continuation since here the
thresholds for the physical and shadow channels
coincide, and thus the threshold point is a point
of nonanalyticity. It should also be noted that
while the scattering amplitude is continuous as a
function of energy along the real axis since for X

H[-P, p], v(A) has the piecewise-analytic extension
o(&) as discussed in Sec. III.

However, it is only in the multichannel situation
that we see the full power of the substitution law
for intertwining apparently distinct shadow theo-
ries. For example, in Sec. V we considered sep-
arately two three-channel models; the first, (a)
has one shadow channel with the transitions

FlG. 7. Three-channel shadow diagrams as related
by the substitution law.

(6.14)

in the symmetric situation in which f»($)
=g, ,(+$)', i.e., they are related by the substitution
law. (See Fig. 7. ) Notice that the scattering am-
plitude is again continuous as a function of energy
along the real axis.

VII. MULTICHANNEL GENERALIZATION

We now wish to consider the many-channel situ-
ation in which there are an arbitrary number of
shadow channels. In order to do this, we construct
a model possessing a mathematical structure quite
similar to that of the previous ones but which per-
mits a simpler notation. Field-theoretically, this
model is the four-point interaction counterpart of
those which have already been studied with three-
point interactions, so for the ith channel there is
again an N, fermion field and a 8, meson field of
both positive and negative energy, ' however, now

there are no explicit V fields associated with the
bound states and/or ghost particles. Thus the pos-
sible transitions are

and the second, (b), has two sha. dow channels with
the transitions

N, 6,( hsdawo)= V, =N, g,(shadow)= V, =N, G, .
(6.12)

But we now see that the N, e, elastic scattering
amplitude of case (a),

N] 0] N~0,

with conserved quantum numbers

Q=g f dk (,), (k)a (k) .

(7.1)

(7.2)

(7.3)

T (X+ie)=—
27 ay+ (6.13)

The Hamiltonian is

is the piecewise-analytic extension of the %383
elastic amplitude of case (b),

IIo+&r

where (setting EP =0)

(7.4)
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jt dk w, (k)a~(k)a, (k),

t
f' " -, G„(k,k')

x [Ãzt(P —k)at(k)N&(P —k')a, (k') +N, (P —k)a, (k)N~z(P —k')a~Z(k') j

with the same commutation relations as before. The metric operator is given by

(V 6)

@=exp im dk8 -gg,. g&~ k g& k (V.V)

so, since the form factor C;, is purely real,

Applying the Hamiltonian to the physical N8 scattering states

ic(p)& =g dk y'(kPrzt(p -k)8,'(k) io), (V.Q)

we obtain

(V.10)

As before, we assume factorization of the form factor, G,,(k, k') =G, (k)G&(k'), and then to reduce (V.10), ex-
pand the factors in a spherical basis

G;(k) =g I'i. (~, 4)g& (w).

Taking Q,
' (zo)'s norm such that

Pt (w) =I,' dQ Y;* (8, P)Q'(k), (V.12)

we restrict our attention to the Imth partial wave so (6.10) becomes

(~)i~~( )
~g'z(w) ~ ~, zd~, &(hg)gg(84'(&)
( )"' ( ') '

We now order the channels by their associated boundary conditions

(V.IS)

c, b, ... outgoing-wave boundary condition
Z =

Jpl, »»» shadow-wave boundary condition

and let (z not summed}

(V.14)

(„) iPdq &(&)a(04i(~ h)

(2u&, )"'k (V.15}

Then for an incident plane wave in a particular one of the physical chanriels, let us call this channel A;, the
solution of Ecl. (V.IS) is of the form

(„)( ) ( )
g, (w)Q~x~(A)k @g (M)g~x, (X)k

"(2&v )'"(A. -w+ze) '
(2&v )'"(A. -w) ' (V.16)

where for i =a, b, ... the third term does not appear and for i =m, .. . the second term does not appear. .

Substituting into (V.15) and solving the resulting system of equations, we get

e(X)g„(X)id„',.(Z) i Z

(2X)»' ID'(A) I

(V.1V)
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where

(7.18)

with

(7.19)

and where d„';(A)is the cofactor of element D„',in D'. Now the shadow ghost channels are introduced and
the fact that Q, ~

d'„,.(A) ~

= 1 is used to write the orthonormal set of physical state vectors,

eg, A. g (go)k
ID'(A) l(2X)"'(2(u)" (X -w) (7.20)

—,ewg„g k5(u —A.)

By Eq. (5.18) it is easy to verify that these are indeed orthonormal and that the corresponding physical T
matrix is given by

~(z, a) &g~ ga&
2lD' I

(7.21)

It is unitary.

VIII. DISCUSSION

In this paper we have dealt with several models
of soluble quantum field theories involving shadow
states. They are to serve as prototypes for real-
istic models of particle -physics phenomena. In
these models the scattering amplitude is relativ-
istically invariant and explicitly unitary. The
novel feature is the appearance of shadow channels
which influence the scattering but which do not in-
terfere with the unitarity of the scattering among
the physical channels alone. This obliging nature
of shadow states, insofar as they contribute dy-
namical effects essentially as if they are physical
states and not meddling in the probability inter-
pretation of scattering processes, makes them
very valuable tools in the construction of a finite
relativistic quantum field theory. It has been rec-
ognized for some time now that the identification
of physical particle states in a quantum field theory
is part of the dynamical problem. The models dis-
cussed in this paper again call attention to this
basic fact.

The choice of a standing-wave boundary condi-

tion for the shadow states was shown to be com-
pletely consistent with the physical description of
the scattering process in terms of wave packets.

We have remarked in the introduction that the
substitution law' is valid in this theory since scat-
tering at negative energy is a well-defined process.
To this extent the situation coincides with standard
quantum field theory, and, hence, the scheme is
quite different from the one-meson approximation
in, say, the Tamm-Dancoff formalism. Of course
the one-meson approximation mutilates standard
quantum field theory and makes it soluble in closed
form, ' this is reflected in the fact that the states
are limited to one-meson states.

The most notable feature of the results is that
the scattering amplitude so obtained is an analytic
function in almost all neighborhoods of the real
energies at which scattering takes place. But it
is not the boundary value of a single analytic func-
tion. Rather, the function is only piecewise-ana-
lytic. Along the real axis the function is continu-
ous as a function of the energy, but in different
regions the scattering amplitude takes on the
boundary values of different analytic functions. In
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particular, the onset of the shadow channel is at
a junction between two analytic functions. From a
systematic study of a variety of theories' ""we
have learned that this is a fundamental property
of the scattering amplitude in any theory, muti-
lated or otherwise, in which we have shadow states.
— In the present theory the physical and shadow
thresholds coincide; consequently, the threshold
is a point of nonanalyticity. The transformations
involved in the substitution law are therefore ob-
tained noI; by analytic continuation but by substitu-
tion. The concept of a master analytic function
and the implementation of crossing symmetry by
analytic continuation have been the basic postulates
of modern 8-matrix theory and hence we cannot
lightly embrace piecewise -analytic functions: We
must systematically examine various consequences
of such a step; and also examine the question of
experimental evidence for or against such a step. "
We shall do this in subsequent papers of this se-
ries.

Success in applications to particle physics would

give added support to such a systematic study. In
the next paper we consider the application to low-
energy pion-nucleon scattering. This is only a
first step since we must at least reproduce the
desirable gerieral features of standard 8-matrix
theory before accepting such a serious step as
legitimate.

In this context it is relevant to point out that the
concepts of shadow states and indefinite metric
have been successfully applied to quantum electro-
dynamics, '"the one field theory where we have
the possibility of quantitative comparisons.

To the extent we have investigated we have not
encountered any logical inconsistencies in the
formalism developed here, and we have every
hope that this is a step in the right direction.
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By adapting the methods of the preceding paper, we use the concepts of shadow states and
indefinite metric to construct a simple static theory of low-energy pion-nucleon scattering.
This theory of s- and P-wave scattering so constructed is both finite and exactly soluble.
Scattering at negative energy also is a mell-defined process. The calculated scattering am-
plitude is found to satisfy the substitution law and to be covariant, unitary, and analytic in
almost all neighborhoods of physical scattering energies. When given the masses and coU-
pling constants as input, this theory predicts the scattering phase shifts in agreement with
experiment. The present limits on the s-wave pion-nucleon scattering total cross sections
are compatible with the induced cusps from the opening up of the pseudothreshold of the shad-
ow states.

I. INTRODUCTION

The unfinished quantum field theory of low-ener-
gy pion-nucleon scattering has had a particularly
long history. After all, it was over three decades
ago that the meson theory of nuclear forces with
Vukawa couplings was created by analogy with elec-
trodynamics' and it was as early as 1942 when, on
the basis of strong-coupling theory, the suggestion
was first made that an isospin- —,

' resonance might
exist. ' In spite of many different theoretical at-
tempts since these earliest beginnings, the basic
challenge has remained: Construction of a conver-
gent, divergence free theory whic-h when solved
exactly predicts the observed experimental parame-
ters of low-energy pion-nucleon scattering approxi-
mately. A true quantum field theory for this physi-
cal phenomena has not been constructed. As dis-
cussed in the preceding payer, ' the concepts of in-
definite metric' and shadow states' are valuable
tools in the construction of a finite relativistic
quantum field theory, and therefore we wish to em-
ploy them here in our consideration of low-energy
pion-nucleon scattering. Before introducing these
ideas it is useful to review briefly some relevant

aspects of theoretical approaches to this problem
in the past.

In the early fifties' in the quantum-field-theory
approach to this problem a, fundamental question
concerned the proper field-theoretic interaction to
be used. The pseudoscalar interaction was general-
ly preferred over the pseudoveetor interaction be-
cause the pseudoscalar interaction can be made re-
normalizable by adding a meson-meson interaction
to it.' A problem still remained though, as to how
to carry out calculations when the coupling con-
stant is large. Another aspect in the choice be-
tween these couplings was that in lowest-order per-
turbation theory both types of interaction were
found to yield identical results' provided the cou-
pling constants satisfied the relation G/2M= f/p;
but then both were wrong in predicting that s-wave
scattering should dominate pion-nucleon scattering
at low energies. 9 Yet about the same time it was
recognized from the analysis of nucleon-nucleon
interactions that some additional s-wave interac-
tion was needed, specifically, a term


