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We study the inclusive reaction a + b c+ (anything), where all the particles belong to a
single scalar field Q(x) interacting through a g $3(x) term. We do this in a ladder model for
the forward abc abc .process, whose amplitude is intimately related to the inclusive dis-
tribution. The choice of the infinite sequence of ladder diagrams as well as the assumptions
involved are natural extensions of analogous work in the literature for four-point functions.
In the fragmentation limit, the model yields the expected Regge behavior as the initial ener-
gy tends to infinity. An expression is derived for the limiting distribution function E~ do/
dp, for fixed p, as s ~. The results are derived both in the "leading-term approximation"
as well as by an exact Mellin-transform method.

I. INTRODUCTION

Inclusive hadronic reactions have been the sub-
ject of considerable study in the last few years.
In particular, the hypothesis of limiting fragmen-
tation' has gained encouraging support both from
experiment' and from Mueller's O(2, 1) analysis'
of inclusive reactions, based on a generalized op-
tical theorem.

Model calculations for such phenomena already
exist in the literature ~ using both dual theories
and multiyeripheral amplitudes. In this payer,
we study fragmentation using somewhat different
techniques, although the physics is closely related
to multiyeripheral models. As Mueller has
shown, ' the inclusive distribution for the fragment
c in the reaction a+ b- c+ (anything) is closely re-
lated to the forward abc- abc amplitude. We eval-
uate, in a P' theory, the high-energy abc abc
amplitude by summing an infinite sequence of
crossed-channel ladder graphs. This is done first
in the "leading-term approximation" (Sec. II) fol-
lowed by a more exact result using Mellin-trans-
form techniques (Sec. III). In both cases, the
abc- abc amylitude Reggeizes in the Mueller sense
in the fragmentation domain. Further, the Regge
trajectories that appear are the same as those
that would occur in the same P' theory for the
elastic 2-2 amplitudes. This Regge behavior and
the identification with the elastic trajectory func-
tions supports Mueller's results, and leads to
limiting fragmentation. Our method does not re-
quire any additional assumptions about transverse
momerita, or about correlations or the absence
thereof, between particles widely separated on
the rapidity axis.

We also obtain an expression for the limiting
distribution F.,da/dp, (s- ~), as a function of p, .
It is shown that this distribution is uniquely ob-

tained in the Mellin-transform method, but not in
the simpler leading-term approximation although
the latter also yields limiting fragmentation. The
residue of the leading Regge pole also factorizes
nicely in the sense described in Sec. III.

All the work below follows methods already de-
veloped in the literature" for the "elastic case."
By the phrase "elastic case" we will always refer
to similar crossed-channel ladder summations
for the two-body forward elastic amplitude (four-
point functions) in Q' theory. We will assume fa-
miliarity on the reader's part with such methods
for the elastic case, and arguments or steps for-
mally identical to the elastic case will be given
only in condensed form. Stress will be laid in-
stead on those special features that are introduced
in the adaptation of these methods to our abc- abc
process.

At the end of Sec. III, we give a discussion of
the choice of graphs that define our model. Some
alternate choices are also discussed.

II. LEADING- TERM APPROXIMATION

We treat the process a(p, ) + b(p, )- c(p,)+ (any-
thing), where all the particles correspond to the
same neutral scalar field Q(x) of mass p., inter-
acting through a gP'(x) Hamiltonian. Throughout
this paper, we are interested in the fragmentation
domain, where p, is fixed in the laboratory frame
of b, as (R,).b tends to infinity (Fig. 1). Let

s -=(p, + p, )', s'-=(p, -p, )',
t =- (p~-p, )' = -2'(E,)»+ 2 p',
M = (p, + p~ -p, )2.

As s-~ for fixed (p,)»,
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and

M x —1
-=k.

s x

The variable x above is just the Feynman scaling
variable (Ref. 1) when all transverse momenta
are bounded, an assumption that we do not explic-
itly need. We will find it convenient to use s', t,
and k as the independent scalars, where, in the
fragmentation domain t and k remain finite as s
(and hence -s') tend to infinity.

The high-energy inclusive distribution for the
particle c is given by

FIG, 1. The inclusive reaction a+ 5 ~ c+ (anything)
and the definition of the related variables.

do' ~—Im(a(p, ), 0 (p, ), c (-p, );out~ a (p, ), 5 (p ~), c (-p, );in) .
C

(2)

For the amplitude abc - abc, we sum all ladder graphs of the type shown in Fig. 2, where the external ini-
tial (final) leg -p, can be attached anywhere on the lower (upper) horizontal line. The crucial indices in
the diagram are m, the number of rungs to the left of both -p, lines, l the number of rungs in between the

two -p, lines, and n the number to the right of both -p, lines. The special case when / =0, i.e., when

both -p, lines are attached to the same box has a more appealing physical interpretation than cases where
1 & 0 (see subsequent discussion), but our method will accommodate all values of /. The amplitude we cal-
culate is the sum of all graphs of the type in Fig. 2, with m, l, and n varying independently, and all the

way to infinity.
The contribution of any one diagram, corresponding to a given m, 1, and n (Fig. 2), is an integral over

the internal loop momenta. This can be immediately converted to an integral over the Feynman variables
associated with each internal Line. The integrLtions over the loop four-momenta are performed by the

p /3 /3 /9

~~-~ &m &~+( m+2 ~ + A m+&+~

g
(

CTp ~+i m+~ ~m+ g+n

'Y

M

FIG. 2. A typical ladder diagram contributing to the forward amplitude abc; out abc; in. The ~;, P;, and 0; are
the Feynman parameters associated with the internal lines. The total number of "rungs" is rn+E+n, of which the
first m are to the left of both -p, external lines, the nextl between the two -p, lines, and the lastn to the right of
both -p, lines.
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well-known techniques 6 giving

g2 m+ j+n+ I f((Q t 1 )[C (( )]m+ j+n
A, „(s', t, k) =B

1
(m+ 1+ n+1)! II d$&16~' (3)

B contains all inessential constants, common to
all diagrams. Here $, refers to the collection of
all the Feynman variables n, , P, , and 0,. shown
in Fig. 2. The denominator functions D and C are
obtained by using well-lmown rules which result
from the loop-momentum integrations. These
rules are succinctly presented in Ref. 6 and we
will not repeat them here. Nor do we need to pre-
sent in their entirety the lengthy expressions for
C and D that result from these rules, but merely
note their relevant properties. At this stage we
note, as can be checked from the application of
the above-mentioned rules to this diagram, that:

(a)

m[&|(&()l '+ i 2' " m+i+2l!f

Now, as s'- -~, the leading contributions to Eq.
(3) will arise from the region of $ space where
g($, , k) is nearly zero. This can be achieved by
the vanishing of one or more of {u„.. . , a ] and/or
the vanishing of f($, , k). However, unlike the re-
gion where n„~„.. . , or o. vanish, the region
where f ($, , k) vanishes will not enhance the as-
ymptotic behavior in s'. This is because, as per
the property of b. ,(t, ) mentioned above, f (t, , k) =0
only if more than one $, vanishes. Let us suppose
that at least r of $, have to vanish when f((, , k) = 0.
Let us call them $ "', . . . , $

'"' (these may include
some o('s, P's, and some o's). Let us change
variables to $"'=p, 'g"', i =1, 2, . . ., r. The si-
multaneous vanishing of all ("' amounts to p-0.
But

+~.((, , (, , ) z(,.)c((,.), .
i

(4) r r
II(d("')= p" 'dp~ Zt'"' —1II(~$"')
1 t I

(b) C is a function of the $; alone, and not of s',
t, orM.

(c) D and C are homogeneous in the $, of degrees
(m+ l + n) and (m+ l + n -1), respectively.

(d) h, ($, ) depends only on o(, , P „and o, for
i )m. Further, it will vanish only if move than
one of these variables vanish. %e now proceed to
evaluate Eq. (3) in the fragmentation limit viz.
fixed (p, )„b as s -~. Equation (1) shows that this
corresponds to fixed f and fixed M'/s' -=k, as
s' -~. Consequently, we write the coefficient of
s' in the function D [Eq. (4)] as

g($;, k) —= [n., ($, )+kn „o(„,„]n, o(.
-=~,~." ~.f(5;, k).

while f ((;,k) and hence g ($, , k) will vanish only
linearly with p. Consequently, the presence of
the pr ' factor in the Jacobian above will dilute the
contribution of the integral near p =0, in contrast
to the case when any one of the {n„.. ., ng is near
zero. The argument sketched here has been elab-
orated for other examples in Ref. 6.

Thus, the asymptotically leading terms as
s'- -~ in Eq. (3) come only from that region where
one or more of the set {o.„.. ., o. ]-0. The other
"rung" variables n „„.. . , a „,„do not have this
significance. Now, the leading term will come
from the region where all the variables in the set
{o.'„.. . , o. ].vanish. Then,

m +l+n+1 (t m "1 m+l+n m+l+nA, „(s',l, k) ~ B(m+ l+ n+1)! II(«;) II (de;d;) II («;)16' 40 1 ~0 1 m+1

5(P $; —1)[C(t',)] "'"
'[o., ~ ~ ~ o( f ($;, k)s'+a, ($;, P', f)- (gt',.)C(t,.)V'1"""'

(Ins()m-I 2 m+l+((+1 1 m+1+n m+l+n

16 ( + l+ ) II (d ') II (dP d )
0 m+1 1

, ~(Z;&. —1)[c'(&,)]-"'"
f (n, k)[d'(5&, f, ! ')]""""'

where

d (4i ~~ P ) =Dla, =a2= ~ ~ ~ =am=o|

c'(t,.) = c(t';)I.,=.,=."=-.=. ,
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and 1) —=jl!,] stands for the variables o., (t&m), p, (i&m-1), o,. (2&m-l).
These are the variables to the right of the rung 12. in the diagram. Now we note from the original struc-

ture of the C and D functions that

m 1

c 2)= n(n, ",l)~, l,.l
j=1

and

m-l
n 2„~ n l= n (n,';))t~ 2, n', n l-(Z 1 l~ ln l.*l.

J!=1

The homogeneity properties of these functions are

f(pq, k) = p""f(q, k), C, (pq) = p"" C(q),

and

5, (t, tl', Pl)) = P"""5,(t, tl', 1!).
Next, we perform the following scale transformations,

PJ = p&P&, a&= p,.V&, 1 &j & e-1
and

TJ ~ = p'g ~
~

so that

m-X

D (dp1do, .) = g [pldp, dp,.do,6(p,. +o,. —1)]
j l j 1

and

dl! = p""""dpdq5(gq —1).
Substituting these in the expression for A, „(s', t, k), we get

A. , „(s', t, k)

-g2 '"""(m+ t+n)! (lns')™1

16m' (m —1)! s'
""

dp, ~ dp, dp~ p'+""6(p, + ~ ~ ~ + p, + p —1)g, '[dpldo'l5(pl+I, -1)]dye(gq —l)[C, (2!)]
+""

f (1! k)(Qm I Il p ~kp)m+1+2+1

( )l+n+1-g' """" (lns') -'
16m' S

s"""!"'dp "dp, dpt'(p; 'p, +p 1-)II™'-[dP;d, &(P, +;-1)]do (Z!!n-1)[ (c)]"1!""

where

k, r~) = C, m) p', -k(n, t) =t, (t, p', e) C, m) p', —

and we have dropped the factors (pl + o, ) and (Q q) because of the 5 functions in the numerator.
Performing the p„.. ., p, and p integrations with the help of the Feynman identity, we get

g2 myt+n+1 (lnSi)m-1A, „(s', t, k) =B, (-)""",
( J ~

t' Q, [dP, do' 5(P + o —1)]dq 5(gg —1)[C,(q)] +""
Skl+ +1 J nf (1! k)( t12)m-1[C (2!)]m-lk(2! t)

g2 m+l+n+1 (lnSt)m-1=B 1, ,
( ), (t+n+1)!
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d ill(gail-1't[C(q, )] """"' 'dli diril(, P ~ ir -I))f (n, k}[k(n, f)]""",=. .. (-v')
ns'm '

(10)

where

and

g dP~dvje(Pi+ V~ 1)
16m' ., (-p, ')

g2
16m'p, '

2 l+n+2
I', „(k, t )=, (l + n + 1)!

W p

"dn e(gn 1)[-c,(n)]"""
f (n, k)[k(n, ~)]""" (12)

A(s', t, k) =— g A, „(s', f, k)
m, l, n

—,(Q, )(rr, „(k, .tI

where

=B(s')» 'I'(k, t), (13)

Thus, the coefficient of (lns') '/s' in A, „(s', t, k)
factorizes into m terms. This factorization is pic-
torially depicted in Fig. 3. The first (m-1}fac-
tors are each equal to K, which corresponds to
one "bubble" in Fig. 3. Note that in ladder models
for four-point functions in this same gP' theory, '
the forward elastic (2-2}amplitude will contain
these same factors K. The last factor F, „depends
only on k and t, i.e., (p, )„b, and it involves inte-
grations only over the variables g, which are to
the right of the n rung.

Summing A, „(s', t, k) over all m, l, and n,

I'(k, t) = Q I', „(k, t).
J, n

Thus, we see that the summation of all ladder dia-
grams of the type in Fig. 2 gives a Regge-behaved
amplitude in the variable s'= -xs. The trajectory
K -1 is identical to that arising in the elastic case,
since the same expression for K comes in here.
Note that since we are dealing with a forward
abc- abc amplitude, there are no momentum-
transfer variables in the process and K is just a
number. Thus K -1 is the trajectory function at
zero momentum transfer for elastic scattering.
If we identify it with the Pomeranchukon, we can
setK-1=1. %e then have

E,„~—ImA(s', f, k)
da 1
dp~ s

~I™,t -x .

Thus, limiting fragmentation is achieved. The

, a~+i a~+ g +

m+ t m+z

I

N+ I+A

FIG. 3. Yhe factorization property of the coefficient of the leading tins') ~/s' term in A



3646 R. RA JARAMAN AND A. BANER JE E

Regge residue function I' depends only on (p, ), „as
can be seen from Eq. (1) for t and M'/s' =k.

Although the leading-term approximation used
above Reggeizes and can give limiting fragmenta-
tion, the fragment distribution function
I'(M'/s', t) (-x) is still ambiguous in this method.
To see this, let us suppose that one had chosen to
use M' instead of s' as the variable tending to in-
finity with s'/M' =1/k. Following all the steps
above, one would end up with the result:

—M MA(s', t, k) ~ a(M' )r-'I
+2~ ao s s

t and s '/Af fixed2

This new Regge residue, and hence the limiting
distribution function, has changed by a factor

(M'/s')r even though the physical limit is the same
as before. Such an ambiguity of the Regge residue
is a manifestation of the defective nature of the
leading-term approximation, which while it re-
tains the (1/s')(lns') 0 ' term for m= m„ ignores
similar terms from diagrams where m &mp. Such
a problem exists in the elastic case as well where,
even though the result will Reggeize, the residue
function is quite arbitrary. Its momentum trans-
fer dependence can be altered by a trivial change
of variables. Correspondingly, in our inclusive
reaction case, the leading-term method cannot
predict the limiting distribution function uniquely.

This motivates us in Sec. III to perform an exact
summation of these ladder terms. The work of
Sec. II however gives much insight into the prob-
lem and makes the presentation of Sec. III simpler.

III. THE MELLIN- TRANSFORM METHOD

In this section, we do away with the unsatisfactory approximation of neglecting terms lower than
(1/s')(lns'). ' in A, „(s', t, k). This is done by performing a Mellin transform on A, „(s', t, k), summing
over m, l, and n, and then performing an inverse transform on the result. We have,

(, tk) D ( I 1), ,
K( &, ) (ZA; — )[ (&;)]

'J [D($ s' t k)]""""" (14)

%e keep k and t fixed as before, and let s'- -~. When s'- -~, the function D is negative definite, and C
is positive definite for positive $, . Using this, and the homogeneity properties of C and D mentioned in
Sec. II, we can convert Eq. (14) to '

(
ii t k) II lr

( )I+1+/ II(d) )exp[Dnl s t k)/C($$)]
(15m l n» F6+2 [CM.)]'

Now, from Eqs. (4) and (5), we write

D($, , s', t, k) =-A'g, , k)(-s') —Z($, , t)C(t, ),
where

2)
t) 2(~l) t t Q$ 2

t7 C($ )

Taking the Mellin transform of Eq. (15) with respect to (-s'),

A, „(P, t, k) = (-s') s 'A, „(s', t, k)d(-s')
kp

=& 15, I'(-P)(-)""'" II(d& ) C j',. exp[-~(5;, t)]
T6m

The function g($;, k) has the form [Eq. (5)]

g(5;, k) = n, n, n f (n, k),

where the variables q have been defined in Eq. (7). It has already been seen in Sec. II that the variables
(n„.. . , n }have a special significance as distinct from the other n's or the p's and &'s in that they give
the leading behavior to A, „(s', t, k) when they are near zero. The same fact manifests itself here. The
integral in Eq. (17) is singular at P =-1 because of the (n, n, ~ n )8 factor in [g($, , k)]8. The [t(q, k)]8
does not produce a singularity at P =-1, though it can vanish, since such vanishing requires more than
one g variable to be zero. In this sense the [f(g, k)]8 factor is similar to the [C($;)] s factor in Eq. (17) and
and can be combined with it. Then the singularity at P = -1 can be exhibited explicitly by integrating Eq.
(17) by parts to give
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*"
(o. n n )"2 ' m

(0+I)
g2 m+t+n+ 1~. , „(p, t, k) =Br( p),6,16m'2 . &0

s- -
e («)) f(

C(4)f()!,k) C(h;)
d$; .

(18)
Thus A ) „(P, t, k) has been reduced to the same form that appears in the elastic problem [Eq. (8.6.15)
in Ref. 6] and the rest of the steps follow through in a manner identical to that problem. The only differ-
ence as compared to the elastic case is that of all the rungs a„o.„.. . , n „,„, only the firstm rungs
contribute to the pole at p = -1 and the function [f()I, k)/C($;)]8" replaces [C($,)] 8 '. We outline the sub-
sequent steps very briefly. The mth-order pole at P = -1 gives the leading term discussed in Sec. II. We
keep here all the lower-order poles as well and the nonsingular terms by expanding the coefficient of
r(-P)/(P+ I) in Eq. (18) in powers of (P+I). This gives

2 m+l+n+ g

, „(p, t, k) =Br(-p) 2
(-)'+"

g (Inc,)'» e ~ [(ln(f/C)]' 1
s&! Bn, sc( Cf (I! (p + 1) (19)

where the sum over s,. is over all sets of integers s, satisfying Q~s~= m-p -(I. When some of the s, are
zero, the integration over those a,. is trivial and amounts to setting those a~ =0 in the terms inside the
large round parentheses. Further, the expressions e, f, and C factorize as depicted in Fig. 4. In Fig.
4, j, , . . . ,.j„stands for those indices j, ~ m which have s. =0. The term (ln f/C) is now a sum of indepen-
dent terms, so that each term in the multinomial expansion for [ln(f/C)] is factorized in the sense of Fig.
4. We also sum Eq. (19) over the index m. Then exactly as in the elastic case g 4 ) „(P, t, k), which is
a sum of factorized terms, will again factorize. We merely quote the result:

Zx, „(P, t, k) =r(-P)G"'(P)
)

G, „'(P, t,k),

where

G &))(P) g G (t)(P)
/=0

("(p) = — f'(";((())+((+ (,
=0

(20)

G)~2)(P, t, k)= Q G~( I „(P, t, k).
J=O

Here,

(21a)

~ ~ e o mmmmma ~+op +

Pc

FIG. 4.' The factorization property of Eq. (19) when the powers s& of the /no;) are zero for j = j&, ...,j„.Here the set
(j&, ...,j „) is a subset of (1, ..., m).
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(2lb)

(21c)

The factor G~~' is depicted in Pig. 5(a). The functions J&' and C~' correspond to the diagram in Pig. 5(a) as
per their definitions and the rules for obtaining them. Similarly, J~, C~, and F& correspond to Fig. 5(b)
and J,.'~, „, CI", „, and GI", „(0,t, 0) correspond to Fig. 5(c). Note that G,'."= g for j=0, while GJ",' „for j =0
is still an integral involving all the variables g;.~The integra~tion variables y';", y, , and y,

' refer to a11 the

cj-p gj )

(b)

P
C

+m+ I

g +g ID+I+I

(c)

Fyo. 5. (a) The factor 0& (p) defined in Kq. (21a). Similarly, (b) and (c) correspond toEJ (p) and G& &, respectively.
(d) gives the resulting H, egge-pole behavior with the factorized residue G & & (P) 6 ~ ~ (P, g, &).
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variables in the corresponding diagram except for
a„.. ., n, , which are explicitly shown. %hen the
Mellin transform+ A ) „(P, t, k) in Eq. (20) is
inverted, the resulting amplitude g A ) „(s',t, k)
will show Regge behavior corresponding to the
zeros of E(P). If these zeros are at P =P„ the
high-energy amplitude is

gW. , „(s', f, k) ~ Pr(-P, )G&»(P, )G)&')(P, , t, k)
m ~ ~oo

& Residue -s' 8& .
8=8&

(22)

Note that just as in the leading-term approxima-
tion, summation over l and n is not necessary for
Regge behavior, although such summation can be
performed for completeness. This would merely
replace G,&2)(P„ t, k) by

E,n

G&R)(P f k) —G&2)(P t k)

in Eq. (22).
The residue of each Regge pole factorizes nicely.

The factor G &))(P,.) can be considered as the (a-a)-
Reggeon vertex, and is composed of ladders at the
left extremity of the diagram [Fig. 5(a)j. The fac-
tor G &2)(P&, t, k) represents the (bc-bc)-Reggeon
vertex, and contains all the dependence on t and k,
and hence (p, )„b Both the Regge vertices are at
zero momentum transfer since the forward
abc- abc is involved. Hence G &))(P&) and I'(-P, )
are just numbers. We have taken the zeros of E(P)
to be linear. If higher zeros are present, Eq. (22)
is modified in an obvious way.

Finally, the function E(P) whose zeros give the
Regge trajectories, is a sum of terms of the type
depicted in Fig. 5(b) and explicitly shown in Eq.
(21b). It may be seen that this function is exactly
the same as that arising in the Mellin-transform
treatment of elastic forward ab -ab scattering in
the same &j)' theory. Consequently, the trajectories
in the fragmentation limit of the forward abc- abc
amplitude are the same as those in the forward
ab -.ab amplitude. This identification, involved in
O(2, 1) models of inclusive reactions, is thus sup-
ported in &))' theory Consequ. ently, the leading
trajectory corresponding to the Pomeranchukon
will have P =1, giving limiting fragmentation.
There is a technical problem in as much as the

P& =1 term in Eq. (22) is purely real, and further
r(-P) has a pole at P = 1. As in conventional Regge
theory, both these problems are overcome by the
introduction of the signature factor. This can be
done in our ladder model as well. For this, we

merely add to our sequence of diagrams, the cor-
responding set where the two external lines p, are
crossed. It can be easily seen that this added set
corresponds to s'--s', with the same k and t.
Thus, addition of this set amounts to a factor
(1+e"8&) in each term of Eq. (22). This factor
nullifies the pole of r(-P;) as P, +1 and further
renders that term fully imaginary. With this mod-
ification, the leading P = I term contribution in Eq.
(22) gives

do' 1
lim E, d

«:—Im(a, b, c; out~a, b, c; in)
s -+; t, M2/s fixed pc

«:xG&2)(p, t& k)~8,

= g zG&')(P, t, k)(, , (23)
l, n

This gives us limiting fragmentation as well as
the limiting distribution itself. Since no leading-
term approximation is made in this result, the
residue G &)) G &2) in Eq. (22) is unambiguous so that
Eq. (23) for the limiting distribution as a function
of p, is an exact result of the model. In principle,
given the mass p, and the coupling constant g, one
can evaluate the distribution from Eqs. (20), (21c),
and (23). In fact, since the leading trajectory
function is set by hand to be unity, the. leading
zero of E(P) in Eq. (20) must be at P =1. This
gives an added constraint connecting p. and g.

However, the expressions for E(P) and G &2)(P, t, k)
are sufficiently complicated so that there seems
no simple way of exploiting these relations to give
a more explicit form for the limiting distribution
than Eq. (23) itself. We are currently exploring
the properties of the integrals in Eq. (23) in an
attempt to extract at least some features of the t
and k dependence.

We conclude with some remarks about the choice
of the diagrams (Fig. 2) that defined our model.
First consider the case when l = 0 in Fig. 2. The
discontinuity in M' of the diagram is then just the
absolute square of the well known multiperipheral
chain for the a+ b - (many particles) amplitude,
with all final particles except c integrated over.
Further, if the external lines -p, were joined and
integrated over, one obtains the familiar planar
ladder graph for the elastic ab - ab process. Thus,
the choice of Fig. 2 for our model is a physically
appealing one when l =0, with arbitrary m and n.

When l& 0, Fig. 2 still has an acceptable inter-
pretation. When the -p, lines are joined the re-
sulting graph for ab ab shown in Fig. 6(a) is the
ladder diagram with the line c crossed across l
other rungs. The discontinuity in s of Fig. 6(a)
gives the product of a "direct" Amati-Bertocchi-
Fubini-Stanghellini-Tonin (A, BFST) graph for the
ab- (many particles) process with an exchange
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(a)

]'c

(b)
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FIG. 6. (a) The elastic amplitude corresponding to
joining the external lines -p, in Fig. 2 and integrating
over p~. (b) is similar to Fig. 2 except that the external
lines pq and -p~ have interchanged their positions. This
graph corresponds to bremsstrahlung emission by par-
ticle b. (c) is the result of joining the external lines
-p, in (b).

graph for the same process. In generaI such
terms are expected to be there in perturbation
theory, but a complete set of direct and exchange
terms would lead to crossing all the rungs in Fig.

6(a) (and Fig. 2) in all possible ways -a complica-
tion that our techniques cannot easily handle.
Given that diagrams with l c 0 correspond only to
some of the crossed processes and not all, it is
not clear if their inclusion will improve the result
or not. Qf course, our method leads to limiting
fragmentation whether l is set equal to zero, or
summed over [see Eq. (22)]. But the limiting dis-
tribution function [Eq. (23)] will depend on this.

Finally, another interesting set of graphs is ob-
tained [Fig. 6(b)] by exchanging the positions of
the external lines b and c in Fig. 2. Our techniques
are immediately applicable for the sum of these
graphs as well. (The variable s' in Fig. 2 is re-
placed here by s which also tends to infinity while
M'/s and f are kept fix& in the fragmentation
limit. ) These graphs will once again yield Regge
behavior and limiting fragmentation. Their dis-
continuity in M' corresponds to a set of brems-
strahlung particles emitted by b, to which c also
belongs, in addition to a multiperipheral chain be-
tween a and E . This is clearly another natural
source for fragments of b to come from. However,
if the external lines -p, in Fig. 6(b) were joined
together, the resulting graph [Fig. 6(c)] for the
elastic ab-ab process involves self-eriergy and
vertex loops and is also divergent. Such graphs
clearly have to be renormalized away along with
a much larger class of such graphs, and our
method is not easily adopted to all of them.

All this discussion shows that while our method
can treat for all values of l diagrams in Fig. 2 and
Fig. 6(b), which are all legitimate contributors to
the full answer for the limiting distribution, these
diagrams are a very incomplete set. Perhaps the
best place to draw the line is to merely calculate
the l=0 contribution for Fig. 2, from Eq. (22).
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Strictly speaking, the amplitude derived above is real.
However, the residue 1 (M2/s, t) has considerable am-
biguity in this method as the subsequent discussion
shows, and the amplitude can accommodate an arbitrary
complex constant. In the exact method presented in the
next section, this ambiguity is removed, and the imagi-
nary part is seen to arise on adding appropriate crossed
graphs. See the discussion at the end of Sec. IH.


