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The p meson is described as a x7f-NN composite system, with N exchange as a nondiagonal
force between the two channels. The resulting nucleon loop, as a force in the mm channel,
gives far too strong attraction, if calculated with unmodified nucleon propagators. The nec-
essary cutoff parameter in the nucleon propagators is compared with the same quantity ob-
tained in the D(1236) channel. Pion self-energy effects are introduced to improve the result-
ing p width, and crossing properties of the mn p waves are discussed.

I. INTRODUCTION

For many purposes a composite picture of an
elementary particle like the p meson may be use-
ful, especially for an understanding of production
processes and electromagnetic properties like
form factors, etc. This is true even if we are not
able to predict the mass and width of the particle
with good accuracy. The most popular models for
the p meson are first the wm model' in which the
wave function of the p meson is assumed to be dom-
inated by the two-pion state; second, the quark
model, ' which is characterized by assuming a fer-
mion-antifermion s-wave state to be the most im-
portant one, in strong simi. larity to the third pic-
ture, the Fermi- Yang model, ' where the nucleon-
antinucleon state is the favored one.

In none of these models are the necessary bind-
ing forces between the, constituents understood
quantitatively, and the assumption of vector-meson
exchange as the dominant attractive force leads to
a complicated bootstrap picture. Also the coupling
between the above-mentioned channels, which is
very strong, has rarely been taken into account.
In this paper we want to pursue the idea, as an ex-
treme point of view, that a synthesis between the
mw model and the Fermi-Yang model might be a
realistic picture. We shall neglect direct inter-
actions (e.g. , p and u& exchange, respectively) in
both the mn and the NN channel and assume that the
coupling between these channels proceeds through
the simplest diagram possible, i.e., one-nucleon
exchange. Consequently we may say that the inter-
action in the mm channel is given by the baryon loop
of Fig. 1(a) or, looking into the NN channel, that
the attraction is due to the annihilation process of
Fig. 1(b). This "force" in the NN system is attrac-
tive, in agreement with the general expectation
that in the coupling to inelastic channels the posi-
tive definite contribution from the right-hand (phys-
ical) cut above the inelastic threshold of a partial-

wave amplitude dominates for diagrams like 1(b).
This is to be compared with the strong attraction
provided by t-channel ~ and v exchange in, the
Fermi-Yang model, ' and it should be noted that
diagram 1(b) can be read in the NN t channel as
NN exchange with pion-exchange interaction. Thus
the two pictures of mainly t-channel meson ex-
change in the NN system and of dominance of
"annihilation" forces in the NN s channel are not
necessarily inconsistent.

Our technical tool for solving this coupled chan-
nel problem will be the Bethe-Salpeter equation4
for the vv amplitude, with diagram 1(a) as the
force term.

We do not expect that the nucleon loop, calculated
strictly in fourth-order pseudoscalar perturbation
theory, is a realistic two-pion irreducible ampli-
tude, although its p-wave projection is not diver-
gent. The experience with the nucleon exchange
force in the b.(1236) channels'6 in the ladder ap-
proximation tells us that the bare one-nucleon
force is too strong, and a cutoff with a mass in the
order of 2 GeV is necessary to suppress the short-
range part of the "potential" such that we obtain
the correct resonance energy in that model. If our
picture for the b is reasonable, the cutoff in the
nucleon loop of Fig. 1(a) necessary to generate the
p meson with a mass of V60 MeV should be the
same as in the b problem. This will turn out to.be
the case within 30$.

With this potential, however, we shall not be
able to explain the width of the p meson, as the
theoretical width exceeds the experimental one by
more than a factor of 3. There are two possible
ways to overcome this defect. First of all we can
couple a third channel like KK or neo to the mn and
NN channel, reducing the cutoff mass in the nucle-
on loop correspondingly and thereby the mv inter-
action which controls the width. For convenience,
however, we shall choose the 2NN channel, cou-
pled to the other states by the self-energy dia-
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FIG. 1. (a) Baryon loop as a force in the nx channel;
(b) annihilation diagram as a force in the NN channel.
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grams shown in Fig. 2. The effective coupling
constant, needed to correct the width, exceeds the
perturbation-theoretic value by a factor of 2. The
second possibility would be to look for corrections
within the nucleon loop which might increase the
energy dependence of the potential, which trivial-
ly would lead to a narrower resonance. This has
not been attempted here.

Our model has the virtue that, considering the
vv channel, the input force Fig. 1(a) is completely
crossing symmetric. Solving the Bethe-Salpeter
equation with this kernel of course destroys cross-
ing symmetry, but we can now ask whether the
neglected ladders in the t and u channels are im-
portant compared to the box diagram. This is not
the ease if we are concentrating on those kinemat-
ical regions where the potential is most important,
namely where the off-shell mesons have four-mo-
menta k,'(i = 1, . . . , 4) of the order of k, '~ -2M'.
[M=nucleon mass. See Fig. 1(a) for kinematics. j
Thus the gross properties of the p are probably not
much influenced by p exchange.

In Sec. II we set up the Bethe-Salpeter equation
and calculate its kernel. In Sec. III we discuss the
results with a cutoff for the nucleon propagators
and compare them with the b (1236) problem. In
Sec. IV the modifications due to self-energy inser-
tions are shown, and in Sec. V we investigate the
crossing properties in detail. Section VI contains
a summary and discussion, and in the Appendix
the numerical details like integration techniques
are explained.
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FIG. 2. Pion self-energy insertions as third coupled
channel for the p meson.

g2 24M""(k)=- ——(0 0 0* 0*+4

with

—y, y,*y, y+)Z(ki), (1)

tr[(P, —M)(P, +M)(P, —M)(g, +M)]
K(k;) =i d'q

g (P,.'-M')

g 2—= 14.5,4n'

(2)

~= nucleon mass,

q= ,(P, +P,). —

The momenta k, and P, are explaine. d in Fig. 1(a),
and (I), are the isospin wave functions of the pions.
The contribution to the isospin l=1 channel is giv-
en by7

II. BARYON LOOP AND THE BETHE-

SALPETER EQUATION

In the notation of Bjorken and Drell' the contri-
bution of the diagrams of Fig. 3(a) to the invariant
mm amplitude M(k„k„k„k,) or for short M(k,.) is
given by (the metric is + ——-)

The diagrams of Fig. 3(b) do not contribute to the
I=1 state, whereas the t u crossed diagrams of
Fig. 3(c), which have the same p wave part as 3(a),
should not be included in the kernel, since their
iteration leads to the same diagrams obtained by
iterating 3(a) except for a possible crossing of the
external pions. They are omitted, and t—u cross-
ing g ves a factor of 2 in the final amplitude.
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The sum of the s-channel iterated loop diagrams
is given by the solution of the Bethe-Salpeter equa-
tion (BSE)

M, (k;) = M~io'& (ki)

d 4q M' (k„, k„k3$ k4)M, (k„k~, k„k,)
i (2ii)' (ki2 —g'+ ie)(k,"—ii, '+ ie)

k,'=-,'P+ q

k' = —'P —q,

P=k, +k,
= k3+ k4,

P'=s

Performing a partial-wave expansion (dropping the
isospin index),

p, =pion mass,

where we use the following notation of the four-
momenta:

M(k, ) =g (2l+1)P,'(cose»)M, (k,', s),

Eq. (4) reduces to

(6)

M, (k.' s) =M"'&(k.2 s)

1 Ml (ki ik2 1 ks t k4 ~ S)Mi(k1 t k2 r kt 1 k2 1 S)

4 ' " q q~ (k"- '+.)(k"- '+ e)

with

+1
Mii"i'(k,', s) =& deos8»P, (cos8„)M"'~(k,).

-j.
(8)

The normalization of the partial-wave amplitudes
M(k,.', s) is, ' including the factor 2 for the f—u
crossed diagrams,

s
M, (k,'=iu', s) =-16ii, e'~i sin5, . (9)s —4p. '

We now shall evaluate the kernel of the two-di-
mensional integral equation (7), which is given by
Eqs. (2), (3), and (8), taking first the trace in (2).
With the abbreviation m, =- P,'-M' we get

tr[(g', —M)(P, +M)(P, —M)(P, +M)]

= (ii, + ii, —k, ')(ii, + v, —k,')

+ (ii, + n, —k, ') (ii, + ii, —k,')
—(w, + ii, —s)(w, + w, —i), (10)

/
/

/
/

/

I
I

/

/

) I

/
I

/
/

/

i
/

/
/

/
/

/
/

/
/

/
/

/

/
/

/
/

i
/

/
/

/

/
/

/
/

/

(b) (c)

FIG. 3. (a)-(c) Complete set of fourth-order loop diagrams.
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with f = (k, —k,)'. Here all the terms proportional
to n, and n~ can be dropped, since they only contri-.
bute to s waves. For moderate k,.'= -M', the last
term in (10) with its factor f will dominate the P
wave, since the denominators in (2) have little

variation with cosg» because of the large nucleon
mass. This corresponds to the standard picture
of dominant s-wave intermediate NN states with
parallel spin.

After expanding the propagators in (2) as

, g (2l +1)(2l' +1) P(co s8(P„k)) P, (coss(P„k,))Qg(z)Q, (z'),
4 (k, j ik, l j P, ~'z, z

with

—k~ —P~ + 2P~ ok~ o

2 Ily, IIk„l

u'- k,'-P, '+2p„k„
2jP, I jk, I

Q, (z) =Legendre function of the second kind, the integration (8) is easy, and we find, after performing a
Wick rotation of the qo contour (qo- ir), for l = 1

g' '32 '" ",f(k, r, Iql, s)kf';" (k , ) = -
4

— ~ &lqllql'(P . '~.)'(P .'
~ ), (12)

with

and

P3p — g~+ g7, P3=q,

f (k,.', ~l ql, s) = ((s —v, — v)O k'+ k,' —2k„k„)Q,(z)Q, (z')
4 tk, I lk, tq t'

+ l lk, l lk. I [Q.(z)Qo(z')+ 2Q.(z)Q, (z')]]

[k,'k 2-+ k,2k '+v, ~ (k,2+ k—,')~, (k 2+k—,2)v, ]Q,(z)Q, (z')j (13)

In our following numerical calculations the terms
proportional to Q, (z)Q, (z') have been neglected,
since Q, (z)«Qo(z) for z& 1.1. The technical de-
tails of the numerical evaluation of the integrals
in (12) and the subsequent solution of Eq. (7) will
be described in the Appendix, and we turn to the
results of these calculations.

III. THE/ =1 mn PHASE SHIFT WITH CUTOFF IN

THE NUCLEON LOOP

Since power counting for the kernel of (7), which
apart from propagators and a factor l ql' is given
by (12), shows that it is not square integrable, we
shall always work with a cutoff in all nucleon prop-
agators, thereby avoiding also possible difficulties
with the Wick rotation. As usual we shall make
the substitution

1 1
(P,.' —iIf ') [1 —(P,.' —JIf ')/A'] '

i = 1, . . . , 4 . (14)

We first consider the case of a very large cutoff

mass,

A2=2&& 10~~2

In this case an inspection of the first few terms
of the perturbation expansion of M(k, , s) as given
by Eq. (7) shows that the potential is about a factor
of 50 too large compared to what is necessary to
make the 2m state resonant at s =an

p
Quantitative-

ly we obtain for a coupling constant

g 2—= 2.074r

the wn phase shift shown in Fig. 4 by a solid line
(curve a). For comparison, the phase shift given
by the relativistic Breit-Wigner formula for a P
wave'

BSp -S
l, cot5, (w) =

lk, l'=-'m ' —p'

with I'o= 130 MeV, is drawn in the same figure as
curve c, and it is clear that the model phase cor-
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responds to a very broad resonance (I'-400 MeV).
The width becomes evenworse if we keep the

coupling constant at its physical value and reduce
the cutoff parameter until 6,(mz) = 2v. —For

A'=4. 4M'

and

g 2—= 14.5
4n

(16)

we get the curve (b) shown in Fig. 4, which is hard-
ly resonant, considering the trivial suppression of
6,(W) at small W due to the p-wave threshold be-
havior.

We now can compare the value for A', Eq. (16),
with the cutoff parameter in the nucleon propaga-
tors in the a case.s The b, (1236) has been de-
scribed as a resonating mN system in the frame-
work of the BSE with one-nucleon exchange as the
potential, so that the b mass depends also on the
cutoff in the nucleon propagators. In the works
cited in Ref. 6 a cutoff has been applied to the ex-
changed nucleons only, which led to A~' =4.6M'.
Repeating the calculation, with the cutoff inserted
into all nucleon propagators, gives us

A =12M

in poor agreement with (16). Since in the p case
the resonance width is strongly overestimated
(in the 6 case the model phase shift is all right
below the resonance but becomes increasingly

worse as one passes through the resonance'),
we conclude that this type of cutoff leads to, too
strong a suppression of the short-range part of the
the nw or mN potential. In Sec. IV we shall inves-
tigate the improvements that can be obtained from
the inclusion of self-energy corrections as shown
in Fig. 2.

IV. SELF-ENERGY CORRECTIONS

Generally the contributions from channels other
than those considered above will hardly show any
correlation between the L and the p problem. A
connection exists, however, for the pion and nu-
cleon self-energy diagrams like those of Fig. 2,
and we can try to improve the consistency as well
as the width problem by modifying the pion prop-
agators in Eg. (7). In order to guide our ideas we
first shaH calculate these corrections in lowest-
order perturbation theory. After mass and vertex
renormalization we get for the pion propagator

,(~,)
1 g'2 " „s(1—4M'/s)'"

4v v, „2 (s —k')(s- p')'

1 g' 2 1 1+z
~, 1 ln

where the pion mass has been neglected under the
integral of (17). The "correction" term in (17)

(W)

150'--
C

120'--

90'-

60'--

30'--

3 4 W ( p. )

FIG. 4. 7tx phase shift in the p channel: (a) large cutoff, y /4m=0. 27; (b) with cutoff A =4.4 I, g /4m=14. 5; (c)
relativistic Breit-Wigner curve (Ref. 8) [ Eq. (15)], 1 0=130 MeV.
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becomes equal to the bare propagator at k2
= -1.4M'. If we insert this propagator for the
bare ones in Eq. (7) and readjust A', we get the
nm phase shown as a full line in Fig. 5, together
with the comparison phase (15), and we find A'
=2.16M'. Although there is a considerable im-
provement beyond the phases (a) and (b) of Fig. 4,
the p width is still larger than the experimental
one by a factor of 2. In order to obtain better
agreement, it is necessary to multiply the correc-
tion term in (17) by 2, i.e., we set

A'(k')= »—A,—,1 ——ln
g' 2 1 1+@

k2-p2 4w nk2, 2z 1-z ~

(18)

and the resulting phase, for A. = 2, is shown as
curve (b) in Fig. 5.

It represents essentially a two-parameter fit to
the Breit-Wigner phase, where the fitting param-
eters are A. and

A' = 1.55M'.

The physical significance of this result is that (a)
the value of A, is not too far off the perturbation-
theoretic va, lue, and that (b) the value of A' is now
in reasonable agreement with the value

Ap =2.15111

which has been obtained after inserting the same
pion propagator modification into the ladders of the

E(1286) channel.
It is not very satisfactory that we have concen-

trated only on the pion-propagator modifications,
instead of also dealing with the nNN vertex as a
function of the pion four-momentum. There we
would expect a form-factor effect which may com-
pensate for the enhancement used in Eq. (18). But
one also should regard the possibility that the cut-
off mass for the nucleon propagators or vertices
depends on the pion four-momentum k, '. In view
of these difficulties the propagator modifications
(14) and (18) cannot be considered more than sim-
ple phenomenological parametrizations, leading to
approximate consistency in two physically very
different states.

V. CROSSING PROPERTIES

Our picture for the p meson as a mixture of gm,

NN, and 2NN states is only useful if the exchange
of multirung ladders in the I; channel is relatively
unimportant, since this would lead to the presence
of more complicated multiparticle states in our p
"wave function". We can now, at least partially,
look into this question by calculating the P-wave
projection of the ladder series with nucleon loops
for negative energy squared in one channel (the f

channel, let us say) and performing its p-wave
projection into the crossed (s) channel. Then we
subtract from this p exchange the lowest-order

150'--

8, (w)

C

8

120'

90

60

30

FIG. 5. 7|7t phase shift in the p channel: (a) self-energy contributions from perturbation theory, A =2.16M; (b)
twice the perturbation contribution for the self-energy, A =1.55 M; (c) relativistic Breit-Wigner curve (Ref. 8) (Eq. 15),
l 0=130 MeV.
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loop which has already been included correctly.
It will turn out, for the most important pion off-
shell four-momenta, that the diagrams with two
or more nucleon loops in the I; channel contribute
little attraction into the s channel compared to the
single loop.

From the partial-wave expansion of the invariant
amplitude in the t channel,

l5-

l0-

(ft) 2
M

i
(k t~ (a~bttrof'~ Units)

M(k;) =P (2l + 1)P,(z,)M, (k,.', t), (21)

(22)

with

we find the p-exchange contribution to the s-chan-
nel P wave, which we call M, ~(k,', s), by

+1
M, (k, ', s) = ~ dz, z~,M, (k, ', t),

1

5-

and

s
z, =1+

2k,
(23)

M )

t = -2k,2(1 —z,) . (24)

The momenta k, and k, are the t- and s-channel
c.m. three-momenta, respectively, which depend
also on k,-', and we have specialized for conve-
nience to the case of equal external masses k,.',
f =1, . . . , .4Equation (22} contains the s —t iso-
spin crossing factor —,'.

We shall choose the value of k, ' according to
where in the integrations in (7}, after a transfor-
mation on a finite interval, the maximum of the
integrand occurs. It is not surprising to find this
maximum at relatively high four-momenta, namely

-q ' = v'+ q
' = 3M'

Consequently we have evaluated Eq. (22) for k,.'
=-2' . First we show in Fig. 6 the individual
ladder diagrams for M, (k,.', t) in the t interval
which is determined by (24), inserting s =m~' and

k,.'= -2M'. One notices a strong decrease of all
diagrams for large negative t, which is a conse-
quence of the explicit energy dependence of the
loop potential through the last term in (10} (where
s is the energy variable}. IThe zero at t = -8M'
is a consequence of the p-wave threshold behavior.
It is compensated for by the pole in z„Eq. (23),
at

~ k, ~

= 0.] Thus the potential becomes repulsive
at t= -4M', and one observes the corresponding

-5

FIG. 6. Crossed-ladder p-wave contributions to the
s-channel p wave at s = mp The number of loops in the
t channel is denoted by n. The pion four-momenta are
off shell.

alternation in sign of the higher-order ladder dia-
grams.

This zero of the potential does not occur for sim-
ple Yukawa-type potentials, so that the convergence
of the ladder series may be worse than in our case.
But if the potential is energy-independent, its
range has to be much smaller in order to generate
the narrow resonance, so that we have to consider
the crossed ladders at still higher negative t.
There the convergence may be as good as it is
here.

Finally in Table I we list the result of the inte-
gration in Eq. (22) for the individual terms of the
ladder series. The index n denotes the number of
nucleon loops included (n = 1 =box diagram). In the

TABLE I. s-channel partial-wave projections (/ = 1) of t-channel p-wave ladder diagrams
with n nucleon loops [see Eq. (22)). The last column is the full p-wave projection of the nu-
cleon loop. All amplitudes have virtual pion masses k; =-2M . Units are arbitrary.

MI~&~(k; ~ =-2M2, m&2) 1.73 0.316 0.244 0.070 0.099 0.003

Mg (; =-2M, mp )

4.78
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last column the direct-channel P-wave projection
of the box diagram for the same 0,-' is listed, and
it is seen that the "truncated p exchange" (i.e., p
exchange minus box) is a 1(y/0 correction to the
dominant box potential. Whether a similar state-
ment can be made with respect to the crossed s
waves requires more calculations.
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FIG. 7. NN* contribution to higher-spin 7t'71 amplitudes.

VI. SUMMARY AND DISCUSSION

A composite model has been presented for the p
meson where the constitutents are nm, NN, and
2NN, the latter being coupled through self-energy
effects. Only the nondiagonal coupling given by
one-nucleon exchange has been kept as a force,
and a suppression of the. short-range parts via a
phenomenological cutoff was necessary for under-
standing the p mass, and the self-energy effects
had to be made stronger by a factor of 2 than their
perturbation-theoretic value for fitting the p width
properly. The consistency of the cutoff parameter
with that of the 6(1236) case is reasonable which
allows the possibility that our forces are not com-
pletely ad hoc.

Within this model p exchange as a force between
the pions is, after subtraction of the crossing
symmetric box diagram, at short distances (of the
order of 1/M) only a minor correction to the dom-
inant nucleon box. This is in analogy to the re-
sults of bootstrap cal'culations, where only a very
broad p meson can provide enough attraction. '
From this fact the conclusion that NN states are
very important for a description of the p has been
drawn repeatedly. '

Apart from possible changes in the potential by
b, exchange, etc. , two major open problems are
very important:

(a) The SU(3) structure, like the absence of
exotic states, has to be explained. For this it is
necessary to consider crossed diagrams like those
of Fig. 2 which contribute to the exotic I=2 chan-
nel. Since they do not have an absorptive part in
the s channel, they are not necessarily attractive.

(b} It is unlikely that the nucleon loop as a very
short-range force can explain the existence of
higher-spin resonances like the f or g meson. The
most straightforward explanation' '" is probably
the inclusion of higher-spin baryon resonances like
b. (1236) and N*(1525) (=D»), etc. , into the baryon
loop. It is natural to expect from Fig. 7, after
taking the spin trace, a factor t' entering the ker-
nel E(k, ), if. N* is a spin--,', negative-parity par-
ticle, so that a large projection into Z~ = 2' two-
pion states should occur. Whether we can under-
stand in this way the similarity between the meson
and baryon Hegge slopes remains to be seen.
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M, (k, ', s) =gg~"M~" (k, ', s). (Al)

From the expansion coefficients M,'"'(k,.'= p. ', s)
the diagonal pade approximants" jM, ]„„have been
formed, which are determined by the requirement
that with two polynomials P„(x) and Q„(x) of order
N, the power-series expansion of

(A2)

with respect to x agrees with (A1} up to n =2N
Good numerical convergence has been observed
for N~ 2, whereas the N=1 approximant generally
overestimates the attraction [This is. in contrast
to the a(1236) case."]

The main problem remains to compute the kernel
as the two-dimensional integral (12) for a number
of values of the k,.', and to perform the integra-
tions in (7), both with a minimum number of mesh

APPENDIX

We want to describe our numerical methods of
solving the Bethe-Salpeter equation (BSE), Eq. (7),
with the kernel (12).

The BSE has been iterated numerically, so that
formally
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points. For the integrations, a generalized Gaus-
sian quadrature has been used which will be de-
scribed briefly in the following.

If we want to integrate
b

dx f (x) with f (x) =P, s,( x) w(x),
a

(A3)

where P», (x) is a polynomial of order 2N —1, and
the weight function w(x) is nonnegative in a ~ x ~ b,
then it is possible to find points x„with a ~ x„&b

and weights h„such that"
rb N

dx f(x) = Ph„f(x„). (A4)

The xn can be found as the roots of the following
polynomial:

'N
Q„(x)= g c„x",

n=o
(AS)

where the coefficients cn are determined by the N
linear equations

I b b E
Jl dxw(x)Q„(x)x = dxw(x) P c„x

a a n=0

and solve

P Jt dx = P h„f (x„), (A11)

if f(x) is of the form indicated in (AS). This can
be understood easily, because with

Q'„„(x)= Q„(x)(x—y),

Eq. (A6) is identical with

(A12)

x
P dx w(x)Q'„„(x)=0,

a

m =0, . . . , N 1. -(A13)

Any polynomial of degree 2N-1 can be written as

Q h„x„"w(x„)=P dx w(x)x
an= l.

m =0, . . . , N (A10)

for the h„, where the right-hand sides of (A10) are
again evaluated numerically with many points
(using some tricks to make the singular point x
=y harmless). Then we claim that

=0

m =0, . . . , N —1 (A6)

P,„,(x) = Q„'„(x)q„,(x) + r„(x), (A14)

and by

c„=1.
The weights h„are given through the N linear
equations

N b

g h„x„w(x„)= dxw(x)x
n=J,

m=0, . . . , N —1. (A7)

In practice we first compute the moments
b

f, dxw(x)x by a standard Gaussian quadrature
using some 100 points, then solve (A6) for the c„,
find the roots of (A5), and finally solve (A7) for the

We have listed the above well-known formulas
because they can be immediately extended to the
case of a principal-value integral, which occurs
in the

~ q~ integration of (7) through the mass-shell
singularities. Consider the integral

x —p g x —p

with the same conditions on w(x) and P,„,(x) as
above. Assume we calculated the coefficients c„
and the roots x„as in (A6) and (A5), i.e., disre-
garding for a moment the denominator x —y in

(AS). Then we define

(A9)

where q„,(x}and r„(x)are again polynomials. Now

the integral of the first term in (A14) vanishes be-
cause of (A13), and its contribution on the right-
hand side of (A11) is zero because the x„are the
roots of Q„'+,. The second term in (A14) is inte-
grated exactly through (A11) because of (A10),
which completes the proof.

In the remaining part we have to discuss our
choices of the weight functions w(x) for the various
integrations. First of all the two-dimensional in-
tegrations in ("I}and (12) are transformed into po-
lar coordinates:

+ 0O OO +J,

J
d7' d(q( (q('= dqq' Jl dcosn sinn,

~ 0O 0 0 1
(A15)

with

go= Zi

= gg cosQ

(q(=qsinn.

While in (12) the d cosn integration is straightfor-
ward, one encounters in (7) the well-known prop-
agator poles in cosa, which have been handled by
numerical subtraction and analytical addition.
Since in (12) NN s waves are dominant, there are
no threshold factors in (q( so that the weight func-
tion is simply
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w (coso. ) =sinn, (A16) where

whereas for (7) the p-wave threshold factors allow
for

w„'(cos o.) = sin'a. (A17)

For the dq integrations we took essentially the in-
tegrand of a box diagram. Thus for (12) we choose

+1 qQ.'(~)
sinn(P„' —M')(P, ' —M') '

(P„, ~ P, ~) =(-,'W+iqcoso. , qsino),

(P», ~P, ~) =(—,'W-iqcoso. , qsinu),

q2+k 2+M'
2lp, l Ikl

k =y8-p,

(A18)

For (7), which is a principal-value integral in q,
we took

+1 qQ, '(s')(~ —y)
w'(q) = dcosn

sina(k, ' —p'+ ie)(k, ' —g'+ ie) '

(A19)

-a+ qx=
a+q '

-a+ Jk I

a+ Jkl

(k,o, Jk, J) =(—,'p'+iqcoso. , qsino. ),
(k„, fk, J) = (-,'W- iqcosu, qsino. ),

q'+k'+ 4M'z'=
7

2 lk, I )k l

a =10', .

(A20)

The symbol $ denotes that the path of integration
encircles the propagator poles properly.

The factor (x-y) in (A19) cancels the pole com-
ing from the propagators, and it is reintroduced
by using the integration technique described after
Eq. (A8). Unless the extra point y coincides very
closely with one of the mesh points x„, n =1, . . . , N,
the integrations can be done with reasonable ac-
curacy (-5%%up) with %=4 only. The reported calcu-
lations are based on N= V.
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