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Helicity amplitudes for the decay process 1— 2+ 3 + 4 involving particles with arbitrary
spins are expanded in terms of matrix elements of the O(4) group transformations. The
resulting expansions display the entire dependence on the kinematic parameters (energies
and angles) explicitly and can be interpreted as standard O(3) partial-wave expansions of
the amplitudes in a center-of-mass-like frame of reference, supplemented by O(4) expan-
sions of the partial-wave helicity amplitudes. Restrictions on the O(4) amplitudes due to
parity conservation are established, -the physical meaning of all the quantum numbers
figuring in the expansion is clarified, and the expansions are shown to have a reasonable
threshold and pseudothreshold behavior. The expansion formula, as well as its inverse,
involves amplitudes defined in the physical decay region only. The O(4) expansions of
this paper are a modification of O(3, 1) expansions of helicity amplitudes for the scattering
of particles with arbitrary spins, suggested in the preceding paper. For spinless particles
the corresponding expansions have been derived and applied earlier by Hicks and Winter-

nitz.

I. INTRODUCTION

In the preceding article,! further to be referred
to as I, we have presented and discussed two-vari-
able expansions of helicity amplitudes for the re-
action 1+2 -3 +4 involving particles with arbi-
trary positive masses and spins. The helicity
amplitudes were expanded in terms of certain
transformation matrices of the homogeneous Lo-
rentz group, written in a basis corresponding to
the group reduction O(3,1) >0(3) DO(2). The am-
plitudes are considered in the center-of-mass
frame of reference; the entire dependence on the
c.m. scattering angle (as well as on an azimuthal
angle 6) is contained in the usual O(3) group D
functions, whereas the dependence on the c.m.
energy is contained in O(3, 1) d functions (Wigner
boosts). The expansions were shown to have cor-
rect threshold and pseudothreshold behavior, to-
tal angular momentum is diagonalized, restric-
tions due to parity conservation can be imposed
in a trivial manner, and the expansion can be in-
terpreted as the standard Jacob and Wick® partial-
wave expansion, in which the O(3) little-group par-
tial-wave helicity amplitudes are further expanded
in a manner dictated by the incorporation of the
rotation group into the Lorentz group O(3’)\CO(3, 1).

The expansions of I are a direct and straightfor-
ward generalization of the O(3, 1) two-variable ex-
pansions considered previously for the scattering
of spinless particles (see, e.g., Refs. 3-7). Let
us note that a general formalism, incorporating
various single-variable and two-variable expan-

¢

sions, was suggested by Feldman and Matthews®
and was made use of in I,

One type of application of the two-variable ex-
pansions that we have in mind is to perform phe-
nomenological fits to experimental data. Since
the dependence on both kinematic parameters (en-
ergy and scattering angle, the Mandelstam vari-
ables s and ¢, or some other pair of variables) is
explicit, we should be able to perform, e.g., a
partial-wave analysis of scattering data, simulta-
neously over a certain energy region (or over all
energies). Alternatively one could perform say
an s-channel Regge-pole fit simultaneously over
a whole region of squared momentum transfers ¢.
As was discussed previously,® such a program for
scattering encounters certain difficulties since
the O(3, 1) two-variable expansions involve at
least one integral (and sometimes two), which
must somehow be approximated. We postpone an
investigation of this problem to the future and in-
stead turn to the three-body decay process

1-2+3+4, )

where the situation is much simpler. Indeed, for
the process (1) the physical region is finite [we
have, e.g., (mg+m, P <s<(m, —=m,), (my+m,)

S t<(my=my), and (my+mgf < u<(m, —m,)] and
this can be used to transform the O(3, 1) expan-
sions into O(4) expansions. The group O(4) is
compact, all irreducible representations are
finite-dimensional and unitary (or equivalent to
unitary ones), so they can be labeled by discrete
quantum numbers. Hence expansions of decay
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amplitudes will involve sums only, which can
readily be truncated in phenomenological appli-
cations. Such O(4) expansions for spinless par-
ticles were obtained previously® and have been
applied to analyze K — 37 and n - 37 Dalitz plots.'®
In this paper we obtain O(4) expansions of helic-

ity amplitudes for the decay (1) in the case when
the particles have arbitrary spins. We also dis-
cuss the relation of these expansions to other ap-
proaches, obtain restrictions due to parity con-
servation, and investigate threshold and pseudo-
threshold behavior,

II. KINEMATICS OF THE DECAY AND SOME MATHEMATICAL PRELIMINARIES

A. Kinematics and Particle States

As in the spinless case®'® we shall consider the decay 1-2+3+4 in a center-of-mass-like frame of ref-
erence, in which the particle momenta are (see Fig. 1 of Ref. 9)

p,=m,(cosha,, sinha, sinfcos¢, sinha, sind sin¢, sinhq, coso),

Do =my(cosha,, sinha, sind cos¢, sinha, sind sing, sinha, cosb), @)

ps=my(cosha,, 0, 0, sinhay),
ps=my(cosha,, 0, 0, —sinha, ).
We have '
Dy=ba+Ds+Dy,
s=(b,=bsF, t=(p,=Dsf, u=(p,-0.)
so that

£ =cosha, <SP (oo, _ZSEmE = mg
Yoamys 2myVs

S+my’ =my® cosha _s=mg+mS
’ 4"
2my/'s 2mV's

cosha, =

and

z=c0sé

®)

4)

25 (t =m 2 = m2)+ (s+m,® = my2)(s+mg> —m,?) 5)

={[—S+ (m1 +m2)2]["'s+ (m1 - mz)z][s— (m3+m4)2][s— (ms - m4)2]}1/2 ’

In the physical decay region we have

(mg+m, ) +m® = m,
2m,(ms+my)

-1<z<1 and 1<¢s

(6)

We shall choose a=gq, and 6 to be the independent variables and we see that 0<a<ap, and 0<g<7. Fol-
lowing our general approach®?-%91% we notice that @ and 6 are spherical coordinates of the momentum p,,
i.e., the coordinates of a point on the upper sheet of the hyperboloid p,> =m,%. The scattering amplitudes
are functions of this point. Relations (6) however show that p, does not range over the entire hyperboloid,
but only over a “cup” (6) close to the point p, =m, (1, 0, 0, 0). We can now construct a parallel mapping® of
this hyperbolic cup onto a four-dimensional sphere of radius R,

—-{[(ml +m2)2 - (m3+m4)2][(m1 - mz)z - (mﬂ' mg)z]}llz . 7

R = sinhap,, = 2m, (my+m,)

A point on this O(4) sphere can be parametrized as

ps=R(cos3a, sinja sinf cos ¢, sinj @ sind sing, sina coss), (8)
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where
cosa=1- L0+ mZ)zz_Wfl]z[]({rZsl - my)* —s] )
sina ={[(ml i mz)z _s][(m1 - mz)z — S][s - (ms +Wl4)2][(m12 - m22)2 - (m;; +m4)23]}1/2

and cos@ is given by (5). We see that the scatter-
ing amplitudes can now be considered to be func-
tions of the components of p,, i.e., functions of a
point on an O(4) sphere. The range of variables
is

Osasn, 0<gs<m, 0<¢<2m. (10)

Below we shall make use of this mapping of the
momentum p, of (2) onto the momentum p; of (8)
to expand the amplitudes in terms of representa-
tions of O(4).

The single-particle states will be considered
to be the usual helicity states® which we write as

| 1y=R(9, 6, =p) e i4¥30(m,)| n,s,),),

| 2)=R (9, 6, =¢) e™"%2%s 0(m,)| 155,25), (11)
| 8)= e~195%3 0 (my)| ng55\s),

| 4)= ei%4%s 0 (m,)| NySy—Ag).

In formula (11) we have
R(¢,9, _¢)=e-iJ3¢e-iJzeeiJ3¢’

where J; are the generators of rotations (i.e., the
total angular momentum operators). The operator
K, is a generator of pure Lorentz transformations
along the ith axis. The state O(m)| nsA) thus rep-
resents a particle of mass m, spins, intrinsic
parity n, and helicity A, at rest. The vector

| ns)) is a basis vector of the homogeneous Lo-
rentz group for a specific finite-dimensional rep-
resentation, characterized by the pair of integer
or half-integer numbers (j,, ¢)=(s, +(s+1)) (in
general j, is always integer or half-integer but ¢
can be any complex number!!). These specific
representations, upon reduction to O(3), remain
irreducible, i.e., contain only one representation
of O(3) (with angular momentum s). These have
been studied in detail by Joos'? and Weinberg.'®
The operator O(m) and more generally O(p) was
introduced by Feldman and Matthews® and was
used extensively in I. It is a projection operator
that serves to transform a Lorentz group state

| nsx) into a Poincaré-group state of momentum
m, =(m, 0, 0,0), or more generally momentum
pu=(bo, D). All relevant properties® of the opera-
tor O have been discussed in I and we shall not
repeat them here.

2m % (m4+my)R%s

B. Some Properties of the Representations
of O(3,1) and O(4)

All properties of the representations of O(3, 1)
relevant for this article have been summarized
in I. Let us just note that the transformation ma-
trices of the O(3, 1) group for the finite-dimension-
al representations (s, +(s+1)) in a basis corre-
sponding to the reduction O(3, 1) D0O(3) D0O(2) can
be written as

Un, 2, (25 M) = (SM | U(D)] sAamy)
= (SM7h| =i p-i0J3,i 0l e-iaKal SNy,
=D3 5, (#, 6, =9)s(e* 2 +nympe = 2).
(12)
We also have
Un o (B3 TTl2) = (M| U™H(D)] shqmp)
=3(e M4 mpe®MIDSY, (9, 6, —9)

(13)
and
%} u)‘l)‘(p’ 77117)17)\)\2(?, "7"72) =0 )‘1)‘26171"2 )
(14)
%} “)\1)\(?, nlﬂ)uuz(h, M) =0 AR 26 ng *
We shall also use the notation
fola, X, mi) =3 (e** + nije ~2») . (15)

The representations of O(4) have been studied
by many authors* (see also Ref. 9). Let us here
state several results that we shall need below (we
have not succeeded in locating all of them in the
literature, so some might actually be new).

We shall label the representations of O(4) by a
pair of numbers (v, n), which are simultaneously
integer or half-integer and satisfy n>|v|. The
group O(4) is locally isomorphic to O(3)®O(3), so
its representations can alternatively be labeled by
two “angular momenta” j and j, satisfying

. n+v x_n=V
J= 2 y J= 2 . (16)

We shall consider the representations of O(4) in
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an 0(4)> 0(3) DO(2) basis in which the basis vec-
tors | vnL M) satisfy

(T2 +A%)| vnLMY=[1? + (n+1? =1]| vnLM ),
L-A|vnLM)=(n+1)w|vnLM),

N (1)
L?|lvnLM y=L(L +1)|lvnLM),

Ly|lvnLM y=M|vnLM )

Dy:Mleuz(qb’ 6, ¥, a, m, X) =D£:M1L2M2(g)

= (vnL,M,|e*Fa%e a0 1L

as well as some phase conventions specified pre-
viously.® Above L,, L,, and L, are the generators
of rotations in the 23, 31, and 12 planes. A, A,,
and A, generate rotatlons in the 41 42 and 43
planes. Furthermore L?+A% and L - A are the
Casimir operators of O(4).

Making use of the local isomorphism O(4)~0(3)
®0(3) it is easy to calculate the O(4) finite trans-
formation matrices in the basis (17). Indeed, we
have

3we—iAsace-1‘142116--'IL3xI VnL2M2>

—ED )\(¢9 9 Zp)d}j"sz(d)D )\Mz(o 77,X) (18)

In (18) Df,i A, 6, ¥) and D’;j,z(o, n,%) are O(3) D functions, and the O(4) d functions can be calculated to be

n+v
d}j;’,‘zx(a) =[(2L, +1)(2L, + 1) [/2e - Z < 2
m A=m

where the brackets denote O(3) 3j symbols.'®

n-—v n+v n-v
Ll)( 2 e (19)
- A—-m m -

The following useful properties of the O(4) d functions can be obtained by inspecting formula (19) direct-

ly.
(i) Symmetry properties:

dL”;‘le(a)=dL”Zsz(a),
Z:fzx(a)=(—1)2"4 —defnzfzx(a)=df;'z,2->\(a),
d}j"L A=a)= dL (oz) )

(ii) Normahzahon. The d functions satisfy

min{)\l)\z} T
Z f sin*a da I, (@)} sz( )__

A= -min{ A; Ap}

so that

g T 2 2m 2T
j; sin®o dozj; sinzedej; d¢fo dZPf sinn dn dXDVIMILzMz(g)D”’MrL M’(g)

(20)
(ZL1 + 1)(2L2 +1)
(n+1) = 8w s (21)
@mn)?
“iiP - 0001 1y Or,rgOm uiOupmy -
(22)

(iii) The d functions can be written as homogeneous polynomials in cosa and sinc. Consider dI"‘"L NC))
with v= 0 and A > 0 [all other values can be obtained using the symmetry relations (20)]. The order of

d;}1,x(@) as a polynomial in cosa and sina is
N=n-|x-y|,

i.e., we have

N
it (@)= Alcosa)**(sina)*, v=0, 1>0,
k=0

(23)

(24)

where N is given by (23) and A, are certain finite coefficients (some of them may vanish).
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(iv) The behavior of the d functions for sina - 0 is given by the formula
dgry (@) =e~re(sina)1-Falpin, (a), (25)
where p 1’.';'1.2(0‘) is a polynomial in cosa and sine, which is finite (nonzero) for sina—~0. We see that
;" ,\(a) vanishes for a—0 or a~n, unless L, = L,.
(v) The basis functions for O(4) representations with v =0 are specially well known. Using our phase
conventions, they are®

L-1/2 —M)! ~ L)1 \12 )
220 O ) oo

¢nLM(ay 9, ¢) =e'i(‘ﬂ'/2)L

(26)
Their relation to the O(4) D functions is
D%y, 8, @, 0, 7= 6) =2 54, 6, ) @)
and
o ()=~ (n2L9L L] ( el é%)”z(sma)bcf:;(eosa) (28)

[CMx) and P¥(x) are Gegenbauer and Legendre polynomials, respectively].

III. EXPANSIONS OF DECAY AMPLITUDES

Let us now consider the matrix elements of the transition matrix for the process

1-2+3+4

taken between the “center-of-mass” helicity states (11).
Using some elementary properties™® of the operators O(p) we have

(234] T'| 1) = (3,75, SsAgTls, Sg = 4774leia2’{(32)R<2)(¢, -0, -¢)eia3K(33)
. (4) (1)
xe 1455 0(p,)0(p)O(p)TO(D, )R, 6, ~p)e™43 |s ) (29)

(the superscripts in brackets denote the particle on which the operators act). Using linear momentum
conservation, we can put

O(p,)0(p3)0(D)TO(p,) = O(P3)O(P,)O(Py +P 3 +D4)TO(P,)
= 6(P1 "pz -Ds —p4)O(p3)O(p4)TO(p1) . (30)

Similarly as in I (and Refs. 3—7) we use two of the momenta, this time p, and p,, to specify the frame of
reference. We put

n =‘/}_§- (Ps +p4) )
(31)
y={sls - (mg+my) s = (my~ m4)2]}—1/2[(s —mg +ml)ps— (s+my — m42)p4] .

In our frame of reference (2) we have

n=(1,0,0,0), v=(0,0,0,1), (32)

i.e., they do not depend on s and ¢ (or on @, 6, and ¢).
Further, we have

0(p3)0(p,) =g(s)0(n)O(y), (33)
where g is the Jacobian for the transformation p;p,—~n,y:

4 2
g(s)’( 5= s+ m P T = Gy =] ) : 34)
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We return to formula (29), insert complete sets of states for particles 2, 3, and 4 on both sides of the
corresponding Lorentz and rotation group operators, and make use of (30)-(34) to obtain

(234|T|1)=0(p, =Po =P3=Ps) &) X5 &xz"iz(pz’ NM2)fo(@sy =X3, NsTs)fo( @y =Ny, TsMs)
Kzﬁzﬁsﬁq

X (832713 Sghaflay S5 — Ag1y| OR)O(Y)TU(D,)O(m, )[symyA, ) (35)
Notice that #,x(», n7) and fy(a, A, n7), given by (13) and (15), respectively, are O(3, 1) transformation ma-
trices for the finite-dimensional representation (s, +(s+1)). The only remaining unknown dependence on
the variables s and ¢ is in the boost U(p,). In order to extract this dependence explicitly, as inI for scat-
tering, we insert a complete set of one-particle states on both sides of U(p,). We shall make use of the
finiteness of the physical scattering region to obtain O(4) expansions, as discussed in the previous sec-
tion. The boost

U(pl)=e-il3¢e—iJzeei13¢e—iK3a , (36)

where the parameters a, 6, and ¢ determine the c.m. momentum p, [see (2)], by definition represents an
element of O(3, 1)

8= (¢: 9; —¢’ a, 0: 0) . (37)
If we use the mapping p, -~ p, [see (8)] where p lies on an O(4) sphere, then we obtain a new mapping g -3,
where

g= (¢, 0, -9, a, 0, 0) (38)
is an element of O(4) [the range of @, 6, and ¢ is given by (10)].

The boost U(p,) can now be considered to be a function defined over an O(4) group manifold and we can
expand it in terms of the matrix elements of O(4). In order to obtain this expansion we must insert a suit-
able complete set of intermediate states, labeled by O(4) quantum numbers (as well as mass, spin, parity,
etc.). For scattering the appropriate procedure used in I was to insert Poincaré group states in a basis,
corresponding to the reduction P D0(3,1)> 0(3) D 0(2). For the decay amplitude (35) we extend the group
P to the complex Poincaré group’® P* and consider the group reduction

P*>0(4) DO(3) D 0O(2). (39)

The states can then be denoted |msnvnLM ) [see (17)]. Upon inserting these states for particle 1 on both
sides of U(p,) in (35) we obtain the following factors:

(D) (MsSeXes TsSahs, MySs = Xl O(0)OO) T 8,1, vmLM ),

(@) (m,simyvns | OGmy)| s,y =[00m) [ (40)
(iii) (vnLM | U(p,)| V”31>\1>=Dfnl(¢: =)y 5, (@).

Thus, the third factor produces the O(4) D functions [see (18) and (19)]. The other two factors do not

contain any dependence on s and /. Notice that the Wigner-Eckart theorem implies that the second factor
does not depend on A;,. We can combine the first two factors into an expansion coefficient, put

(234]T{1>=6(p1 =D, —P3—P4)f)\i(a, 6, ¢), (41)

and obtain

fx,-(a’ 6, 9) =g(s)_ 2 ﬁxziz(pzy 0o )fo(@ay =23, NMa)fo(@yy =gy M)
22 T3 g
S1 © n min{ L'sl}
X 23 E Z) APn AN, nmzngnq)dh A (a)D} A (¢, 6, -9). (42)
V=-8] n=s M=-—mm{1.s
Expansion (42) can be further simplified by combining the entire dependence on ¢ and ¢ into one O(3) D
function and by making use of the explicit dependence of the left-hand side on the azimuthal angle ¢. In-
deed, the helicity amplitudes f, (g, 6, ¢) contain ¢ in the factor ei®(M-22-23*M) on1y 2 On the right-hand
side we have the same behavior if we put M=2,+X,=2,. In the following we shall make this substitution
and drop the subscript M. Combining the two O(3) D functions using standard angular momentum theory
we finally obtain the O(4) expansion of the helicity amplitudes for three-body decays:
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s o n So+L
f)\'.(a’ 9’ ¢) =g(s) Z 2 Z Z 22: (2J+ 1)(-—-1)')‘1+K2+ A3=2y fo(az, ""Azy nzﬁz)fo(a:;, -)\3, 7]3773)

NeT2M3Tg v=-sy n=s; L=|v| J=|sp-L|

L s J ( L s, J )
X ol e 774774).< A A A - )‘2) =Xy =Ag+ g Ay Ay =2y

X A[',I"(thsx‘;, 7)17_7—2773774)‘1;::‘)\1 (- a)D ';\1 =2 Ag= >\4(¢’, - 9: - ¢) . (43 )

The expansion formula (43) can readily be inverted and since we are dealing with harmonic analysis on
a compact group, no convergence difficulties arise [contrary to the O(3, 1) expansions of scattering am-
plitudes, considered in I]. Indeed, making use of the orthogonality properties (14) and (21), as well as
the properties of the O(3) D functions and 3j symbols, we obtain

A},}"(Xz}w)\m nlﬁzﬁsﬁ4)

_(m+1P =0

sh2
“2r(es, + 1) J, sin ozdaf

]

™ 21
sinf do j‘; d¢ Z Z (27 + l)fo(az, =22, TaTla )fo(@sy Ag, MaTla)fo(@ay Agy MaTly)

MApTpngny

x(_l)xl_xz_xsﬂ‘q(_ L s J )(L S J )
=Ap = A3 +Ag A Az =2y A A =2y

X (a, 6, ¢)d£§’1 )\l("a)Dil_xe, Xs"\q(a’ -6,-¢). (44)
Several comments are in order:
(1) The reason why the angle (-6) figures instead of 6 as in the Jacob and Wick expansion is that parti-
cles 3 and 4 are along the z axis in our case, i.e., we have

0==0scatt ,

where 6 is the angle used in this article and 0, is the usual c.m. scattering angle.
(2) Note that we could formally simplify the expansion (43) by defining a new expansion coefficient

— L S, J T ans = o
Bri(Aghy, 1,75741,) = E < Ay g+, i - A4> (=1)%2*2s MAZM (A, M TaTlaTa) «
e

We shall however keep the coefficient A as in (43).

(3) It may seem somewhat inconsistent that expansion (43) contains the functions folaxnn) which are actu-
ally d functions for certain finite-dimensional representations of the Lorentz group O(3, 1) as well as
d;%(a), which are d functions of O(4). We see no contradiction here; on the contrary it is a manifestation
of the dual role that the Lorentz group plays in the derivation and interpretation of our two-variable (or
multivariable) expansions in general. Thus, the appearance of the fo functions is due to the fact that the
initial and final free-particle states transform under irreducible unitary representations of the Poincaré
group [which can of course be reduced to its O(3, 1) subgroup] and is thus purely a manifestation of Lo-
rentz invariance.'” The unitary O(3, 1) d functions for scattering and O(4) d functions for decays, on the
other hand, appear because of our particular choice of a complete set of intermediate states. The group,
in this case characterizes the space of independent kinematic parameters (¢, 6, and ¢ or @, 6, and ¢),
i.e., the manifold over which the amplitudes are defined (for a previous discussion of the dual role of the
Lorentz group in the derivations of two-variable expansions for the scattering of spinless particles see
the first of Refs. 5).

IV. RELATION TO O(3) LITTLE-GROUP EXPANSION, PHYSICAL MEANING OF QUANTUM NUMBERS,
AND CONSEQUENCES OF PARITY CONSERVATION

In I we have shown that the O(3, 1) two-variable expansions for scattering can be interpreted as the Jacob
and Wick O(3) little-group expansions of helicity amplitudes, supplemented by an O(3, 1) expansion of the
partial-wave helicity amplitudes. Let us show that expansion (43) can be interpreted in precisely the same
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manner. To do this we must invert some of the summations in (43). This is somewhat tedious, but yields
a simple result, namely,

s; 0 n sg+L J+s © min(L,s,)
> % }q ? {Z} 2 2 2 (45)
v=-syn=s; L=|v| j= 2--Ll /2} L={J-s3| n=max(s,,L) v=-min(L, 51)

where the summation over j starts at 0 or 3, depending on whether j is integer or half-odd-integer. The
only other restriction on the above sums is obvious, namely,

Jzmax{[Al, |ult, A=A =N, B=rg=A,. (46)
The two-variable expansion (43) (the third variable ¢ is irrelevant) can now indeed be written as the
usual partial-wave expansion
i@ 6,9)= 35 @I+ 10| T (@) X)) D0, -6, =9), (47
J=max (|\[,| u]) .
and the partial-wave helicity amplitude is expanded as
J+sg min(L,sy)

QA T (@[1)=g(s) Y Z > Z (=1)~ M+ T2+ A=A

L=|J-s3| n=max(s;,L) v=-min(L,s7) A2T2737a

X fol gy =Ngy NaT5)fo gy =gy NsTl5)fodgy =gy N4Tly)

y < Ls, J ) < L s J >
VD VED VD TV A NS VORI S YIS VD Yee) 3
X AL (Aahgh g, 7717_72773774)6{},’::()\1 (=) . (48)

The meaning of the quantum numbers now becomes obvious. Thus J is the angular momentum of parti-
cles 3 and 4 (not however in general the total angular momentum of the final particles or the spin of the
initial particle). In turn L is the vector sum of J and s,, and can thus be identified with the total final-
state angular momentum in a frame in which particle 2 is at rest, |v| is the lower bound of L, » the upper

bound (for J fixed).
If parity is conserved in the decay 1~2+3 +4 then not all of the helicity amplitudes and hence not all

the Lorentz amplitudes [or O(4) amplitudes] A?", are independent. Accepting the same parity conventions
as for scattering®!® we have

(=Ag =2 T7(@)] =2 =) = (AN T (@)X 25), n_n 0 Dally (_q)ssvsa-sa-sz (49)
2
Using (48) to expand both sides of (49), making use of the relation drgl Aa) =d£§’,"x(a) and

fola, X, n) =nm fola, =x, 1),
we find that if parity is conserved then the Lorentz amplitudes satisfy

Ap"(- )\ =g = Ay, MyT157,) = 317 ( 1)’sTeae _ssz"O‘ 2oy MTlaTllly) - (50)

We shall not consider restrictions due to time-reversal invariance, which are somewhat complicated
and not particularly important for decay amplitudes.

V. THRESHOLD AND PSEUDOTHRESHOLD dis (@), and in the O(3) D function [and in the fac-
BEHAVIOR OF DECAY AMPLITUDES tor g(s)]. It is of obvious interest to consider the
behavior of the individual terms of the expansion

in various accessible limits. For decays the lim-

The most important feature of the O(4) expan- its of interest are the boundary of the physical re-
sion (43) that we have derived is that the entire gion and the various thresholds and pseudothresh-
dependence on the kinematic variables s and ¢ is olds.

contained explicitly in the O(3, 1) functions £, in The boundary of the physical region is simply
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given by the condition
(51)

The dependence on 6 is entirely contained in the
O(3) function df,(6), =X, =Xy, 1 =X;=X, and is
thus given by the usual partial-wave expansion (47)
of the helicity amplitudes. This expansion has
been extensively studied in the literature'® and
we shall not discuss it here.

On the other hand, we can also consider the be-
havior at the physical threshold and pseudothresh-
old

cosf=x1.

s=(mz+m,)? and s=(m, —m,)f (52)

(which is where cos6 changes sign).

The “kinematic” behavior of the partial-wave
helicity amplitudes (48) at the corresponding
threshold and pseudothreshold is known to be!®-2°

(A0 T (@) Ay =[s = (m3+m4)2]’n/2[s- (m, - mz)z]’p/2
(53)

where [, and /, are the minimal possible values of
the angular momentum of particles 3 and 4 or the
minimal value of the difference between the mo-

X <7\2)‘3>‘4|TJ(")I7\1>, ’

$; tSg

NI TTS 3535 30 D>

T3TMa A2 V=-s1 n=sy J=|sy-sg|
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menta of particles 1 and 2, respectively. The
primed quantity in (53) is regular and nonzero at
the points of interest.

Let us now check the term-by-term behavior of
the expansion (48).

First consider the pseudothreshold and put

s=(m, —myP(1~-€), €>0. (54)
From (4) and (9) we see that
cosha, ~ 1 +§ %‘ ,
€—0 2 (55)
1/2
sina ~ 2— < e%) .
€0 m,

From (15) we obtain
m _
1+, Ez, for n,m, =1

Solag, =25, NaM,) = m. \1/2
—x2<em—'~> , form,m,=-1.

(56)

Using (55), (56), and (25) we can in the limit € -0
rewrite (43) as

(27 + 1)fo( @, =g, N3Tls)fo(day =Ny MgTl) (1) M7 T2~ 2s* e

SERRN LN
=M A=A == A3ty Ag Ag— Xy
X ATONN g ML) DYy (6, =0, =) . (57)
T
s=(mgz+m,P(1+€), €>0. (60)

Formula (57) shows that only terms with

|Sl—82| SJSS]. +S; (58)
survive in the expansion at s~ (m, —m,)*. It fol-
lows from (53) that only terms with /,=0 should
survive. In the c.m. frame, determined by (2),
we can split the angular momentum into its spin

s and orbital ! part. We have

8§, +1,=8,+ 1, +8;+1;+8,+1,
s+l +J
=T+, . (59)

Thus, J =8, -§,+1, -1, and the limits (58) indicate
that 1, -1,=0, i.e., 1,=0, as required by (53). Us-
ing (25), (55), and (43) we see that all other par-
tial waves vanish as prescribed by (53).

Similarly we can consider the (normal) thresh-
old by putting

il
-y
b

—

Proceeding in an identical manner as above, we
find that again only partial waves satisfying (58)
survive for €~ 0 in (60). Since we also have
J=8;+8,+1;+1,, Eq. (53) would require 1, =0,
i.e., _fa +L =0, i.e.,

(61)

|s3 =84 ST <s5+s, .

This is only satisfied if s, =s,, s,=s, (or s, =5,,

s, =S;); thus the behavior of the O(4) expansion at
the threshold is in general not completely correct.
It should however be stressed that both the re-
quirement (53) and condition (58) mean that an in-
finite number of partial-wave helicity amplitudes
vanish and only a finite number survive. If the
two conditions do not coincide then we obtain at
most a finite number of constraints upon the Lo-
rentz amplitudes A;" and not an infinite number as
might have been expected a priori.
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V1. CONCLUSIONS

The main result of this paper is the expansion
formula (43), together with its inverse (44). It
represents an O(4) group expansion of the c.m.
helicity amplitudes and for any fixed value of the
energy variable s it coincides with a standard O(3)
partial-wave expansion. The appearance of the
group O(4), as opposed to the Lorentz group
0(3, 1), is due to the finiteness of the physical de-
cay region, which we have used to map part of
the O(3, 1) group manifold onto the entire O(4)
manifold. Expansion (43) is thus a generalization
of the O(4) two-variables expansions, suggested
and applied previously for decays involving spin-
less particles only.%!° Indeed, in the spinless
case s;=x;=0(i=1,...,4) so obviously »=0 and
J =L, Using (27) it is a simple matter to check
that expansion (43) reduces to the one considered
earlier.® On the other hand this expansion formu-
la is to be viewed as a modification of the two-
variable expansions of helicity amplitudes for two-
body scattering, suggested in I. InI the scatter-
ing amplitudes were expanded in terms of O(3, 1)
D functions, calculated in a basis corresponding
to the reduction O(3,1) >DO(3) D O(2).

Our main interest is in the application of two-
variable (or more generally multivariable) expan-
sions to elementary particle scattering. However,
since the O(4) expansions are simpler in that they
involve summations only, we are considering their
phenomenological applications first. The spinless
O(4) expansions have already been applied to ana-
lyze K — 37 and 1 —~ 37 Dalitz plot distributions.®
Obviously expansion (43) has a wide field of appli-
cability, namely to analyze, in terms of a few
O(4) amplitudes A;"; experimental data (Dalitz-
plot distributions, polarizations, etc.) in strong,
weak, and electromagnetic decays of the type
w=3m, ©~Nly, K-7lv, etc. In particular we
have applied this O(4) expansion to analyze the
Dalitz plot® for pn— 37 annihilations at rest (the
initial pn system is treated as a single particle).?

When applying (43) in such a phenomenological
manner we obviously have to cut off the sum over

n at some finite value n,. When fitting the data it
is important to establish: How many parameters
do you need? How good is the fit (as character-
ized, e.g., by the x? value)? How stable is the fit
with respect to the choice of the cutoff parameter?
How sensitive are the coefficients with respect to
interesting dynamical features (violations of sym-
metries, etc.)? ' How unique are the solutions?
Are the coefficients in (43) to some degree statis-
tically independent, etc.?

Since our approach is quite general, we have
obviously not incorporated any specific dynamics.
The emphasis on Lorentz invariance, the “natural”
mapping onto an O(4) manifold, the occurrence of
the angular momenta J and L, etc. in (43), the re-
lation to the O(3)partial-wave analysis, and the cor-
rect pseudothreshold and “reasonable” threshold
behavior suggest that much of the kinematics has
been incorporated, which is a good starting point
for both phenomenology and dynamics.

In the future we plan to investigate more dynam-
ical problems using the presented approach.
Three-body decays serve, among other things, as
a source of information on two-body resonances
and also on the phase shifts, characterizing the
final-state interactions. We hope to be able to in-
vestigate the sensitivity of the O(4) coefficients to
resonances on one hand and to relate them to vari-
ous two-body interactions on the other. We also
intend to investigate various models in which the
amplitude can be calculated and to find the coeffi-
cients A/". For scattering we plan to generalize
the results of I so as to obtain expansions corre-
sponding to other bases than the simplest canoni-
cal one, in particular the bases generated by the
group reductions O(3,1) >0(2,1) > 0O(2) and O(3, 1)
DE, D0,. (For decays these “noncompact bases”
have no analogies.)
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The multiplicity distribution at high energy in the multiperipheral model for the ¢3 theory
is shown to be identical to the grand canonical ensemble distribution of a particular one-
dimensional gas with only repulsive forces, which can be decomposed into two-body, three-
body, and other multibody forces. The specific form of these forces and the corresponding
virial expansion of the gas system are discussed. An alternative systematic expansion
method is developed which is different from the virial series but appears to be of a greater
practical value for this particular class of physical problems.

I. INTRODUCTION

In this paper, we shall discuss the exact gas-
analog problem in statistical mechanics that cor-
responds to the multiplicity distribution at high
energy in the multiperipheral model of Amati,
Fubini, and Stanghellini' for the ¢*® theory (here-
after referred to either as the ¢*-multiperipheral
model or simply as the multiperipheral model).
The interaction Lagrangian is assumed to be

(B1)7'mge?, 1)

where ¢ is a scalar field, » denotes its mass,
and g is the dimensionless coupling constant. In
the ¢*-multiperipheral model, the two-body elas-
tic scattering is given simply by the sum of all ¢-
channel ladder diagrams; the corresponding ab-

sorptive parts then give the multiplicity distribu-
tion. Such a sum of ladder diagrams is of interest
since, as is well known, it represents on the one
hand the sum of all “leading” diagrams in a per-
turbation expansion of the ¢° theory at high en-
ergy, and on the other hand, it gives the simplest
prototype of field-theoretic models that exhibit
Regge behavior for elastic scattering,? and a Ins
dependence for multiplicity.! There exists al-
ready quite a sizable literature®~® which discusses
the similarity between the meson distribution in a
multiperipheral-type model and the ensemble dis-
tribution of a gas system in statistical mechanics.
However, as yet, the precise formulation and the
explicit interaction of the gas-analog system have
not been given. The purpose of this note is to
provide this needed information in order to com-



