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Two-variable expansions of relativistic scattering amplitudes that have previously been
suggested for the scattering and decays of spinless particles are generalized to the case of
two-body scattering of particles with arbitrary spins. The usual helicity amplitudes are ex-
panded in terms of the transformation matrices of the homogeneous Lorentz group in a basis,
corresponding to the group reduction O(3, 1)D O(3)&O(2). The expansion can be interpreted
as the usual Jacob and Wick partial-wave expansion, in which the energy dependence of the
partial-wave helicity amplitudes is further expanded in terms of the O(3, 1) d functions. Re-
strictions due to parity and time-reversal invariance are discussed. The O(3, 1) expansions
are shown to have the correct threshold behavior "term by term". Further generalizations
of the formalism to include O(2, 1) expansions (and thus Regge-pole theory) are discussed as
well as applications to particle decays (these will be presented separately).

I. INTRODUCTION

and by the representation theory of the rotation
group O(4) for three-body decays

1-2+3+4. (2)

Previously the expansions have been written for
spinless particles only. Let us here briefly sum-
marize the situation. The amplitudes for the re-
actions (1) and (2) can be written as F(s, t, u),
where s, t, and u are the usual Mandelstam vari-
ables ' satisfying

s = (p, + p, )', t = (p, -p, )', u = (p, -p, )',

S+t+ u = m~ + yn2 + rn3 + nZ~,

m, are the particle masses (we assume m,.& 0,
i =1, . . ., 4), and the momenta satisfy the usual

(3)

A series of previous articles has been devoted
to an elementary-particle reaction theory, based
on the use of two-variable expansions of scatter-
ing amplitudes (see, e.g. , Refs. 1-"l and further
references contained there). The expansions under
consideration are provided by the representation
theory of the homogeneous Lorentz group O(3, 1)
for reactions of the type

1 +2~ 3+4

p, + p, = (vs, 0, 0, 0),

p, =(E„O,O, p), p, =(E„O,O, -p),
(4)

with

S+ mg PB2 S PPly + Pl2 2 2 2

2Ws 2Ws

(s —(,s m, )*](s —(ss, —,)']) '"
4s

The amplitude E(s, t) can then be considered to be
a function of one of the remaining momenta only,
e.g., of the components of p3.

(2) Definite curvilinear coordinates are chosen
on the hyperboloid p3'= m3, i.e., on the mass
shell of one of the particles. (It is more conveni-
ent to interpret this hyperboloid as the common
velocity space z2=v, 2-v'=I of all the particles,
putting v = p/m. ) For instance, we can choose
spherical coordinates, putting

conservation laws.
The O(3, 1) two-variable expansions are obtained

in the following manner.
(1) A definite frame of reference is chosen by

standardizing two of the four-momenta p, , e.g.,
the center-of-mass system by putting

,p =

slav

= m(cosha, sinha sin8 cos(t), sinha sin8 sin(P, sinha cos8). (6)

The scattering amplitude can now be considered
to be a function of the spherical coordinates of p„
and since (t) simply defines the position of the
scattering plane, it must be a cyclic variable.

Thus we obtain

F(s, t) =F'(p, )=Z" (a, 8),
where I cosha and cos8 characterize the c.m. en-
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ergy and scattering angle. As s and t run through
the physical scattering region, we have

0&a&, 0&8&v (and 0&g&2s).

Thus, the scattering amplitude is now a function,
defined over the entire upper sheet of the hyper-
boloid v' = 1. This is a homogeneous manifold for
the group O(3, 1) and it is thus very natural to ex-
pand E(s, l) in terms of the basis functions of this
group (figuring as the group of motions of the
space of independent kinematic parameters, rath-
er than as an invariance group of the amplitude).

(3) A definite basis is chosen for the represen-
tations of the group O(3, 1), e.g., by choosing a

convenient complete set of commuting operators
[consisting of the Casimir operators of O(3, 1),
some further operators from the enveloping alge-
bra of the algebra of O(3, 1), and possibly some
discrete operators] and finding their common
eigenfunctions. The amplitude can then be ex-
panded in terms of the obtained basis functions
and we obtain the required two-variable expan-
sions (for details see, e.g., Ref. 5, 6).

If we choose the c.m. system as a frame of
reference, spherical coordinates on the hyper~
boloid, and .a basis corresponding to the group re-
duction O(3, 1)&O(3)&O(2), we obtain the expan-
sion

E(s, l) =Q (2l+1)
l=0

with

s+m, -m42 2

cosha =
2m, v's

2s(t -m, ' -m, ')+ (s+ m, '-m, ')(s + m, ' -m, ')
s —m~+ m2 s — m~ -m2 s —m3+ m4 s — ms -m4

(8)

(10)

In (8) P"„(g)are Legendre functions and A, (v) are
the "Lorentz amplitudes" carrying all the "dynam-
ics." We see that the entire dependence on the ki-
nematic parameters a and 8 (s and t) is displayed
explicitly in known functions. Further, if we put

I'(a+ 1)
ag (s) =

J
(a+1)'do

x A. , (o)
(

. )„,P, ,' ' 2(~choas),
1

siva "'

then (8) reduces to the usual partial-wave expan-
sion [or O(3) little-group expansion'j. Thus, our
two-variable expansion (8) can be interpreted as
the O(3) little-group expansion, supplemented by
an integral representation of the partial-wave am-
plitude a, (s).

Expansion (8) is only one example of the O(3, 1)
two-variable expansions. Other expansions have
been obtained, corresponding to the reduction of
O(3, 1) to the subgroups ' "'0 (2, 1) and E, and
also corresponding to "non-subgroup" type bases
for O(3, 1) representations. 4

The aim of this approach is to separate the dy-
namics and the kinematics of reactions as much as
possible. The two-variable expansions should
thus be suitable for enforcing the consequences of
general principles of scattering theory (Lorentz
invariance, analyticity and crossing symmetry,
unitarity, etc.), for performing phenomenological

I

fits to larger bodies of data than can be treated by
single-variable expansions, and for formulating
dynamical hypotheses.

In previous articles we have thus obtained a
number of different two-variable expansions for
the amplitude of reaction (1) (with spinless par-
ticles), having the following features.

The two-variable expansions incorporate all the
"little-group expansions" currently used in the
literature. ' " In particular they incorporate the
Hegge-pole expansion and the Toiler expansion
for elastic forward scattering. Mandelstam an-
alyticity for F(s, t) is reflected in simple analytici-
ty properties of the Lorentz amplitudes. ' Explicit-
ly crossing-symmetric expansions have been ob-
tained. ' The expansions demonstrate the correct
kinematical threshold behavior, reasonable asymp-
totic behavior, etc. For scattering the expansions
involve at least one integral, sometimes two in-
tegrals. For decays they have been modified' into
O(4) expansions, so as to involve double sums.
These O(4) expansions have been applied to analyze
Dalitz-plot distributions in K- Sm and g-Sg de-
cays. '

Our present aim is to generalize the O(3, 1) ex-
pansions to reactions among particles with arbi-
trary spins. In this article we restrict ourselves
to the simplest case, namely the expansion (8)
corresponding to the group reduction O(3, 1)
aO(3) aO(2). In a future article we shall also
generalize the expansions corresponding to the re-
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ductions O(3, 1)&O(2, 1)&O(2) and O(3, 1) ~g,
DO(2). In this generalization we want to preserve
the main features of the spinless case, in particu-
lar the direct connection with the O(3) little-group
expansion, correct behavior at the physical thresh-
old, and the use of amplitudes defined in physical
regions. For decays we again want to obtain O(4)
expansions, suitable for a phenomenological treat-
ment of Dalitz plot distributions (and pol'ariza-
tions, etc. ) in three-body decays involving parti-
cles with spins.

For our present purpose the most convenient
amplitudes to expand turn out to be the Jacob and
Wick helic ity amplitudes. " Feldman and Matthews"
have suggested some general expansions of scat-
tering amplitudes which can be specified to give
little-group expansions, O(3, 1) expansions, etc.
In our derivation we shall combine the approach
sketched above with some of the techniques sug-
gested by Feldman and Matthews, which prove to
be very useful for keeping track in a relativistic
manner of spin and linear-momentum variables
separately.

II. FREE-PARTICLE STATES AND REPRESENTATIONS
OF THE LORENTZ GROUP

A. Free-Particle States

We shall describe single-particle states in the
standard manner, introduced by Wigner, '4 namely
their state vectors will transform under unitary
irreducible representations of the Poincare group.
Throughout this article we make use of the Jacob
and Wick helicity formalism, " i.e., quantize the
spin of each particle along the direction of its mo-
tion.

In order to establish notation, let us summarize

a few well-known facts concerning the Poincarb
group. We use a metric tensor g„„such that

g« = -g„=-g» = -g» = 1 (and g„„=0 for p w v).
Greek letters run from 0 to 3, Latin ones from 1
to 3. The generators of the Poincarh group in the
usual notation satisfy the commutation relations

IP„,P„]=0,

[Px, Z((v] =i (g x((P„gv-xP((),

I J((v~ ~pa] f (g((aJvp+ gvp J((a g((p Jvo +van((p)

As usual, we define J and K such that

(12)

(13)

1s
The relativistic (Pauli-Lubanski) spin operator

(14)

and the two Casimir operators of the Poincarb
group are

P' = P P"= m' W = W W" = m's (s + 1).
v & v

Single-particle states will be labeled by the mass
m (m'& 0), spin s (integer or half-integer), mo-
mentum p, and spin projection (helicity) A. and
possibly also intrinsic parity g:

Imsqp~) -=Ip~).

Making use of the Wigner boost operator U(p)
we can express the general single-particle states
in terms of states corresponding to particles at
rest:

I p~) =U(p)Im„~),

where we have m„= (m, 0, 0, 0) and we choose"

U(p) e -(z&$e -(z28e+( J~(((s -ilc&v

We then choose

p = m(cosha, sinha sin8 cos(P, sinha sin9 sing, sinha cos8),

with

0&a&~, 0&9&v, 0&P&2v. (20)

. =U(p)J'U-'(p)

The states Impy pA) are then simply the Jacob and
Wick helicity states, i.e., s(s+1) and A, are eigen-
values of

it is very useful to consider explicitly transforma-
tions of particle states under the homogeneous
Lorentz group. In order to relate the particle
states Imsgpk) to basis vectors of irreducible
representations of the Lorentz group, we make
use of a projection operator O(p), introduced by
Feldman and Matthews. " Some relevant prop-
erties of this operator are

and (21) (v, o(((( (v—„,-p(. , =o(,p(,
pv pp~ = -' =U(p) J, U '(p)-W J p

II I Ipl

For the purpose of obtaining O(3, 1) expansions

o(p)o(e) =o(e)o(p) = o(p)v'(p -e),
U (A)o(p)U (A) = O(Ap)

(22)
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(A is a Lorentz transformation), and

OP d'p=1. (23)

We can put

P„o(P)d'P (24)

where p„ is an eigenvalue of P„and then J„„and I'„
satisfy the commutation relations (12). We make
no attempt at mathematical rigor but do note that
(24) is a standard formula —the spectral resolution
of the momentum operator. "

We now use the operator O(p) to relate the basis
functions (16}of irreducible representations of the
Poincare group to basis functions of irreducible
representations of the Lorentz group. For the
Lorentz group we make use of the notations and
results of Naimark. The irreducible represen-
tations of the Lorentz group are labeled by a pair
of numbers (j„c)where j, is integer or half-in-
teger and c is in general an arbitrary complex
number. Their relation to the two Casimir opera-
tors of the homogeneous Lorentz group is

tation (j„c= -j, —1), which has been studied ex-
tensively by Joos ' and Weinberg" and contains
only one representation of O(3) (with s = j,). Note
that the representations (j,c) and (-j„-c)are
equivalent -this allows us to take jp~ 0.

Let us consider the representation (j„c)
= (s, -s —1) and a basis vector ~s, -s —1, sA) =- ~sA).
Let us act on this function with the operator O(P)
of (22)-(24) taking p =m„= (m, 0, 0, 0). The func-
tion O(m)

~ j,csA) satisfies

P„o(m)
~j,csA) = m„o(m)~ j,csX),

, O(m)
~j,csA.) = J'O(m)

~ j,csA.)

=s(s+1)o(m)~ jocsA),

w. (m)
O(m)

~jOcs A) = X O(m)
~jDes A) .

Thus, we can identify O(m)
~ j,csA) with the Wigner

one-particle state at rest. For the (s, -s —1) rep-
resentation we have

(msm A.) =O(m)(sX) .

(J' —K')( jocsA) = (j,'+c' —1)~j,csA.),

J K ~j,csh) = ij,c~ j-, sAc) .
(25)

A general single-particle state can then be written

~msP~) = U(P)O(m) ~s~)

—0 1p ~yPy &y Py ~ ~ ~ y
g, oO (C(goO

(these a.re, naturally, infinite-dimensional):
(b) finite-dimensional representations (non-

unitary)

j,=0, —,', 1, —,', . . . , c' = (j,+ n)', (28)

where n is a positive integer. A representation
(j„c=s(j, +n)) contains representations of the ro-
tation group O(3) with s =j„j,+1, . . . ,j,+ n —1.
We shall make use in particular of the represen-

Here ~j,csz) are basis vectors for the represen-
tation (j„c)and s, A. label these basis vectors.

There exists a large degree of arbitrariness as
to the choice of a basis. In this article we are
only interested in the simplest possibility, namely
a basis corresponding to the group reduction
O(3, 1)DO(3)DO(2). The basis functions then also
satisfy

J'~ j,csX) =s(s+1)~j,csX),
(26)

J,
~j,csA.) =A.

~
jocsA.),

i.e., s and A, correspond to the usual angular mo-
mentum and its projection onto the third axis.

Two types of representations of O(3, 1) will be
of special importance for us:

(a} unitary irreducible representations of the
principal series, for which c is pure imaginary,

=O(P)U(P) ~sX), (30)

where the boost U(P) is given by (18). Note that
the states ~sA) are eigenfunctions of J' —K ',
J ~ K, J', and J„whereas ~mspA) are eigenfunc-
tions of P', -W'/m', P„, and J p/(p[ =W, (P)/(p(.

The normalization of states is

(j,csA.
~j,cs'A. ') = 5„,5~ ~. ,

(pA.
~

p'A. ') = (2m)'(2p, )5 (p -p')5~q,

and the completeness relation is
r dp

1
~ps') =—[~j,csA)+q(-1)&'~~ j,—csX)}, (31)

with [s] = s for s integer and [s] = s --,' for s half-
odd-integer.

A single-particle state of definite mass m, spin
s, momentum p„, helicity A. , and parity q can be
written as

In order to describe states with a definite intrin-
sic parity we must consider simultaneously two
representations of the Lorentz group, namely
(j„c)and (j„-c).Using the conventions of
Naimark, "we have
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~
ph7!) = U(p)O(m) —[~j,csA) +7!(—1)I'!

~ jo —csA)].
1

(32)

B. Transformation Matrices

When writing expansions we shall need the O(3, 1)
transformation matrices, written in an O(3, 1)
zO(3)DO(2) basis. More precisely, we shall use
the Naimark canonical basis, "corresponding to
the above reduction, with such phase conventions
that the matrix elements of equivalent represen-
tations satisfy

The matrix elements for unitary representations
of the principal series have been calculated by
numerous authors (see, e.g., Refs. 18-20). Since
conventions (and misprints) differ from paper to
paper we find it expedient to present the relevant
formulas here. A canonical basis" in the Hilbert
space I,'(z) of functions satisfying

QZ = X~/ dXdg &Do

can be written as

jlo pjp) = fg«

;,p( 1); „(2J'+1) (j -j.)!(2+j.)! '"
(I

~

~,)(j —! ) '( j+ v) '

min(J-P &J-Pp~

(j —p) '(j+ V)'
( I) u g &-0 —az-y p--

d&(j —p —d)!(j -j, -d)!(p +j,+d)!

with p=2i(sgn j,)c and

-2v+ip «&z !z ~+»&&+&y &!12 I'(j -ip+1)1(2lj.l +ip) '"
(4v'+ p')"' I'(j+ip+1)l'(21 j.l

-i»
&=

leap f

(34)

We define the matrix element (or the D function) of the Lorentz group to be

=(j pj, m ~e
&i' ze '&' 'e '~ ze " 3e ' ze '8 z~jopjzm2)

~(P, 8, $)d,'.o,. (a)D', (0, n, P). (35)

In (35), e.g., D ~(Q, 8, g) is a Wigner D function, i.e., a matrix element of the rotation group O(3), and
d~oj&' ~(a) is a "reduced" O(3, 1) matrix element, which can be written in the basis (33) as

dj;,',, (a) =(j.pj, &le " 'li.W.~)

;„;,p, ( 1);,„,.~ (2. 1)(2. 1)(j,-j.)!(j,+j.)!(j.-j.)!(j,+j,)! '"
(j, —~) &(j, +~) &(j.—~) &(j.+!)&

d, !d !(j —X -d, )!(j, —A. -d, )!(j —j, -d, )!(j —j,-d, )!(A +j,'+ d, )!(A +j,+ d,)!

xexP[-2a(—,'iP+z+-,'A. + —,'j, +d, )] dxx'&+'~ '0 ~ d& ~z(1+x) ' ~1+'&'"(e "+x)-'-'z-'&'".
Jp

The integral can be calculated in various manners to give, e.g.,

(j, + j, -j, —A -d, -d, )!(j,+ a+ d, + d, )! [,.
)](j, j, 1)&

exp -2a g, -jp —A. -d, -d, -azp

X,E, (I+j, ——,'ip, j,+j, -j, -A-d, -d, +1,j, +j,+2, 1 e")- (37)
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or

1 p (j,+A. +d, +d,)!(j,+j,-j,—X-d, -d,)! (-1) '0 ~ «& "2+" '
2~i'~2, „r!s!(j,+ X+ d, + d, —r)!(j,+j,-j,—X -d, -d, —s)! (r+ s -j, +—,'ip)

xe"~2"+' "'~ "(sinha) ~& ~2 'sinh(r+s —2j, +ip)a. (38)

Some of the useful properties of thed functions are

d~o&~ ~ (a) = td~io~ ~ (-a)]*, d~p~ ~(a) = d~ 'z 0~~(a), d ~~0&~ ~(a) = d& '&&» ~ (a) .

We also have

~ ~ ~

2'' r K f'2 7I f' fl' 2 fr

sin8d8 I dg i sinh'ada sinndn dPD~&&»*~ (g)D&' ~ (g)
0 ~0 ~o &o 0 0

(40)

popo j 2 + p2 J&ff f2/2 t8&m& m2m2
&o 4

(41)

where k is a numeric constant. In the following we shall usually label the 0(3, 1) transformations by c in-
stead of p.

The transformation matrices for the finite-dimensional represeniations (s, -(s + 1)) and (s, (s + 1)) can be
written" in the same basis as

u, , (p, q,q, ) =&s~,q, lv(p)le~, q, &

=&st,q, le 'e'Se ' ~e'~ &e "«~isa,q, &

We also have

=D~ „(Q,8, -P) (e' 2+@,q,e ' 2). (42)

u~ ~ (P, q,q, ) =&sain&III '(P)lsa, q,&

=-'(e '"+n,n, e"')D;„,(0, 8, -0) (43)

Z k X (P& ll!) kX. (Pi I !2) k|X26ggq2 t

Z X X(p !1!)kk (P !!2) kiX2 piq2

III. LORENTZ-GROUP EXPANSIONS OF SCATTERING AMPLITUDES

Let us now consider a scattering amplitude

&3 lTl 2& =&ps ~ 3'I»P4 4~4'!4lTlpi i~i'!1 p2 2~2'82& (45)

i.e., a matrix element of the T matrix (related to the S matrix by S =1+iT) taken between two-particle ini-
tial and final states (which are direct products of the single-particle states considered above).

As suggested in the Introduction, we consider the reaction 1+2-3+4 in the center-of-mass system,
characterized by Eqs. (4) and (5).

The particle momenta can be written as

p, = m, (cosha„0, 0, sinha, ),

p, = m, (cosha2, 0, 0, -sinha, ),

p, = m, (cosha„sinha, sin8 cos&f&, sinha, sin8 sing, sinha, cos8),

p~= m, (cosha~, -sinha, sin8 cosQ, -sinha~sin8 sing, -sinha~cos8),

(46)
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with

m ~sinha, = m, sinha„m3sinha, = m 4sinha4,

m, cosha, + m, cosha, = m, cosha, + m4cosha4 .

The variable cosha =-cosha, and cos8 are given in terms of s and t by (9) and (10).
Using (30) and the conventions of Jacob and Wick" we can write the states as

(I)
I plsl~lll) =e "~ ~ O(m i) ls&&101)&

~a z'2)
~p,s,A.,g,) = e"2"~ O(m, )~s, —A, q,),

(3)
jp, s~,q,) =R&"(y, 8, -y)e-".rs O(m, )~s,~,q,),

( )
~P4s4X4qg =R~ '(p, 8, (b)e"-4r& O(m~)~s~ —A~qg,

with

(47)

(48)

(49)R"'($8 —Q)=e ' e ' 2 e'

(J "' and K"' are the generators for the ith particle. ) Note that we are using the Weinberg-Joos O(3, 1)
states (31), with j,=s and c =-(s+1).

Using formulas (48) [in the general form (30)], we can write the scattering amplitude as

(34~T(12) =(s,k,g„s4 X,q~~U -'(P, )U '(P, )O(P, )O(P, )TO(P, )O(P, )U(P, )U(P, )(s,A.,II, , s, —A.,q,).
Using (42) and (43) we can extract some of the transformation matrices U(p) to obtain

(5o)

(341TI»)= Z a .p, (p. , n.7I.)n&, ~, (p„n,n, )a&, &, (P.n.n, )

x(s A. q, s X q ~U '(p )O(p )O(p )TO(p )O(p )~s~X,q, s A. q ) (51)

(the summation is over X, , 7, , X„q,, g„and q4).
Let us now make use of energy-momentum conservation, of the fact that we are in the c.m. system, and

of the properties of the projection operators O(p). Since the total momentum P, +P, commutes with the T
matrix, we have

U '(P )O(P )O(P )TO(P, )O(P, ) =U '(P )O(P )O(P +P )TO(P, +P )O(P )

= U '(P.)o(p, )To(P, + P,)o(p, + P, )O(p, )

= ~ (P, + P2 -P, -P4)O(m. )U '(P3)TO(pl)O(P2) . (52)

Our aim is to make the entire dependence of the scattering amplitude on the kinematic parameters s and t
explicit. Thus, we must extract this dependence from the operators U '(p, ), O(p, ), and O(p, ). Since we

are using p, and p, to specify the frame of reference [see (46)] we introduce a tetrad of orthogonal unit

vectors": n, n, P, and y.

In= —(p, +p, ),s

y = (s[s —(m, + m, )'][s —(m, -m, )']] '"[(s-m, '+ m, ')p, —(s+ m, ' -m, ')p, ],
n =N„(p, —(p,n)n+ (p,y)y), (53)

~P ~jfV XP+Uyk +P

satisfying n'= n'=-p'-=-y'=1. It is easy to check that if p,. are given by (46), then the vectors (53) re-
duce to

n = (1, 0, 0, 0), o. = (0, 1, 0, 0), P = (0, 0, 1, 0), y = (0, 0, 0, 1)

and they obviously do not depend on s and t. We now notice that (23) implies that

o(P )o(P,) = Z(s)O(n)O(y),

where g is the inverse Jacobian for the transformation p, , p, -n, y.
We have

(54)
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4 2

[s —(m, + m, )'][s —(m, -m, )']

The expansion of the scattering amplitude can now be written as

&841TII2&=5(pl+P 2 j'3 P4)g(s) ~ " xp,-(P4 &A)"X,k, (P1 %'81)"x,-x, (j'2 &2'%)

(56)

P &O(8, 1)&O(2)&O(2).

The states can thus be denoted imsqj, cj p&, or for brevity ij,cj p&. Inserting the complete set of functions
gives rise to the following three factors:

x(s,A.,g„s A, g iO(m, )U '(p, )TO(n)O(y)is, 7.,q, , s,X,X,&
.

The dependence on s and t is now completely in the matrix elements u~, ~. and in the boost operator
U '(p, ). [The factor g(s) (55) does of course also depend on s. This dependence can either be kept ex-
plicitly as in (56) and further in this article or be dropped by redefining the expanded amplitude. Alterna-
tively (and maybe preferably) we could combine the factor g(s) with the boost operator U (p, ), consider
them both to be functions over the Lorentz group (see below), and expand their product in terms of the
transformation matrices of the Lorentz group. ] In order to make the entire dependence explicit let us in-
sert a complete set of single-particle states for particle 3 on both sides of the boost operator. Contrary
to the labeling of single-particle states by linear momenta (as in Sec. II) we use a basis corresponding to
the following reduction of the Poincarh group P (including space reflections):

(i) &s,A.,q, iO(m, )im, s,qj,cj p& =5 5~, 5~ „&s,q, iO(m, )ij0cs,)

(It follows from the Wigner-Eckart theorem that there is no dependence on A, )

(ii) &m~s~qj0cjalU '(p3)lm~sp'j0c'j'g'& =5,. &,5„,&msss7lj0cj plU '(ps)lq'j cj'g'&

=6» 5-'«&j0cj&lc' "c '"'s'"'s'"'li. cj'~'&

=5,,;;6„,a«. d, l,„*(a)D'„,'+(y, 8, -y).

Here a„„,are numbers, depending on the parities only.

(iii) &m,s,q'j,'c'j' p', s~Ã~q~i TO(n)O(y) is,XP, , s,h.,q,& .

Let us now introduce the notation

A,.„(7I,&,7IA, X,X,x,) = pa „„&s,&,iO(m, )(j,cs,&&mss, pj,cjV, s,X,&, i TO(n)O(y)is&~&p&, s,X@2& .pp I 2 3 4& I 2 4 'gsI) 3 3

Introducing the helicity amplitudes f~ (a, 8, P) by putting

&84ITII2&=5(p|+P2-ps-p~)A, . (a 8 &)

we can rewrite the expansion (56) as

(57)

(58)

fg(( t s 0) g ( ) 2 Z 2 xp ~(P4 t /404) kgx-|(P1 & 11 11) k -x2(P2 s 8292)
X.gk. gX.4I)y I)2 q4 j0cgp

(58)2 3 4 & 1 2 4) f gk i~a) 3X.
The sum over j, is such that the representation (j„c)contains the angular momentum s, : -s, (j, ~ s, .

We can however restrict ourselves to j, -0, in view of the equivalence of the representations (j„c)and
(-j„-c).We then have j =j„j,+1, j,+2, . . . . The range of summation of the projections A. , and N, is
obvious. The range of the variable c depends on the behavior of the amplitude f~, (a, 8, P) and can run
through both continuous and discrete values (this sum is to be interpreted as a sum and an integral). In
particular, if the amplitudes satisfy a square-integrability condition

~~ ~sinh'ada sin8d8dg (~,
I g (s)l' (60)
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then it follows from Plancherel s theorem" that the expansion will be over the principal series of unitary
representations only, i.e.,

+ tcx&

dc.
C

(61)

In general the condition (60) is unphysical, since it requires that the amplitudes fall off to zero asymp-
totically. This can be remedied by considering more general integration paths in the complex c plane;
however we will not go into these problems here and will restrict ourselves to the principal series.

Let us further simplify expansion (59). Using (42) and (43) we have

akgkg(P1 8111) xgX 2 ( +8A ) fo( 1 1 81%) x~X

Xp, -X2(P2t 82 I2) fo( 2t 2P 8282) X.2, -Xg& (62)

z z (p, , '84'84) = —,'(e' +r)4r/4e
' )D~4 ~ (Q, 8, -Q) = fo(a4, -X4, qp 4)D~~ ~ ($, 8, (f&)-

We can combine the two O (3) D functions together to obtain

&+t 2 2

fq. (a, 8, p) =g(s)g g p p (2J+I) ' dc fo(a» A, , 7i,q, )f (a, , A, q 7i )
~4 1)Z&21)4 JO~P ~

&& f (a y g q )( I)-xg+x4+p+X4 ~ 4

A3 -A4 -A3+A4 p, A -p, -A.4

(63)

The brackets represent the ordinary 3j symbols of O(3). The dependence of the helicity amplitudes on

the angle Q is given" by the Wigner D function D~~* ~ ~ ~ (p, 8, -p). Thus the left-hand side of (63) con-
tains Q only in the factor e "~j ~2 ~3'~4'@. On the right-hand side we have e "I"'~4 ~3' ~4'@. Hence we ob-
tain A., —A,, = p+ A4, i.e., we can drop the summation over p, , put p. = A., —A., —A4, and drop the label p, on

the expansion coefficient. Finally, we obtain the following expansion formula for the helicity amplitudes:

S3 Do ~+~4f(, 8, P) =g(s) Q , Q g P g (2J+ I)
)1 )2 )4 ~4 &0= fo 23 ~=&0 ~= IJ-S4l

p+ 4 j 2 2

dc fo(ax, ~x ~ qiqz)
5 Qo

(
j s4 J j s4 J

X
-A, 4 A, 3

—A.4 A,q
—A, ~

—A,4 A,4 -A.
~ + A, 2

x AP'(p, p,p,&„A.,A,X,)d'„~ (a)D~,* ~ ~ ~4(Q, 8, -Q).

(64)

Thus we have obtained an expansion of the helicity amplitude f~ (a, 8, p) in which t.he entire dependence

on s and t (a and 8) is contained explicitly in the O(3, 1) and O(3) transformation matrices. We have intro-
duced the Plancherel measure j,' —c' [see (41)] into the formula in order to simplify the inversion formula
(see next section). The sum over j, is from 0 or —, depending on whether s, is integer or half-odd-integer.

The coefficients A~~0'(8, , A., ) are generalizations of the "Lorentz amplitudes, " introduced previously in

the spinless case. ' ' These Lorentz amplitudes carry the entire dynamics of each individual scattering
process. It is important to minimize the "kinematical constraints" upon the Lorentz amplitudes, i.e., the

correct kinematical behavior of the total amplitudes at thresholds, at the boundary of the physical region,
at s =0 or t =0, etc. should as far as possible be ensured by the behavior of the transformation matrices
in (64) (see below).
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In order to obtain an expression for the expansion coefficient Az (q, q,q,q~, A.,X,X~), let us first rewrite
formula (59) as

S~ Oo ++too ' 2 2

1TI2q4 ~4 jp (0& a) g gp

fo(ai i gp&) f (0a„~„q,q, ) f,(a„-z„q,g, )D~4+, ty, g, y)

& 4~0'(q q q q, X A. X )d',.o'f (a)D~~* ~ I ~ (p, 8, (f&).- (66)

Using formulas (44) and (41) we can readily obtain

2 f7t' ~ 27)'

A~&0' = sinh2ada sin8d8 dp p Q fo(a, , -X~, q,yi~) fo(a, , -A2, 7imq2) fo(a4, X4, q4q4)
3 0 40 ~3)~4 &l &2 &4

xg '(s)f„(a, 8, P). (66)

Finally, we can write

w',."(q,q,q,q„ ~,x,X,)

8m' ~1t + 2'
sinh ada singdg dQ p g p fo(a, , -A, , q,y4) fo(a~, -X2, 'g, q2) fo(a~, X~, 'g~q~)

2s, +1 gp 4.0 0 $3)i.4 ql q2q4 J

s4 j J s4 j J
x( 1)xg-z2-as+ x4(2J+1)—

4 I 2 4 l 2 4 3 3 4

x d',:;.(a»;, ..., „N, g, -~)~-'(s)f„(a, g, e). (67)

Formula (67) is only valid for unitary representations of the principal series, i.e., for c =pure imagi-

nary. In this article we shall not discuss any generalizations to nonunitary representations, still less the

corresponding generalizations of (6V).

V. RELATION TO THE JACOB AND WICK EXPANSION AND PHYSICAL MEANING

OF THE QUANTUM NUMBERS

The Jacob and Wick expansion, "which is simply the O(3) little-group expansion of a helicity amplitude,

18

(68)

S3 . Oo g+S4 o min {J+ S4 S3) J+S4

Z Z Z = Z, Z, Z
pp= (0 z) J= fp J= ( ) -s4I J=(0 a') &0= (0 z) i™x(l/pl l J-s4l)

f~.(a, 8, P) = Q (22+1)(A~A~~S (a)~X~X2)D~*„($, 8, -(jh),
J= max(I ~ l ~ l Pl)

total angular momentum, ~ =&, -~2 P =~a
helic ity amplitudes.

In order to find the relation between our O(3, 1) expansion (64) and the expansion (68) we must reorder
the summation in formula (64). This is a somewhat tedious procedure but the result is very simple,
namely,

Finally, we obiain a formula, coinciding with (68), if we put the partial-wave amplitude equal to
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p.,~,~s'(a) (x,z,)
min(J+ s4, s3) J'+ s4 +f o 2 2

=g( ) g Z P (2J+1) dc ' f, (a, , A, , q, q, )fo(a„X„q,q, )f,(a, -g„q,q )
'f)$ 02 R4X4 20 (0 2) i™x(&0.&~-s4&j j oo

x(-1)~i ) 2-xo+x~ 4 4j jj s J j s J
x, -x, -x, +z, z, -x, -X, X, -x, +A.,

x AJ o'(q~qoqoq4, A~XoA4)d, o,'~ (a) . (69)

Thus, the O(3, 1) expansion (64) can be interpreted in exactly the same manner as in the spinless case-
it is the O(3) little-group expansion (68), supplemented by an integral expansion of the O(3) partial wave
amplitude, given by (69).

The meaning of some of the quantum numbers in (64) and (69) now becomes clear. The symbol J simply
denotes the total angular momentum of the initial (and final) state in the c.m. system, whereas j, being the
vector sum of the spin s4 and J, is the angular momentum of particle 3 in the frame in which 4 is at rest.
The Lorentz group parameter j, is the minimum possible value of j (for given J); q, and X, are the intrin-
sic parities and helicities of the particles. Finally, the meaning of the continuous parameter c is less
straightforward and is related to the high-energy (or short-distance) behavior of the amplitudes. We hope
to return to this question in the future.

VI. RESTRICTIONS ON LORENTZ AMPLITUDES DUE TO PARITY CONSERVATION

AND TIME-REVERSAL INVARIANCE

If we assume that parity is conserved in the reaction 1+2-3+4 or that the process is elastic and that
the scattering is invariant under time reversal, then not all the helicity amplitudes and hence not all the
Lorentz amplitudes will be independent.

Let us first investigate the consequences of parity conservation. The partial-wavehelicity amplitudes
are known to satisfy'"

(-~, —~,(s'(-~, —~,) =qp.,~,(s'(~,~,), (70)

73 14
( 1 )So +S4 -Sg -S2

~1~2

We expand both sides of (70) using (69), make use of the relations

f.(a, -~ nn)=nnf. (a &, nn)

d Jo'
~ (a) = d& 'o (a) = d'o-'(a),

and find that parity conservation implies that the Lorentz amplitudes satisfy

A,'o '(q, qog3g4 j Xg Xo AQ) gggog3$@( 1) Aj~ pggQ2g3g4y XQAQA4) . (71)

The consequences of time-reversal invariance are somewhat more complicated. Consider elastic scat-
tering, when the masses, spins, and parities satisfy m, = m3 ~2 m4 s1 s3 s2 s4P and g1 g3) 02 04 ~

The energies satisfy

S+ m1 —Vl2 S -rPg12+ yn
cosha =cosha = ' .— ', cosha =cosha4=

2m, v's 2mo s

For the partial-wave amplitudes tj.me-reversal invariance implies"

p.,x,(s'(x, x,) = p.,x, (s')x,x,) . (72)

We can now expand the left- and right-hand sides of (72), using the expansion formula (69). We thus obtain
relations between Lorentz amplitudes, following from time-reversal invariance. The result can be written
in various forms but we have not succeeded in obtaining any simple relations. One way of expressing the
consequences of T invariance is
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(
A- ('g~7l37/37j4 P X3Ã4Ã3 )

(2j+1)(2s, +1) „- „- «» 1»,„k A;o'(q~q3q3q4, A~X3A4)

J j s4 J
-A.3+A,4 A.~

—A,2
—A.4 A.4 -A,

x sinh'ada p a, A.„q, qg p a2 X2, 'g2'g2 p a4, -A4, pe]4
Jp

x f,(a„-A.„q3q,)f3(a4, -A4, q4q3) f,(a„X3,7l3q4)d~3'4~ (a)d~&' (a) (t3)

Thus, T invariance implies a set of linear relations between Lorentz amplitudes, but we shall not dis-
cuss them any further here.

VII. THRESHOLD BEHAVIOR OF HELICITY AMPLITUDES

The most important feature of our O(3, 1) expansion (64) is that it is a two-variable expansion (the third
variable Q is inessential), i.e., that the dependence on the energy and scattering angle is explicit. This
makes the expansion suitable for considering the behavior of amplitudes in various kinematical limits. In
particular it is possible to investigate problems like kinematical singularities and constraints at various
points, asymptotic behavior for s-~ and/or t-~ in various directions, etc. The expansion presented in
this paper corresponding to the group reduction O(3, 1).DO(3) & O(2) is specially suitable for investigating
low-energy behavior, i.e., threshold behavior. We plan to return to the question of kinematical singulari-
ties and constraints in detail in a future publication. Of special interest is the behavior of amplitudes at
I; =0, when the question of Regge daughters, conspiracies, evasion, etc. arises in Regge-pole theory. '" "
For the case of spin-zero particles the question of kinematic constraints at t=0 was treated from the point
of view of O(3, 1) two-variable expansions in the second of Ref. 2. The Lorentz group expansion corre-
sponding to the reduction O(3, 1)& O(2, 1) DO(2) is the one that turns out to be relevant.

As was shown above in Sec. Vthe O(3, 1) expansion (64) coincides with the Jacob and Wick O(3) expan-
sion, as far as the dependence on the angles 8 and Q is concerned. Since the boundary of the physical re-
gion is given by the equation

fcosef =1,

the behavior of the helicity amplitudes, given by expansion (64) at the boundary of the physical region, co-
incides with the usual behavior, given by the O(3) D functions.

Let us now look at the threshold behavior. The kinematic behavior of the partial-wave helicity ampli-
tudes at the thresholds and pseudothresholds is known to be'

(A 3k 4(S~ (a)
~

A.,A3) = [s —(m, + m, )']'""[s—(m, -m 3)3]'&"[s—(m, + m 4)']' "'"[s —(m, -m 4)3]'P3(A3A4~ S~ (a) (A.,A3)',

(t4)

where (X3A4(S~(a) ~X,A3)' is regular at the points of interest and l„, l, , l'„, and l3 are the minimal possible
values of the orbital angular momentum at the threshold and pseudothreshold of the initial and final states,
respectively.

We expect the expansion (69) of the partial-wave helicity amplitudes to converge for s and t in the phys-
ical scattering region.

We have

S + nS,' -m 2'
coshai =

2 2S —Ry +m2cosha3 =

S+m, -$7243 2 2 2
cosha -=cosha, = 2, cosha4 = S-m3 +m4

2023 S 2SS4 S

The only threshold (or pseudothreshold) that touches the physical region is s =max((m, + m, )', (m, + m, )'].
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We are expanding in terms of the momentum of one particle, namely particle 3, but we could just as well
have chosen any other particle. Let us assume that we have chosen such a particle, that cosha =1 at the
physical threshold. In our case this corresponds to assuming that (m, + m, )'~ (m, + m, )'.

Consider the limit s=(m, +m, )'(I+a), e&0, e-0. We have

and

cosha~ ~ I +c, cosha4 ~ I + e
6~0 2m3 0 2m 4

1 + A4 p E m 3/m4 for YJ~'g4 = 1f (a4, -A4, q4q4) = —, (8 4 &+'g4'g4e 4 4) ~
0 A4ve (mq/m~) for 'g~q~= -1.

Furthermore, Eq. (39) tells us that

d,~o'~*,(a) ~ 5J„.

Substituting the above limits into expansion (69) we obtain

min( J+s4,s3) +'" '- C2
(A3X4~S~(a)~X~A.,) ~ g((m, + m4)') g P (2d+1) dc fo(a, , X, , q, q, )6~0

Z I)2X4 yo-fo, ,f k

)(f (a y q q )( 1)xg —xp-kg+ k4 3 s4
A,3 -A,4 -A.3+%.4

S~ $4 J
Ago ('gJ'g2 q3'gg p X~A 2/l. 4)

I 2 4 4 1 2

(76)

From the 3j symbols of the O(3) group we see that the only nonzero partial-wave helicity amplitudes
are pose for which ~s, -s4~ & J' &s, +s4. However, since J is the total angular momentum, we have
j=s +s +I where I' is the orbital angular momentum in the final state. We see that only those ampli-
tudes for which l„' =0 survive, which is in complete agreement with the general requirement (74).

In order to show that all other partial-wave helicity amplitudes vanish in the proper manner we must in-
vestigate the behavior of d',.o~ ~(a) for a-0 in greater detail. Let us first of all notice that we have

s —m3+ m4 s — m~ —m4
2m, vs

(77)

The proper kinematic behavior at the final-state threshold and pseudothreshold would thus be guaranteed,
if we couM show that

d~o' z(a) ~(sinha)~" ~'~djo' (a), (78)

where d,'f~z(a) is finite (and nonzero) for a-0. While we have not yet been able to cast the O(3, 1) d func-
tion into a form in which the behavior (78) is manifestly true, we do have some indication that such a for-
mula exists. Thus, the d functions of the compact group O(4) can be obtained by analytic continuation'4 in
the variable c. For the transformation matrices of O(4) it is indeed possible to show that property (78)
holds. " Furthermore, it is quite easy to derive a formula of the type (78) in the special case when j,=j,
=A, =O. Indeed, we can write the basis functions for representations with j,=0 as"'

(79)

which can easily be shown to satisfy

Qo~(a, 0, p) = —5,05
1

r
We also have

(80)
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y,"(~,e, y) -=y", (g-'~)

.= T,P", (x)

r 'm'

where x = (1, 0, 0, 0) is the vertex of the upper sheet of the hyperboloid x'=x, '-x'=1 and

(81)

From Eqs. (79)-(81)we obtain

(2l+1)'" r(&r+1) 1
I' o+ —l sinha '" (82)

For 1 ~ cosha&3 this can finally be rewritten as"
(2l + 1)'" I'(v+ 1) (sinha)'

I' a+1 —l I l+-,' cosha+1 "'~' ' (83)

Formula (83) demonstrates, at least in this special
case, precisely the correct threshold behavior
(78). Assuming that formula (78) is indeed valid
in general (we plan to return to this problem), we
find that each term individually on the right-hand
side of (69) has the correct behavior at the final-
siate threshold (and pseudothreshold}. We con-
sider this to be important since in actual applica-
tions the sums in (69) will eventually be truncated
and the integral approximated. This would be a
complicated procedure if the kinematic behavior
at threshold had to be ensured by constraints
among many terms (in general infinitely many).
The correct behavior at the initial channel thresh-
old is not contained automatically; however, we
have assumed that (m, + m, )' ~ (m, + m 4)', i.e.,
s = (m, + m, }' is outside the physical region (ex-
cept for elastic scattering). Obviously, if
(yn, + m, )' & (m, + m 4)' we must expand in terms of
the components of, e.g., the momentum p, (or p, ),
rather than p3.

VIII. CONCLUSIONS

The main result of this paper is formula (64)
representing an O(3, 1}two-variable expansion for
a general helicity amplitude f~ z ~ z (a, e, p) (we
use the term two-variable expansion, since the
third variable Q is irrelevant). The formula was
derived assuming the square-integrability condi-
tion (60), which is a restriction on the possible
asymptotic behavior of the helicity amplitudes.
More general asymptotic behavior (power -bounded
amplitudes) can be treated by generalizing the in-
tegration path in the complex c plane.

We wish to stress that the useful features of the
O(3, 1) expansions for spinless particles ' ' have

been preserved. In particular, the expansion can
be interpreted as an O(3) little-group expansion
supplemented by a representation for the O(3) par-
tial-wave helicity amplitude [see (69)] and the par-
tial-wave amplitudes have the correct. threshold
and pseudothreshold behavior (either in the initial
or in the final-state channel, whichever lies on
the boundary of the physical region). The expan-
sion and its inverse formula (67) involve ampli-
tudes defined in the physical region only and are
now written for arbitrary (positive) masses and
spins. Total angular momentum J is diagonalized
and all the quantum numbers figuring in the expan-
sion, with the exception of the continuous Lorentz
group parameter c, have a simple physical mean-
ing.

Let us note that the expansion formula (64) re-
duces to the "S-system" expansions of Refs. 1-6
in the spinless case. Indeed, if s,. =A., =0 the only
d function that survives is d,'.;,(a) and formula (82)
ensures that we obtain an expansion in terms of
the correct basis functions of O(3, 1) in an O(3, 1)
a O(3) DO(2) basis. Other two-variable expan-

sions exist in the literature. Those of Balachan-
dran et al.27 are written for arbitrary masses and
spins, in general for amplitudes inside the Mandel-
stam triangle, i.e., in a nonphysical region, and
they do not have any obvious group-theoretical in-
terpretation. They do, on the other hand, have
very useful properties with respect to the cross-
ing transformation. An O(3, 1) expansion of helici-
ty amplitudes was also suggested by Verdiev"',
however, in his expansion only part of the s depen-
dence is explicit, whereas an unknown part of the
dependence is contained in the expansion coef-
ficients. An expansion of helicity amplitudes for
nucleon-nucleon and nucleon-antinucleon scatter-
ing in terms of the O(3, 1) basis functions for rep-
resentations with j,=0 (i.e., appropriate for spin-
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less particles) was suggested by Kuznetsov, "who

also discusses some consequences of crossing
symmetry for the O(3, 1) expansion Ifor the origi-
nal treatment of the problem of crossing sym-
metry in the context of O(3, 1) two-variable expan-
sions for spinless particles see Ref. 3].

In a subsequent article" we consider expan-
sions of amplitudes for the three-body decaysI- 2+3+4 involving particles with arbitrary
spins. Similarly as in the spinless case' we
make use of the fact that for decays the physical
region of the Mandelstam plane is finite. This
region can be mapped onto an O(4) sphere and
the expansion (64) can be replaced by an O(4)
expansion. The integral over c is repiaced by a
sum over a discrete variable n. The useful fea-
tures of the O(3, 1) expansions are preserved
(correct threshold behavior, diagonalization of
total angular momentum, relation to little-group
expansions, etc. ) and in addition the fact that the
expansions involve only sums and no integrals

makes it much easier to apply them phenomeno-
logically. The O(4) expansions have been applied
to analyze the Dalitz plot distributions of pn -3m
annihilation events at rest" and the results will
be presented separately. "

Further extensions of the formalism presented
in this paper are in preparation, in particular
two-variable expansions corresponding to the
group reductions O(3, 1) D O(2, 1)a O(2) and O(3, 1)
D E, DO(2) (for arbitrary spins), an incorpora-
tion of mass-zero particles, and also further ap-
plications.
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