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fore, the insertion of the operator u will require no ad-
ditional subtractions.

These are the only two operators for a given n which
are charge conjugation even and may have nonvanishing,
spin-averaged matrix elements between two identical
pseudoscalar or fermion states.

For simplicity we use the same notation to represent
analogous quantities in the pseudoscalar and vector
theories. It should always be clear from the context to
which theory a given symbol refers.

24S.-J. Chang and P. Fishbane, Phys. Rev. D 2, 1084
(1970). See also M. Kugler and S. Nussinov, Nucl. Phys.
B28, 97 (1971); R. Gatto and P. Menotti, Nuovo Cimento
2A, 881 (1971).

P. Fishbane and J. Sullivan, Phys. Rev. D 4, 2516
(1971).

A. Mason (unpublished).
2'The requirement (56a) is valid only if we set equal

to zero the direct, renormalized photon coupling constant
f, introduced in Eqs. (A19) and (A20).

2 If the right-hand side of Eq. (65a) is expanded in
powers of g, we find a term behaving as 1/g . This
term is independent of x and is therefore annihilated by
the derivatives appearing in Eq. (2).

For a derivation of the Callan-Symanzik equations in
quantum electrodynamics that follows similar lines, see
A. Sirlin, Phys. Rev. D 5, 2132 (1972).

3 Throughout our discussion of the vector theory we work
in the Feynman gauge using 5»A(k~, m, p) for the photon
propagator.

A somewhat different asymptotic behavior is implied
if g„ is a multiple root or an essential singularity of P.
For a discussion of these various possibilities see
S. Adler, IAS report (unpublished).

G. F. Dell'Antonio (unpublished).
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Two versions of a high-energy field-theoretic eikonal amplitude are examined in a special
limit of large internal mass, where infinite sums over all n-point, connected, eikonal graphs
become calculable. Both examples exhibit cancellations which tend to reduce the energy de-
pendence of 0& below the Froissart bound.

I. INTRODUCTION

Recent very-high-energy experiments displaying
a constant pp total cross section' have acted as a
spur to the estimation of O„and related multiplicity
distributions. In particular, one would like to
understand how the eikonal "tower graph" calcula-
tions of Cheng and Wu, 2 and the strong-coupling
eikonal Regge calculation of Chang and Yan, 3 which
generate o~-ln's, might be improved; and it has
been suggested" that neglected crossed-channel
multiparticle (connected) amplitudes can provide
sufficient cancellations to remove the unobserved
energy dependence. The purpose of this note is to
describe a special version of a field-theoretic
model previously discussed in an approximate
way'; and to exhibit in an exact way two distinct
forms of such cancellation in the special limit of
large vector-meson mass (while the mass of emit-
ted scalar "pions" remains finite). The first com-

putation displays deviations from the form of a
previous result of Aviv, Sugar, and Blankenbecler,
which arise from the inclusion of the next, more
complicated set of fundamental graphs employed
in the construction of the eikonal. The result of
the second calculation, exact in its model context,
sums over all contributing, nontrivial graphs, and
produces an eikonal function independent of inci-
dent particle energy. While this. does agree with
the experimental o ~-const, the main value of
these computations lies in the construction of ex-
plicit examples which exhibit eikonal cancellations.

The starting point of the analysis is the specifi-
cation of an interaction Lagrangian, coupling nu-

cleon, neutral vector meson (NVM), and scalar
pion fields,

g ' =igp g y& W& ip + z A,II Q W&

A formal construction of the eikonal amplitude in
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where

Z, [II]= ~.[l+XII~,]-',
+ OO

p(w) p,",f =Hp(w-z, , + p,p, ),

(2)

D, and b„„a, denote pion and (Feynman gauge)
NVM propagators, z, , are configuration-space
coordinates of the (assumed distinguishable) nu-

cleons, and 1I(u) represents a fictitious, c-number
pion field. The two-dimensional impact parameter
b of the small-angle c.m. scattering amplitude

which arbitrary numbers of NVM's are exchanged
between a pair of scattering protons (p, +p,
-pf+ p,'), while all possible pions are exchanged
between the virtual NVM's, has been given' and
employed' elsewhere; it is

ie'" =exp - ,'i -D—, —exp igx Sf &, [II]5'"
I II = 0

FIG. 2. A typical Peynman graph of order g A, .

may easily be obtained directly from (I), for the
approximation simply entails the replacement of
Z, [II] by its first-order expansion in II,

Z, (z, @Ill)=~, (x-y)

d uA, x-uQuh, u-y

(4)

Sg SXP ZQAs+y

and the operations of (2) may be performed in an
elementary manner, since ig' JS, a, F» is then
but a linear functional of II(u). One obtains

T(s, t) = 2b &q b (I &x(P;b)) (3) with

is here given by b =z, —z„with s=-(p, +p, )',
t=-(P -Pl)'=-(I'

All Feynman graphs for this elastic process may
be built up by simple expansion of the exponential
factors of (2) in appropriate powers of the coupling
constants g and A, . Typical graphs of order g'8
and g'A, ' are pictured in Fig. 1 and Fig. 2. The
reader is referred elsewhere" for derivation of
(2) and (3), which need not be repeated here. In
the next section, the ASB model will be defined,
in the context of the interaction (I), and then gen-
eralized. The detailed form of this generalization
will suggest in Sec. OI, a method of carrying
through the functional differentiation operations of
(2) without approximation.

i)( = — IC ((J,b),
Zg

2m

i)(„s»=2i f(u)D, (u- v) f(v)d ud v,

where

f(w) =-g'X 5',"(u)a, (u- u)

~, ~-»r~i v d4ud4v

5((z, —u))( ))5((z, —su)(,))
2 m

&&K,(m I z, —w I )K,(m I z, —w I ),

(5)

' II. GENERALIZATION OF THE ASB MODEL

That approximation which employs but a single
pion line emanating from any virtual NVM line,
for elastic nucleon scattering and multiple pion
production processes, permits a simple computa-
tion of the eikonal function. The fundamental
Feynman graph allowed is pictured in Fig. 3, with
typical application to elastic and inelastic process-
es pictured in Figs. 4. The eikonal of this model

and a(»—=a, +a„a=(a»a,)=ar. Because the s-~,
t/s-0 limits have already been taken, in the deri-
vation of (2), the D,(u- v) of (5) will depend on its
transverse configuration- space coordinates only,
and hence displays a Fourier transform logarith-
mically divergent in longitudinal and energy vari-
ables,

dk(+) dk(-) k(+) k(-) + kz' + p

S-iwln ——= iw Y
p (7)

80

FIG. 1. A typical ladder graph of order g6A.~, with
vertical NVM lines and horizontal -pion line s. FIG. 3. The fundamental graph of the ASB model.
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(a) (b)

FIG. 5. The additional Feynman graph used to gener-
alize the ASB model.

FIG. 4. (a) A typical Feynman graph for elastic
scattering in the ASB model. (b) A typical pion produc-
tion graph of the ASB model.

so that

D, (u - v) —(222)
' —,'(i22Y)52''(u - v) .

ln writing (7), it has been noted that all transverse
momenta of (5) are limited, and therefore s, may
be considered a constant a J2'. Evaluation of (5) is
straightforward, and yields (A =— A.'/422, G =—g'/422)

VGA
iy „=—

(2 },fd'u d'v5(b-u-v)E, '(mu)K, '(mv),

(8)

leading to an energy-dependent o~. While the par-
ticular form of this dependence is considerably
weaker' than that of the Froissart bound, what is
of interest here is the possible nature, and energy
dependence, of the corrections to (8).

One set of calculable corrections may be written
down immediately, with numerical values depen-

dent upon the resolution of a linear integral equa-
tion. They follow from the inclusion of all graphs
constructed by the emission of a pair of pions from
any virtual NVM line, as in Fig. 5, in addition to
those of Fig. 3. En the present model, one simply
expands Z,[n] retaining up to quadratic dependence

on II,

2g S Z,[n] 6'n- iy, + i fn + ',i jnBn, (9)-

where

B(u, v) =g'Z' 8f'(u')A, (u' —u)A, (u —v)S,(v —v')

x P~(v')d4u'd~v'+ (u —v) . (10)

Again, the functional operations of (2) may be per-
formed, ' and one obtains

SX = ZXO+ SXASB + ZXD

where

2y„' = zi fD,(1 —BD,) 'f

and

tv = ——,
' Tr ln(1 —BD,). (12)

Clearly, iX„'» represents the sum of all connected
eikonal graphs containing a pair of NVM lines with
one-virtual-pion exchange ("f lines" ), and arbi-
trary numbers of NVM lines with two-pion-virtual
exchanges ("Blines" ). Graphs with more than one

pair of f lines are disconnected, and cannot appear
in iX. Similarly, iXL, represents the sum of all
connected graphs involving B lines only. That term
of (12) involving a single B line represents a radia-
tive correction to iX„and shall be omitted.

Both (11) and (12) are given in terms of quadra-
tures over the unknown function D,(x, y; $), which is
the solution of the integral equation

D,(x, y; $) =D,(x y)+ $ D,(x- u-)B(u, v)D, (v, y,' $)d ud v,
namely,

XA»= 22 f(u)D. (u, v; 1)f(v)d'ud'v,

and
1

2Xc&
=

2 ddt B(u, v)D, (v —u')B(u', v')D, (v', u; t) d'u

(14)

(15)

Explicit symmetry of B(u v) under the exchange of 1ts t 0 variables is required, in order to generate prop

erly both ladder and crossed graphs [corresponding to repeated use of pig. 5, or the iteration of (13)],

A.
B(u, v) = —— A,(u- v)f5([z, —u]&+&)5([z2 —v]~ &)Ao(m~ u —z, )}K~(m~ v —z2 I) + (u —v)] . (16}

With (16), one is then instructed to compute (13), order by order if necessary, and insert the results into

(14) and (15).
A vast simplification of this analysis is obtained upon taking the limit of very large NVM mass be@veen

pion emissions on any B line, A,(u- v) —d'i(u- v)/m', and
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2

B(u, v)--2 5(u- v)5([z~ —u](+))5([z2 —u]( ))Ko(m(u- z, ()KO(m)u —z, )) .
rm

(1V)

This approximation, which replaces Fig. 5 by Fig. 6, requires some elucidation, because of the singular
functions 5(')(5) which subsequently appear. Before the limit leading to (17) is taken, the eikonal limits
(s- ~, t/s- 0) generate the logarithmically divergent s dependence of (7), with all transverse-momentum
integrals finite. Upon making the replacement (1V), and continuing the identification (7), certain pion lines
will be permitted to absorb arbitrarily large amounts of transverse momenta, and corresponding integrals
shall diverge quadratically. Physically, this may be viewed as the property of arbitrarily large NVM

masses to possess arbitrarily large transverse momenta, which may be transferred to the pions. Hence,
any i) ') (0) = (2w)

' jd'k may be rewritten as a pion transverse-momentum cutoff parameter, I(', and under-
stood to be proportional to, or limited by m', one expects the approximation to be physically sensible if 2
enters only in the ratio I( /m', which can then be considered a finite parameter. In the present calculation,
m '5(') (0) appears only as a multiplicative factor in i)„v, and not at all in i)(„'s~

With the replacement (1V), it is a straightforward matter to carry through iteration of (13), and the cor-
responding evaluation of (14) and (15). One finds

YG A YAG -1
i)(' =-, d'u d'v5(b-u- v)K, (mu)K '(mv) 1+i,Ko(mu)KO(mv)

77 m' (18)

and

i)(v=-i) )(0) d u d v5(b —u —v) ln 1+i 2 Ko(mu)KO(mv) —i 2 Ko(mu)KO(mv)
7t m' 7t m' (19)

using the notation of (8). In obtaining both (18) and

(19), it has been supposed that

YAG, K,(mu)KO(mv) & 1,wm'

in order to sum the series corresponding to each
iteration, after which this condition may be re-
laxed. For arbitrary, real values of Y, G, A, and
ng', both integrals are finite, complex numbers.
Limiting values of very large Y may be taken under
the integrals, and one obtains

ferred to the B line, double pion emissions, ig~.
One may speculate that inclusion of triple pion
emissions from any NVM line will tend to damp
away the contribution of (21), etc.; but the imme-
diate point to be emphasized is how, in this simple
passage from (18) to (20), the higher n-point con-
nected, crossed-channel amplitudes constructed
in this model of double pion emission qualitatively
change the ASB result. The assumption that )(/m

does not grow with s is crucial if (21) is to have an
energy dependence no stronger than linear in Y.

and

2

zg' -i d u d v5b —u —v»B 47T

XK,(mu)K, (m v) (20)

d u d v5(b —u —v)
.YAG

XK,(mu)K, (mv) . (21)

It is interesting to note that, in this limit, iy»B
becomes independent of A and Y, and that while
the ASB eikonal has been rendered finite, its orig-
inal linear Y dependence has been, in effect, trans-

III. AN EXACT SOLUTION

The simplifications found in the preceding section
suggest that a model in which the emission of ar-
bitrary numbers of pions in the manner of Fig.
V(a) is replaced by pion emission in the form of
Fig. 7(b) will be fully solvable in the sense that
all operations of (2) may be performed. This is
indeed the case.

It is convenient to first obtain a suitable repre-
sentation for the source dependence of Z, [II]. To

(aj (b)

FIG. 6. A pictorial representation of Fig. 5 in the
limit of large NVM mass between pion emissions.

FIG. 7. (a) A typical, fundamental graph of the exact
theory. (b) The pictorial representation of Fig. 7(a) in
the limit of large NVM mass between pion emissions.
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this end, the integral equation

c7[rrj=a.—mfa))i[))]

may be iterated once and rewritten in the form

chic

e(x, ) ) = ))(x)))(x- ) ) () +—.rr(x)

with a corresponding solution for 6„
A, (x, y ~n) =a,(x-y)

+m' A,(»- u)a, (u- y)d'u

(24)

where H satisfies the relation

a(x, y) =n(x)5(x- y) —~n(x) ~.(x- y)n(y)

a(x, y}—n(x)5(x- y) ——,n'(x)5(x- y)m'

g2
+ —,n(x)a(x, y)n(y) . (23)

The solution to (23) is immediate:

+ z'n(x) s, (x- u)a(u, v)a, (v-y)n(y) .

(22)

Equation (22) is exact. The transition from Fig.
7(a) to Fig. 7(b) is obtained by replacing, in (22),
every 4, by m 25 of appropriate argument,

](8 . A.x a( ''—exp -s'(—.D( )) .
8$ m

(25)

A parametrization of (24) convenient for subse-
quent manipulations has been introduced in (25).
These forms recall those' appearing in discussions
of nonpolynomial Lagrangians, and, indeed, the
present computation may be viewed as that rare
application of the quantum fluctuations of such La-
grangian theories which could conceivably have
some relation to experimental physics.

With (25) one may perform all the functional op-
erations of (2) exactly:

1,. 5 6
8 =e ~ )exp -pg D~ nt ' err 'err

+oo +oo 8
x ig'm'(p, p, ) dadb d'ua, (z, —ap, —u)i)„(u+bp, —z, ) d$e ' exp -—i$—,II(u}

&0 ~ Izr=o

The n = 0 contribution to this sum is unity, while the n = I term (together with any other self-linkages) cor-
responds to a radiative correction to an NVM line, and is dropped. Retaining only pion linkages between
different NVM lines, for n=2 one finds the amount

~ 2 4

d'u, d'u, K,'(mu, )K,'(m~u, —b~) dg, e ''& d(2e '~2—25(u, —u2) exp(-$, t', AY[i /2m ) .
8$, 8)2

(27}

To obtain (27), one proceeds from the result of the functional operations,

exp [i~,4 (~/ )'ma. ( u~)],

and observes that the eikonal limits permit this D, to depend only upon its transverse variable, u, —u, .
The replacement of B,(u, —u, ) by

(2)i) '(i ,')[Y)5'"(u-, —u, ),

carrying the same physical interpretation [6 '~(0) —.[i'.] as in Sec. II, together with the association

8 8 ~ ~ 1 ~ ~ 8 8
exp[-u(, (,5(u, -u, )j-—,5(u, -u, ) exp(-o. ],],[~'), (2S)

then leads to (27), or to

(2S)

where
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OQ 00 n

s„(a)= dk, ' a~„e ""* +'"' - exp ——a r, ~, ~&)
0 0 ~(1 ~kff j&j=l

(30)

All the Y dependence of this special limiting form of interaction between a pair of extremely massive
NVM s (and of finite ratio a'/m') is contained in the n = (A/m')(x'/m') Y variable of (30).

One may anticipate the form of I,(o.) in the limit Y ~, by a comparison with conventional derivations of
field-theoretic Regge models. There, ' one isolates nested ladder graphs of the source of leading-logarith-
mic contributions, and finds in order g'A. ' a contribution proportional to (1/m!)I', with the 1/mi arising
because of ordered emission of pion rapidities along either NVM line. Summing over all m(~1) pions pro-
duces the schematic form -exp(X'Yf- I-(s/s, )~ . In the present computation, one again has Y leading-
logarithmic dependence; but because the pions are emitted from a single configuration-space point along
the NVM line, the relative ordering of rapidities is absent, and hence the I/mt factor is missing. One then
expects the schematic form

Q (X Y) =X Y(1 —X Y)
fS =I

and the limit Y-~ will produce a result independent of s. Thus the sum over those graphs which generate
the usual Regge amplitude is already independent of energy, by itself producing the simplest sort of non-
shrinking diffraction scattering. This may be viewed as an example of (vertical) cancellation, distinct from
from the (horizontal) examples of the previous section.

It is a simple matter to evaluate I„(a) in the limit n -~, a procedure simplified by the repeated use of
integration by parts,

' d(e j~—$.=i d(e '
$ — O

1„(o.) I „-(n- 1)(-)"-', (3

a result independent of A and Y (and s'/m') as I'- ~. The quantity 1„(o.) appears in the nth term of (26),

for the appropriate (($) of this problem. For large a. , it is only the g(0) dependence in all but one vari-
able which yields the leading contributions [first corrections are O(n Inn)]; there are n —1 such factors,
and one obtains

d'uK, "(mu)'K, "(m ju - b ~) —, 1„(a),
~ '

(32)

using the previous notation and repeated use af the technique of (28). With (31), as Y-~ each term is in-
dependent of Y, and may be summed to yield

e'" = e'"' 1 —p——m' d'u exp i pK,-(m—u)KO(m~u b() —1— (33)
ap p 7T p= m2/K2

as the complete, energy-independent expression for the eikonal. The "cancellations" of (33) are only those
due to the exponential rearrangement of energy-independent terms, with (vertical) cancellation of all en-
ergy dependence occurring at the earlier stage of (31). From this point of view, the complete model is
not as interesting as the examples of Sec. II; however, assuming the validity of the interchange of g„",
and Y-~ limits, within the context of the model it. is an exact result.

IV. SUMMARY

The special, limiting model described above i,s.
certainly too simple to. stand a close comparison
with the most recent pp experiments (e.g. , shrink-
age exists), although the feature of constant o-r is
exhibited. The eikonal of this field-theoretic mod-
el becomes calculable when the limit of large, in-
ternal NVM mass is taken, and one finds strong,
explicit cancellations from the Regge or Begge-
eikonal picture. These cancellations are not as

strong as the approximate ones of Ref. 5, but act
in the same direction, reducing o~ from the
Froissart bound.
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The structure functions for the annihilation process e+ +e P +X are calculated in the
neutral-vector-gluon model in the Bjorken limit. Bjorken scaling is broken by the presence
of lnq2 factors in a way which is closely related to the situation in inelastic scattering. All
calculations are carried out in a leading-logarithm approximation. In particular there is a
multiplicity n In q and a close interplay between the damping of the elastic form factor and

the excitation of inelastic channels. The annihilation structure functions are shown to be re-
lated to their inelastic scattering counterparts by analytic continuation and by a physical-
region reciprocal relation. The reciprocal relation is observed to have a number of inter-
esting consequences if it applies, in some approximate sense, to pions, protons, etc. In
addition to the leading-logarithm calculations contained in this paper the discussions given
here of discontinuities of the virtual Compton amplitude and the longitudinal-impact-param-
eter representation are of general interest and applicability.

I. INTRODUCTION

This paper is one in a series of papers' ' in
which we study the neutral-vector-gluon model
[massive quantum electrodynamics (QED}] in the
Bjorken scaling' limit. The major topic of this

paper is the annihilation channel' ' e +e' -p+X,
and the relation of the annihilation structure func-
tions to their counterparts in inelastic scattering,
e - +p- e +X'. These relations may transcend the
particular field theory studied here.

Here, as in all renormalizable~' (in contrast to


