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A technique introduced by Symanzik is used to deiive a series of equations obeyed order
by order in perturbation theory by the structure functions S~ and l W2 entering the cross
section for inelastic electron scattering. These equations relate the q, p, and coupling-
constant dependence of W~ and v W2 in a manner reminiscent of the renormalization-group
results of Gell-Mann and Lour. The equations are used to compute the leading logarithmic
contribution to v W2 in a theory of fermions coupled to pseudoscalar particles and a theory
of fermions coupled to vector particles.

I. INTRODUCTION

The simple scaling behavior ' of the structure functions W, and vW, (Ref. 2) observed for q and rnv z 2
BeV' has caused considerable interest in the large q' and v dependence of the matrix element

«-"«;(««(«(«)«(o)(«, «)= «„„-"')w, («, ~)+ '. (««-«', ") (« -«",') w(«*, ~),
8 = kll2 $2

whe~e
I p, s& is a single nucleon state with four-momentum p and z component of spin s«Z„{x) is the usual

electromagnetic current. ~ In this paper we investigate the behavior of W, and vW, for large q' and fixed
(«) = 2m v/(r' as computed to arbitrary order in the perturbation expansion of a renormalizable field theory.

As is well known, ' the large q' and v behavior of the matrix element (1) can be determined from the sin-
gularity of the product J'„(x)J;(0) on the light cone, x'=0. We begin with Wilson's operator expansion"
for the short-distance limit of the product J'g —,

' (x+ y))J„(-,' (-x+ y)):
uff
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(2)

where O((I... (y) are finite local operators, trace-
less and symmetric with respect to each pair of
Lorentz indices. ' E„"'(x ) and E„"'(x2)are e-number
functions given by a perturbation expansion of the
form

l+1
E"'(x')=Q g 5")(1 r)g" ln"(x')

E")(x') = Q Q (g„"(f«r)g2' ln" (x')
l=o v=0

where g is the coupling constant. The quantities
ft(v"(Ax, y) and11'„")(Ax, y) are comyosed of terms
which either approach zero as A,

~" for A. approach-
ing zero or vanish when x' = 0.9'0 The structure
functions 8', and vW, can be directly determined
from the coefficients E„"'(x'), E'„"(x'), 0 ~ n & ~,
by substituting the expansion (2) into E(1. (1) and
carrying out the indicated Fourier transfdrma-
tion.

Using a techni(lue introduced by Symanzik, "we
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derive a set of coupled, first-order, partial dif-
ferential equations satisfied by the functions
E'„"(x'), 1 &i ~ u„, and by the functions F„"'(x2),
1 &i & u„. The derivation is based on the Callan-
Symanzik" equations obeyed by Green's functions
containing the product J„(x)J,(0). The equations
obtained are of the sort predicted in other situa-
tions by renormalization group "' arguments and
connect the x' and coupling-constant dependence of
F„"'(x'), E'„"(x'). The equations do not completely
determine the functions E'„"(x'), F„"'(x'), but are
instead constraints which must be obeyed to arbi-
trary order in perturbation theory. When combined
with explicit calculations in lowest-order pertur-
bation theory, the equations directly determine the
coefficients 7„")(I,I+I), h„")(I,I+1) of the leading
logarithm in x' appearing in every order of per-
turbation theory.

These equations obeyed by the coefficients E'„"(x')
and F„"'(x') in the Wilson expansion are derived
for two specific field theories in Sec. II. We begin
the section by reviewing the connection between
the light-cone behavior of the product J„(x)J,(0),
specified by the expansion (2), and the large q2 and
v limit of the structure functions W, and W, . Then,
in Sec. IIB, a theory of neutral pseudoscalar par-
ticles interacting with charged spin=, particles is
considered and the equations for the coefficients
E'„"(x') and F„"'(x') derived Next. , in Sec. IIC,
the corresponding equations valid for a theory of
neutral vector particles interacting with charged
spin--,' particles are obtained. In both cases there
are two distinct operators 0"'... , i =1, 2, which

1 n

appear for each n, and the resulting equations are
two coupled, first-order, partial differential
equations. In Sec. III these equations are com-
bined with lowest-order perturbation-theory cal-
culations to obtain E'„"(x') in the leading logarith-
mic approximation for each of these theories. The
results are identical to those previously obtained
from a detailed analysis of Feynman amplitudes to
all orders in perturbation theory by Gribov and
Lipatov. " tn Sec. IV we discuss the general solu-
tion to these equations. First, two sets of approxi-
mate equations are considered which are obeyed
by amplitudes in the pseudoscalar theory containing

no self-energy or vertex corrections. One set is
valid for all such amplitudes, while the other ap-
plies only to those amplitudes which do not contain
a two-pseudoscalar intermediate state. Both sets
of equations imply a simple power dependence for
E(()(x2)

E(( ) (x2 ) ()(,. I (x2) 2 + ~i, 2 (x2 ))s
(I) . (2)

for small x', where the power v'„~' is a nontrivial
function of n and the v„"are constants. Finally,
the general solution to our equations is obtained
for the vector theory, determining the two func-
tions of two variables E'„"(x',g), i =1, 2, in terms
of seven functions of a single variable. The pos-
sibility that there exists a root g„of the Gell-
Mann-Low eigenvalue condition" is investigated
and shown to determine somewhat more explicitly
the small-x' behavior of this solution.

II. DERIVATION OF EQUATIONS FOR
E„(x2}F fx2)

In this section we derive a set of first-order
partial differential equations obeyed by the func-
tions E„')(x2), 1 ~i ~ u„, and by the functions
F("(x'), 1 ~i ~ u„, to arbitrary order in perturba-
tion theory The .makeup of the operators 6„"...„1
appearing in the expansion (2) and the precise form
of the equations to be derived depend, of course,
on the particular field theory considered. We will
deal explicitly with two distinct theories. The
first contains a charged spinor field P(x) coupled
bilinearly to a neutral pseudoscalar field (t)(x)
through the interaction Lagrangian Zi(x) = ig(1)(x)

xy, )))(x)(t)(x). In the second theory, the charged
spinor field couples to a vector field V„, and Z, (x)
=ig y(x)y„y(x) V„(x).

A. Relation Between V, , vW2 andE„'(x ), F „' {x )

Before deriving these equations for d„" and F„',
it is useful to recall the connection between S;,
))W2 and the coefficients d„" and F(„"in the Wilson
expansion (2). Consider the invariant amplitudes
T~ and T, entering the spin-averaged forward
Compton scattering amplitude

f s "'d's(P, l)'(d ( )s(d0)s)(P, s)
g= %1/2

2
5 — Ts+ 2 PP' +5 q -P q ' q -P q P q T2 ~ 5

The amplitudes T~ and T, are functions of q' and (d, related to W, and vS; by
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Im -T, +2 Pe'
7Tm

4 Pa'

(6a)

(6b)

N

T,(q', (o) = Q((o)"g d„"(q')c'„",, +r„(q', (u),
n=O i=1

(Va)

for v & 1. If the Wilson expansion (2) is used to
evaluate the left-hand side of Eq. (5) and the
Fourier transform performed, we find that for
q large"

branch points at &o =+I, and used in Eq. (6) to com-
pute W, and vW, for large q' and fixed a» 1. The
familiar connection between the large-q, fixed-+
behavior of T~ or T, and the x' =0 singularity of
the coefficients d„'~(g'), E~„"(x') can be seen from
Eq. (8).

The relationship between the coefficients E„"(q'),
P „"(q') and the asymptotic behavior of the structure
functions W, and vW2 implied by Eqs. (6) and (10)
can be neatly inverted, Using Cauchy's theorem
Eq. (10a) can be written

N t4n

T (q' (u) = Q (&o)" QS' "(q')c "+r' (q' ~)

where

en
g(n(qm) (g)n+2 d 4& &-la 'xZ(i)(&2 +i&)n 8 s (qR)n n

(Vb)
Qc(e E(n(g) — d+ +-n 1TAF(-q2 )

1

i C

where c is a contour circling the origin in a coun-
terclockwise direction. Since T"," has branch points
in e at +1 and is even in +, we can open up the
contour to obtain

(Sa)

en y (i)( 2 ~

F(fw(g) (g)n+1 d4 -fq'x n % )

(6b)

00 "n

T, (q', (o) = Q ((o)" QE'„"(q')c„",', ,
n=O i=0

Oo 8

T""(q' ~) = Q(~)"QF'"(q')c'"

(10a)

(10b}
n=O i=O

These asymptotic forms for T~ and T, can be con-
tinued into the entire v plane with the exception of

2 (p, sld", ...„ Ip, s) =c„'p„.. .p (i)"

+ (terms containing. 5„).ci ix)

(9)
For large q and small &o the remainder terms
r„(q, +), r„'(q, m) a.re of order &o"'~. Note that
only the term proportional to p„...p„ in Eq. (9)
yields leading terms in the Wilson expansion (2) on

the light cone. The matrix element (9) of O~'~. . .„
is proportional to the single symmetric traceless
tensor that can be formed from the four-vector p„.
All terms in this tensor, other than the p CX1 '' ' 0(

term, " contain factors of p' =-m' and therefore
give contributions to T, and T, smaller by a factor
of m /q QP.

The analyticity of T~ and T, in v for fixed q' im-
plies that to any finite order in perturbation theory
the limit N-~ of the sums in Eq. (7) defines two
analytic functions of &o near &u =0 (Ref. 17):

pc&» /&~ (qa) =— 4)
" ~d(glmTA" (q2 (g) (12)

2

i 1

or using Eq. (6a)

pc~„'+ E~"(q') = (u
" 'vW,""(q', (o) d(o

1

1
(I/&u)"vW, (q', (u)d(1/ur);

0

likewise

gc(ng(o(qa) &-n-il L WAv(qa
1

-mW,""(q', u&)] d&u .

(13a)

(13b)

Equation (13) interprets the Callan-Gross and

Cornwall-Norton sum rule" in the language of the
Wilson expansion. It also identifies Q, c~,"P„"(q',+)
as the Mellin transform of vW, "(q', v) with respect
to the variable I/v. This transformation can be
inverted, giving

. I

vW,""(q', a) =- —' dn(o"" Pc'„",,Z'„"(q'},
7T

(14a)

and similarly
6+i~

—', &uvW,
" —mW,""= —

2
dn aF Q c~'~E~ "(q'),

7T

(14b)

for sufficiently large, real positive 5.

B. Pseudoscalar Theory

Let us now consider the pseudoscalar case, specified by the Lagrangian

2=-g(y&8„+m)p- —', B„ps„p—2 p'p +iggy, pp+ —,hp +(counter terms}; (Is}
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m and p, are the physical masses of the spin--,' and the pseudoscalar particles, while g and h are renor-
malized coupling constants. The renormalization procedure is specified in Appendix A.

The starting point of our derivation is the Callan-Symanzik equations" for the matrix elements

I"„"„'(p,«) =- e"""d'« 'X
V. O~(01 T(k.(X)d„(x)&.(0)45(z))10)~ (16a)

r~~((d, )=ife"" "'d'*d e((&)r(d(e)d, (z)d. (d)d( )&(». , (16b)

where the subscript A means that the propagators corresponding to external lines have been removed. The
Callan-Symanzik equations obeyed by these matrix elements and derived in Appendix A are

D, i „"„)(«,P) =n, l „"„'(«,P),
for i =1,2. The differential operator D, is given by

8 2 8 8 I 8
D] =m 2 + p 2 + p —+p' ——2y],8m 8 p, 8g 8$

while"

(17)

(18)

dr e(. e) f,e"='-. "d zd -&(&'I)z('D(r(d,.(&)d(z)d.(»,edz(z)&l(&)„, (19a)

«'„",(x, p)= e"'' ' 'dzdX( AT(4(y)~, (x)~.(0)uA(z))10)~ (19b)

The operator u, in the notation of Zimmerman, "is

u=z d'x m6, X xy x +r(L'6,m y x x (20)

where the symbol Ã indicates the inclusion of subtraction terms, chosen in a manner specified in Appendix

A, so that all matrix elements of u are finite. The dimensionless constants P, P', y] p2 5] 52 are functions
of g, Ii and m/p. and can be computed to arbitrary order in perturbation theory. The Callan-Symanzik Eqs.
(17) are exact, but not very useful as they stand since they relate the behavior of the quantities of interest,
(16), to that of two new unknown functions (19). However, if we consider the small x„ limit of Eq. (17) and
substitute the Wilson expansion (2) into both the right- and left-hand sides, then we find that the small x„
dependence of both sides is determined by the same functions E~')(x ) and Ii„' (x'). "'

The resulting equations are
oo g 2n

D g E(i) ( )I«i2(X&.dp)2n, -2 g g E (d')
(X2)(2(,j (X .p)2n-2 (21)

-n=l j=l n=l j = l

for i =1, 2 and P' =0. The constants a„" and 5„'j are related to the relevant matrix elements of O~' ... by
n

e' ' " d yd z ~, 0 T g, y 0„',...~„zz ) 0 „=6„"p~~ ~ ~ p„ i n+ terms containing g (22a, )

."""'d'y d" «IT(q(y)0„",! .„q(z))io)„=f„"p„, .p (i)"+(terms containing 6„.„), (22b)

e' ' ' ' d. yd z q, 0 T g y 0„',...„u zz ) 0 ~=a'„'p . ~ ~ p i n+ terms containing 6 (22c)

(22d)

for p =0 and 1 & n; &3, 1 &i &n, and n even. Bose symmetry and charge-conjugation invariance imply that
the left-hand sides of these equations vanish for odd n. In Eq. (22) we use p'=0, so that the quantities a'„'i
and I&„'i depend only on m2/p, 2, g, Ii. Equating the coefficients of equal powers of (x p)", we obtain a series of
equations diagonal in the index n,

(x ) I&'d =QE i («2)(2'&
j (28)
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2 &n &~, i = I, . . . , u„, for even n. Equations (21) and (23) are also obeyed by F~~~(x2) and 0 &n &~. These
equations can be Fourier-transformed, yielding identical equations for the quantities E'„'~(q2)

QE(1) (~2)b )J —gE(J) (q2)sl, j (24)

which are also obeyed by the functions F~„'~(q2).

Let us now determine explicitly the operators which appear in the Wilson expansion (2) for the particular
theory at hand. Because of the requirements of symmetry in the Lorentz indices and the 'absence of 5 .

'4 J
factors, there are only two Nth-rank tensor operators with the smallest dimension which can be formed»:

0„',. .. „(y) = ——[1+(-1)"] Q N [$(y)e„, s,y„e, , ~ ~ s„g(y)]+(terms containing 5,„),
/=1

„(y) = 2&[Q(y)& ~ 8 p(y)]+(terms containing 6 „),
(25a)

(25b)

b'„'~(g, h, m /p, ') =5;).
The equations obeyed by E„' (q2} for i = 1, 2, 2 &n
&~ [and F~„'~(q'), 2 = l, 2, 0 &n &~] then become

D E"' (e') = Z s"E"' (e')

(26)

(27)
j=1, 2

These two coupled first-order differential equa-
tions can be written as uncoupled second-order
equations

where the symbol N again indicates that sufficient
subtractions have been made so that the resulting
operator is finite. The subtractions will be chosen
so that

)"2 )= ef l"-''eed e' e'*0))

x &0IT(y. (y) Z„(x)Z„(0)y, (z))lo)~,

(31a)

)„„)),e)= —,'e'je' ""d *4'e
x (0[T(V (y) J'„(x)Z„(0)V (z)) ~0}„.

(3lb)

As is shown in Appendix A, these amplitudes obey
the Callan-Symanzik equation

(D g2 2) (D gl 1)E(1)(q2) a2 1E(1)(q2)

(28a)

(D sl, 1) (I) s2, 2)E(2)(q2) 1 2E(2)(q )

(28b)

a, F,",'(P, x) = ~ F'„'J(P, x),

for i = 1, 2, where

D = rn -+p. +P—— —2y y
8 2 8 8 2

8m 8 p, 8g

(32)

C. Massive Vector Theory

We now consider the theory of a vector field V„
of mass p, interacting with a spin- —, field of mass
m, specified by the Lagrangian

Z(x) = -$(y2S„+ m))1) ——4G„„G»+igV„+„g
——,

'
p. 'V„V„+(counter terms), (28)

where g is the renormalized coupling constant and

G„„(x)= S„V„(x)—e„V„(x).
In analogy" with Eq. (16) we define the amplitudes

(30)

These equations [(27) or (28)] are the desired
equations for the pseudoscalar theory. They are
the generalization of Symanzik's excepti)onal mo-
mentum equation to all the operators in the Wilson
expansion on the light cone. These equations will
be used in Sec. III to compute the leading logarith-
mic contribution to vW, and in Sec. IV to speculate
about the exact asymptotic behavior of 8', and vR', .

d F(l)(x P) sic'(4-2)d4 d4y Q) y
2

x &0l T(q.(y) Z„(x}Z„(0)sq,(z)) 10)„,
(34a)

b, F"(x,P)=-,' jt
e"" "d'zd'y

x &o I ~(V2(y) &„(x)&.( )024V(2)z) ~0)„
(34b)

for P=gy, and

u=& d x m5, N x x +p, 25 V&xV&x

(35)

8ubstituting the Wilson expansion (2) into Eq. (32}
and equating equal powers of x.p, we obtain an

equation identical in form to Eq. (23):

+1 /=1



3548 CHRIST, HASSLACHER, AND MUELLER

for i =1,2, n eveh, and 2 ~n&~. The constants
a„' (m'/p', g) and 5„' (m'/p', g) are defined by equa-
tions obtained from Eq. (22) by replacing p(y)p(z)
by 3 Vp (y) V~ (z) and multiplying the left-hand

sides of Eqs. (22c) and (22d) by y, '. The longitudi-
nal coefficients F~" also obey Eg. (36) for 0 ~ n& ~.

Just as in the pseudoscalar case there are two

types of operators that can contribute:

[1+(-1)"]QN[g(8„ig—V~ ) y~ ~ ~ ~ (8~ ig—V„)$]+(terms containing 6„), (37a)

] 5

n, ~ "n„=4 ( 1)„Z Z &IG&&8„,' ' ' ~ q '''6„,„8„GS~]+(terms containing 6 .„).
j=l 1=1

)wan

(37b)

The number of possible operators is limited to only
two, for a given n, by gauge invariance. Both the
operator J„(x)J„(0)and the first three terms of our
Lagrangian (29) are invariant under the transfor-
mation

V„(x)- V„(x) +gs„A(x),

g(x) —e"A'"'g(x) .
Although the mass term -2 p Vp Pp breaks this
gauge symmetry, the leading terms in Wilson's
expansion (2) are independent of p' and hence are
left unchanged by the transformation (36).

Thus only two series of functions E~'~(x') and
EP~(q') are needed to determine vW, in the la.rge
q' and v region. If we choose the subtractions
required to make the operators (37) finite in such
a way that

(39)

and transform to momentum space, then Eq. (36)
becomes

the ladder graphs in the pseudoscalar theory cal-
culated by Chang and Fishbane, "(8) the complete
leading logarithmic behavior in the pseudoscalar
theory, first computed by Gribov and Lipatov, "
and (C) the complete leading logarithmic behavior
in the vector theory, also computed by Gribov and
Lipatov. "

A. Chang-Fishbane Calculation

Chang and Fishbane consider the ladder graphs
of Fig. 1 in the leading logarithmic approximation.
In our notation this means that they keep all terms
in E„'(q')of the form (g')"(g'lnq')' withr =0. Since no
intermediate state containing only two pseudoscalar
particles appears in the Feynman diagrams of Fig.
1, the operator 0„'~ ... should be omitted from

ll

the Wilson expansion' ofZ„(x)J„(0); therefore, we
set EP~(q ) =0. Furthermore, there are no propa, -
gator or vertex corrections included in this set of
graphs, so P=P'=y, =y2=0. (In Chang and Fish-
bane's language we are taking only their outer
rainbow graphs. ) Thus, Eq. (27) becomes simply

D gC~i) (q&) — Q gt jE(~J) (g)
) =1,2

(40) m', , + y,', z'„o(q') =a„",,d„o(q').(
8 2 8

(41)

for i =1, 2, 2~ n& ~, an equation identical in form
to that found for the pseudoscalar theory. This
equation is also obeyed by the functions F„"(q'),
i = 1, 2, 0 ~ 'Pl & oC .

Since E„'(q') is a dimensionless function of q', mz,
and p', we may replace m 8/sm'+ p'8/8 p,

' by
-q 8/8q, so that Eq. (41) can be rewritten

III. PERTURBATION- THEORY CALCULATIONS

In this section we use the equations derived in
Sec. II to calculate the inelastic electroproduction
structure function vS; in a leading logarithmic
approximation. Various authors"" "have per-
formed such calculations by applying infinite-mo-
mentum methods directly to specific classes of
Feynman graphs. Such approaches require con-
siderable expertise in the art of extracting asymp-
totic behavior from Feynman amplitudes. We will
show how these 1eading logarithmic results emerge
rather trivially from Eqs. (27) and (40). Altogether
three specific examples will be considered: (A)

+ 0 ~ ~

FIG. 1. Ladder graphs representing the "outer rain-
bow" amplitudes considered in the Chang-Fishbane cal-
culation. The solid lines represent fermion propagators,
the dashed lines pseudoscalar propagators, and the wavy
lines virtual photons.



LIGH T -CONE BEHA VIOB OF PER TURBATION TH EOR Y 3549

q'
~ E'„"(q') = -a'„2E„"(q'),

whose solution is

E„"(q')= v„exp[-a„",21n(q')] = v„(q') "+2.

(42)

(43)

To obtain the leading logarithmic behavior of
E„'(q'), we need only compute the parameter a„",2
from Eq. (22c) to lowest order in g and determine
the integration constant v„ from the g' =0 Born
term. This calculation of the quantities a„" in-
volves the evaluation of a simple lowest-order
vertex correction and is carried out in Appendix
B, yielding

1,1
2 1

162' (n +2)(n+ 3)
'

for even n. Since to lowest order in g, the c„' of
Eq. (9) equals 1 and

64 ' 6''
gl, 1 1 a"= 1

16m' (n+2)(n+3)' "" 162' (n+3) '

~2
g22 1 2 2 2

n+2 4 2(»2)& n+2

(48)

Since in leading logarithmic approximation E„' (q')
depends only on g'In(q'), it is convenient to intro-
duce the variable

set h and therefore P' equal to zero. (In a regular-
ized theory with no Q» interaction term, Il is of
order g .) The quantities P, y„and y, can be
computed to lowest order in g from Eq. (A9} of
Appendix A, while in Appendix C the a„"are de-
termined and their connection with various graphs
indicated. The results are

vW2 = 5(1 —1/(d), (45)
$ = ——', in[1 —(5g2/16v2) ln(q')] .

The reader will note that

(49)

Eq. (13a) implies v„=1, so that in leading logarith-
mic approximation Bg 161T

(50)

d pg7AF ~ E (13

= (q')', (46)

when acting on a function of g alone. Using Eqs.
(48) and (50), we can rewrite Eq. (47) as

(
8 1 -(1) 1 -() 1 -(2). ($)=( 2)(„3) . (t')+(„3) . (t),

(51)

This is exactly the result of Chang and Fishbane
for the set of outer rainbow amplitudes. Thus, the
Mellin transform used so judiciously by Chang
and Fishbane and by Gribov and Lipatov is nothing
other than the index-continued Wilson expansion,
the continuation being analogous to the Sommer-
feld-Watson continuation of a partial-wave expan-
sion.

B. Gribov-Lipatov Calculation for the Pseudoscalar Theory

We will now find all the leading logarithmic
terms in E(')(q') for the y, theory. The basic equa-
tions for this calculation are given by Eq. (27),
which we write in full as

-q 2+P —+P' —-2y, E„(q )(
(1) 2

8$ Bg BPg,

which are equivalent to

82 5 1 8

() $2 2 (n+ 2)(n+ 3) s $

+1— 6 E(1) ( 0
(n+ 2)(n+ 3)

(52)
and

8 1 1.'"(t')=( + ) ~( 2 ( 2)( 3)
„'"($)~

(53)

Equation (52) implies that E(')(t') has the form

E(»(g) —( e"nK+ ~ienng (54)

where

5 1
4 2(n+ 2)(n+ 3)

gl, I E(1)(q2) +el, 2 E(2)(q2)

(47)

,+P +P' 2—y. E.—(q-)
8 8 8 -(2)

Bg Bg BPg

o2, 1 E(1)(q2) + s2, 2 E(2) (q2)

for even n ~ 0. Following Qribov and Lipatov we

3 1 2 4
4 2(n+2)(n+3) (n+2)(n+3)

5 1
4 2(n+2)(n+3)

3 1 2 4
4 2(n+ 2}(n+3) (n+ 2)(n+ 3)

-1/2

-1/2
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The integration constants C„and C„' are determined
from the known g~=0 limit given by the Born terms

(56a)

(56b)

which requires

8 8 20
—,—[3+/, (n+2)+P, (n+2)] —+

&

+ l W, (~+&)+4( ~ 2)1 —t.( '2)) &."(El=o,

(61).

C'=
n

I
Vn Vff

Vn V

I I
(n+ 2)(n+ 3) 2

1 1

(n+ 2)(n+3) 2

(57)

Etl 16+2 al, 2
S~ 3 gy(n+ 2) —g~(n+ 2) E

where

2
(j)= .(. 1),

A continuation of Eq. (54) to complex values of the
index n, when substituted in Eq. (14a), yields

2
p6+ c~

vw, (q', ~) = —— dn&u""
2'

8(j'+j +2)'
(j 1)j'(-j+1)'(j+2) '

g, (j) = -4Q —,1

(62)

C. Gribov-Lipatov Calculation for the Massive

Vector Theory

Finally we turn to the calculation of the leading
logarithms in vW, for the vector theory studied in
Sec. IIC. Since this calculation proceeds much as
in the pseudoscalar case, we will simply outline
the procedure for obtaining the result —identical
to that of Qribov and Lipatov. The quantities

P =2y2, y~, and y„determined in Appendix A, can
be computed in the Feynman gauge to lowest order
in g with the result

Similarly, the constants a„"are evaluated in Ap-
pendix C to order g':

a''= —~
8v' (n+2)(n+3) ~ i+2

3g' n'+ 5n+ 8
16v2 (n+ l)(n+ 2)(n+ 3) '

g' n'+ 5n+8
6w' (n+ 2)(n+ 3)(n+ 4) '

(60)

a' '=0.n+2

Introducing the variable

t' = --,' In[1 —(g '/12m') ln(q')],

we can rewrite Eq. (40) for E„"(q') as

&& (C„e'"'+C„'e""'), (58)

in exact agreement with Gribov and Lipatov for
the leading logarithmic behavior of the structure
function vW, for deep-inelastic scattering of elec-
trons off the. g field. The reader is referred to
the work of Gribov and Lipatov for a discussion of
the physical significance, if any, of this result.

in the notation of Qribov and Lipatov. These equa-
tions, when coupled with the requirement~ (56), can
be explicitly solved as in the preceding section
yielding the Qribov-Lipatov result.

IV. GENERAL SOLUTION

%Ye now consider the general solution to the Eqs.
(23) and (36) obeyed by the coefficients E~'l(x'),
F„' (x)' appearing in the Wilson expansion (2). We

first study the simplified equations which govern
the Chang-Fishbane calculation of Sec. IIIA in
which all self-energy corrections, vertex correc-
tions, and amplitudes containing a two-pseudosca-
lar intermediate state have been omitted. Next,
those amplitudes containing a two-pseudoscalar
intermediate state are included and the resulting
equations solved. In both cases the functions
E~'(q') show a power dependence on q', where the
exponent of q' depends explicitly on n. Thus, for
these examples the operators 0 '~. .. possess an

n-dependent anomalous dimension in the sense of
Wilson. ' Finally, the general solution of Eq. (40)
for the vector theory is found, determining
E„' (q', g) in terms of two unknown functions of a
single variable and the quantities P(g), y, (g), and

a„"(g). If we assume that p(g) has a zero at g=g„,
and that the quantities E„'l (q', g), y;(g), and a„"(g)
are regular at g=g„, then this solution also shows
power dependence in q', with the power depending
on n. Although in each of these three cases we
find or hypothesize solutions which display a power
behavior in q', we see no suggestion that these
powers should be identically zero for all n as is
required if the structure function vW, (q', &u) is to
be independent of q for large q .

A. Chang-Fishbane Amplitudes

We begin by examining the set of amplitudes
first studied by Chang and Fishbane. These ampli-
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tudes contain no self-energy corrections, no ver-
tex corrections, and no intermediate state com-
posed of only two pseudoscalar particles. As was
shown in Sec. IIIA, the resulting functions E„")(q')
have the form

The position-space function E„')(x') follows from
E(ls. (Sa), (23), and (63)":

E(1)(xa) n+ 2 ( n+ 2) (1 2)an+ 2
222@1 1 I'(n+(21 1+ 2)

E„'"(q')= v„x (q')-".,' ', (63)
Vn+ 2 (X2)an+ 3

la
la 1

~n+ 2
(65a)

where the constants vn and a„",,' can be computed in
perturbation theory:

where I'(2) is Euler's I" function. A similar argu-
ment yields the longitudinal coefficients F„")(x'),

v„= 1+O(g'),
(64)

F(1)(X2) n (X2)a n'
n (65b)

2
gill +0( 4)

16v'(n+ 2)(n+ 3)
If these expressions are substituted into 'the Wilson
expansion (2), we find

2 ~ 2
4 6» „,x„, an'' —1 V„—an' '+n ——

n=O

1 n(n —1)

—(x, x„,5„„,+x„x,5„„)[(a„' ' —1)V„+ 2 n p„']

+ (gauge-dependent terms), (66)

for V, = V, =O.
Thus, if we consider only amplitudes containing no self-energy or vertex corrections and no two-pseudo-

scalar intermediate states, the operators 0„' ... possess an anomalous dimension d„,

d =2+n+2a'' (67)

in the sense of Wilson. Here d„ is just the dimension (in units of mass) of the current x current product on
the left-hand side of E(I. (66), minus the dimension of the singular coefficient of the operator 0„,...„„on
the right-hand side Of that equation. The dimension dn clearly depends on n in a rather complicated way
since to order g'

d =2+n— (68)

B. Amplitudes with Self-Energy and Vertex Corrections Omitted

Next we study all the amplitudes of the pseudoscalar theory which do not contain self-energy or vertex
corrections. The resulting functions E(')(q') obey Eq. (27) with p=y, =y2=0. Thus,

2 g(1) g12 1 E(1)+ gl 2 2E(2)
2 n n+2 n n+2 n

2 g(2) . g22 j.g(l)+ F2 2 g(2)
2 n n+2 n n+2 n

(69)

The general solution to this set of coupled first-order differential equations is

E(1)(q2) v(1) x (q2)-an+ 2+ v(2) x (q2)-a
(1) (2)

E(2)(q2) =v(1) (v(1) 121, 1) (q2) P +2+nv(2) (v(2) gl, 1) (q2)-an+ 2
( j.) „(2)

where the v„' are integration constants and

(70)

&( ~ ) 1(sl, 1+s2, 2)+ (2i 3)[1(sl, 1 s2 2)2+al 2s2 1]1/2 (71)

for i = 1, 2. As in the previous case, we can obtain the positio'n-space functions E„(x') and F(')(x') and
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substitute them into the Wilson expansion (2), with the result

J~ J„—4 6x x v j —1 V„' —a ''+n ——V''
j= j, , p. n=0

(, ) ()) 1 n(n —1),(, )+ 5~ 5„~x v„~ V„-—. (.)4 v„j

v(j)

+ (gauge-dependent terms). (72)

Here the constants V('), V„'(' can be obtained from the v(', v„'('by using Eq. (8), where v„'(') is the inte-
gration constant multiplying (q') '~ in the expression for E„')(q ) analogous to Eq. (70). Equation (72) im-
plies that the operator

(j)
(x) v„-a„' (2)
CX ~ ~ G I 2 Q ~ ~ 0a ' tf

n

has anomalous dimension

d„' =n+2+2v„j),

for j= 1, 2.

C. General Solution

(74)

Finally, we solve the exact equations (40) obeyed by the functions E(')(q') in the vector theory. Equation
(40) can be rewritten as

8 8
q2 +P +~~1)(g) E(1)(q2 g) B(2)(g)E(2)(q2 g)

(75)
8 9

q2 ~P +@(2)(g) E(2)(q2 g) B(1)(g)E(1)( 2 g)

where A„') and B„' are linear combinations of y; and a'„' . Now define the new independent variables

()= d+I
P g P(gl)

2(q, g) =»(q'/q. )+p(g),

(76a)

(76b)

for some fixed values g„q,'. I.et G(p) be the inverse of the function p(g) defined by Eq. (V6a). In terms
of these new variables Eq. (75) becomes

g( 1)(G(p)) E( 1) B(2)(G(p))E( 2)

(77)

+ g(»(G (p)) E( 2) —B(1)(Q(p))E(»

where the functions Z„"(q,'exp(z —p), G(p)) are to be treated as functions of z and p. This set of two first-
order coupled differential equations in the single variable p has a general solution of the form

Z„'"(q', g) = v„'"(ln(q'/q, ')+ p(g))1.„'"(p(g))+v„"'(In(q'/q, ')+ p(g))I „'"(p(g)),

B(»( '
) = lI ( (q /qll )+P(g)) L(»( ( ))+g(»(g)1 (»{p(g))ll l B(2)(g) dp

ll ll ll

.'"( (q'/q. ')+P(g)) (2) (,) (2)
)B( )(g)2dp

(V8)
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where n„' (s) and v„' (s) are integration "constants" which can depend on s = ln(q'/q, ') +p(g), while g~'~(p)
and l.„' (p) are the two independent solutions of the second-order differential equation

d
+&.'"(G(p)) Z&»(G,, ) &

+&.'"(G(p)) L". (p)-&.'"(G(p))L„"'(p)=0.

Thus, the origlllal equations (40} allow the two
functions E„' (q', g) which depend on two variables
to be determined in terms of the two unknown func-
tions v„" (z) of a single variable.

Now let us speculate about a possible large-q2
behavior of the solutions E„'"(q',g) given by Eq.
(V8). Since the unknown functions 6„" (z) appearing
in Eq. (VB) depend only on the sum of ln(q'/q, ') and

p(g), the large-q' behavior and the large-p behav-
ior of the functions E~' (q', G(p)) are directly re-
lated once the large-p behavior of A~„'~(G(p)),

E„"(G(p)),and L„"(p) is known. In fact, carrying
out the algebraic steps outlined in Appendix D, we
find

E.'"(q', Z) = 2 ~!'(In(q'/q. ')+ p(Z), g)
j=lg 2

&«."'(q.', G(in(q'/q. ') +p(g)) ),
(80)

where the quantities w„"(z,g), defined in Appendix
D, are rational functions of A~„~, B~„~, and L~„~.

Thus the large-p behavior of E~„'~(q,', G(p)) deter-
mines, through Eq. (80), the large-q dependence
of E„'~(q', g). Following Gell-Mann and Low, we
consider the possibility that P(g) has a root, g„,
so that

lim p(g) =~.

If we assume that the quantities E'„'~(q,', g) are
well defined and finite at the point g=g„, then Eq.
(V8) determines the large-q' behavior of E~„'~(q', g)
in terms of 'the functions p(g)q A„(g}q and B„(g)
which appear in our equation.

A particularly simple asymptotic q2 behavior of

E~„'~(q') results if we assume that g„ is a simple
root of P(g) and that A'„'~(g) and B~„'~(g) are regu-
lar at g„. As is shown in Appendix D, these as-
sumptions when combined with Eqs. (V9) and (80)
imply a simple power behavior for E~„'~(q')

V. CONCLUSIONS

Using a technique of Symanzik and the Callan-
Symanzik equations, we obtain a series of equations
obeyed to arbitrary order in perturbation theory
by all the c-number coefficients of the operators
appearing in the light-cone expansion of Z„(x)I„(0).
These equations are used to determine the leading
logarithmic behavior of v%2 for two specific field
theories, giving results in agreement with pre-
vious, more laborious calculations. For simplified
classes of amplitudes in which no coupling-con-
stant renormalization is required, the equations
predict a power-law behavior of the coefficients
E „'(x') and a corresponding anomalous dimension
d„=2+n+ 2v„ for linear combinations of the opera-
tors O~„'~...~ appearing in the Wilson expansion.
In general, the added quantity v„depends in a non-
trivial fashion on n. Since the same operators
0 ',~... „enter both the transverse and longitudinal
terms in the Wilson expansion, the functions
E~'~(~') and E~'~(x') both obey the same set of equa-
tions. Thus, in this formalism only the presence
of different integration constants distinguishes the
small-x2 behavior of the transverse and longitudi-
nal components of the product Z„(x}J'„(0). Finally,
these equations allow us to speculate about the
large-q' and large-v behavior of W, and W„ follow-
ing the path previously considered by Qell-Mann
and Low, Wilson, ' and Symanzik. "

APPENDIX A

In this appendix we provide a derivation" 2' of the Callan-Symanzik equations used in Sec. II. I.et us
begin by considering the pseudoscalar theory specified by the Lagrangian (13). The complete Lagrangian,
including counterterms, is

&=-0('Ypsp +m)4- esp 4~@ 4 ~20 0 +
t 0 +&gkklg' @+Zskk a~p Zsk

—(Z, —I)y(y„s„+ )g m— -', (Z, —I){s„ys„y+ yp') f{+Z,—I)gpt} y,g+(Z, —1)4 (A 1)

In order to specify the subtraction procedure represented by the above counterterms, we consider the
propagators S(p, m. , p), a{k',m, p, ), and the amputated vertex functions I'{p„p,), G(k„k„k,) defined by



3554 CHRIST, HASSLACHER, AND MUELLER

S(/, m, p) ~f e"'*d'x(OIT(g(0%(x't)~0),

A(k', m, p, ) =i e""d4x(0~ T(y(0) y(x)) ~
0),

r'(p„p„m, p) =-z e" ~ "'2 "~d'xd'y(0~T($(y)4(0)g(x))~0)~,

~f, ~" *-"*'~ d xd~7d z(0~ T(p(&)$(3) p(&)g(0))lo)„.

The subtraction constants Z„Z~, Z„Z~, 6p. ', and Sn' are chosen so that the following conditions are
satisfied:

S-'(p, m, ~) =0, —S-'(p')=-1 atp=m,

A '(k', m, y) =0, k, A '(k') =1 at k'=-p, ',

r'(p„p„m, p) =iy,g at p', =P, =m, (p, + p,)'=-p',
Cl(k„k„k„m, p, ) =k at k, '= k, '= k,'=-p',
(k, +k, )' = (k, + k, )' = (k, + k, )' = ——,

'
p, '.

(A3)

Having made this choice of subtraction cons'tants we now calculate order by order in perturbation theory
each Green's function r(p„. . . , p,„,k„.. . , k~) for

r(pl& ' ' ' Iip2n 9 kls ' ' ' Il kp)

P
d'x, e' ''"' g d'y, e"&''&(O~T(g(x, ) ~ ~ ~ g(x„)g(x„„) f(x..)4(y ) "4(y,))10),

i =1 i =1

(A4)

as a function of g, h, m, and p, .
In order to derive the Callan-Symanzik equations we consider a second procedure for computing the

Green's functions of this theory in which the subtractions are carried out at arbitrary points A., and A2. %'e

rewrite the Lagrangian 2 in terms of fields p~, g~ and coupling constants g~, k~ normalized at these new

points:

& = —4~(y„s„™)4~—-'s„d,s„4,—'p'0„'+4-t 4,
~'+ig~4, 4~y, 4~ —5mZ, ~4,4, —-'~ p. 'Z

-(Z2. ~-1)&~(ypp+m)4. —l(Z. , K-I)(Spe Spex+4'0 ')+i(Z. X I)g e,kr-a"Ik+(Z. ,. I)~~, 4—:. (A5)

The subtraction constants Z, ~, Z, ~, Z, z, Z~ ~, Sn, and 5p, are so chosen that the functions S~, b, )„F~',
and Cl~ defined from Eq. (A2) by replacing the fields g, p by g ~, P„satisfy the following normalization con-
ditions:

S,-'(p', m, p) =0 atp=m, —S,-'(p', Z„Z,)=-1 at/=&„8

a~-'(k', m, p. ) =0 at k'=-p', 8 , A, -'(k', ~„X,) = 1 at k' = —~,', (A6b)

r', (p„p„x„x,) =iy, g, at p', =p, =x„(p,+p, )'=-z, ',
~(k„k„k„A.„X,) =k~ at k, ' = k,' = k, ' = -g, ', (k, + k,)' = (k, + k, )' = (k, + k, )' =

(A6c)

(A6d)

(A7)

The Callan-Symanzik equations can be obtained by differentiating Eq. (AV) with respect to m and p and
then setting A.,=m, A., = p. ,

The Lagrangians (Al) and (A5) are equal, the quantities g„, k~ being functions of g, k, m, p, , A» X2. The
Green's functions r~(p„. . . , p2„, k„.. . , kz) computed by replacing the fields p, p by g~, g~ in Eq. (A4) are
proportional to the original I"(p„.. . , p,„,k„.. . , k~),

r(P„.. . , P,„,k„.. . , k, ) = z, ," z, ,«2r, (P„.. . , P,„,k„.. . , k, ) .
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Dl'= s(», , &)+ 2(», ,&)+(Dg&) +(»d „+m ~ +VP 8 2 8

8Pg& 8 PPl 8p, X, =m. X. =p (A8)

8 2 8D=fg g+p,ax 9p,

8
ss p+P, 2 Fyq

9??l 9 p,

all evaluated at Xi =m, Xa = p, ; (1) set n = 1, p = 0 or
n = 0, p = 2; and (c) insert Z„(x) J,(0) into the tim e-
ordered product defining l" and Fz. We need only
show that the amplitude ~I" can be obtained by in-
serting the mass operator u of E(l. (20) into the
time-ordered product (A4) defining I'. Since only
the normalization conditions for S},and Az involve
the masses m and p. , the operation m' 8/Bm'
+ p~B/8 p' when applied to the amplitude I'), yields
a series of terms, each obtained from I"), by (a)
replacing a spinor propagator S),(P) by

(AQb)

&i((() ~'-q +V'
q )&i '0() &i()()

(A10a)

or (1) replacing a pseudoscalar propagator b, ~(k'}
by

I

-A,(P) m', + lL', A, -'(k') A, (k&) .
9p?l 9p,

(Alob)

When computed in perturbation theory from the
Lagrangian (A5), the Green's function I'), is deter-
mined as a function of g„, h~, m, p, , A.„A; the last
two partial derivatives in E(l. (A8) of this function
I')„8/Bm' and 8/By, ', are to be performed with
g„and h~ held fixed. This can be recognized as
just the Callan-Symanzik Eq. (18), if we (a) identify

1
Y2 33+3

(Aoa}

It is not difficult to see that V,(k') and

( 2+V 2 ~~
8 2 8

{A12)

obey Dyson integral equations with the same
kernel. Since the normalization condition for
(8/Bk')A~ '(k') in E(l. (A6b) does not involve m or
p. , Z, }, depends on g}, and h}„but not on m or p, .
Thus, the Dyson equations obeyed by both quanti-
ties contain only a constant inhomogeneous term.
Therefore, the two functions of 0' must be pro-
portional. If we let

8 2 9

X~= m; k2=jl;02=-F12

and normalize the finite operators N[T() (x)(j)(x)],
X[y(x)y(x)] so that

&P l&[y(x)y( )]lp ~& =&k(f()[y(x)y(x)]~ k& =1,
(A14)

&P, slAe(x}4(x}]IP,8& =&klXO(x)g(x}]lk& =0,

'm', + p,', A),-'(k')
9PPl 8p,

Similar arguments imply

Xy= tft; )E2 =P
= IJ,(k') .

(A15a)

k~=m; X2=P

where the state
~

k& Contains a single pseudoscalar
particle of momentum k, then

On the other hand, the effect of inserting-iu into
the time-ordered product defining I' is similar,
yielding a sum of terms obtained from I' by (a) re-
placing a spinor propagator S(P}by

e'~"'dxOT Ou x 0 =—-S U, $

(Alla)

6~=2 PPl 2 + p. 2 Sg8Pl 8 p,

(A151)

gj- le;X,g +P; f—tg

{AISb}

or (b) changing a pseudoscalar propagator A(k') to

e'~' *d x&0i T(p(0) u (j)(x)}( 0)

=- —a(k') U, (k') z(k') . (Al lb)

Thus Eq. (A91) is justified and the Callan-Symanzik
equations proved for the neutral pseudoscalar the-
ory.

Let us now consider the vector theory. The com-
plete Lagrangian, including counterterms, for
this theory is



3556 CHRIS T, HASSLACHER, AND MUELLER

2 =-(() ()x&8&+m)g —
k G» G» —

2 (u V&V2 +igV& gy& g —5mZ2()) ()) —i25p, Z2V&V&

—(Z —1)$ (y(&8(&+m)g ——'(Z —1)(—'G»G& + p, V() V&)+i(Z, —l)gT()y&())V&.

Introducing the propagators" and vertex functions

S(p, m, X) f=e'e 'e''**(Ol X&(t(k)t)(x)) IO),

k(k', m, )xk+ (kk m'x), k„k„f=e"''d'x(&)T((V, (&))V, (x))(0),

r„(p„p„m, p) = i-e"1'-''2'" d'xd'y(0i T(g(y}V, (0)g(x)) i0)„,

(A 16)

(A17}

we choose the subtraction constants Z„Z„Z3
5p,

' so that

S-'(p, m, ((1) i ~
- 0,

—S '(p, m, p, )
P= 2&

A '(k', m, il ) ~))2 „2 = 0,

, a '(k', m, p) =1,ek'

r (P(&l P2 m, V }11(,=1(,=;(0 +22)2= 2g) (&-

(A16)

rl, P. (Pl P2 )(1 ~2) I1(,=((2=., ; (2 -22) = —k igll'2)

Al X(k k ~le ~2)122 = - 1 2 =f1 )12 ~

(A21c)

(A21d)

Dr = n{DZ2 1) + (DZ2 ) ) + {Dg—&

8 2 8 2 8
+(Df,) f +m, +(1 2 r„

1,= m;12=2

Differentiating Eq. (A7), rewritten for the vector
case, we find

The electromagnetic interaction of the charged
spinor field is now included by adding the interac-
tion term

g =+i'„g) „p+ '.f F„G2+»-—(52f)Z '2'F„,G„,

+ 2 f(Z 'i'
2—1)F»G»+ie(Z, — )A1„T)()2$,

(A19)

where the subtraction constant 8f is so defined
that

m P }l))2 = -()2 =fV

for

~1(k2, m, i )[6„,—k„k„jk2]

=g «"'d'x O 7 V„O a. x ) 0 „
(A20)

We have not included counterterms of order e' or
higher in Eq. (A19). Just as in the pseudoscalar
case we can consider fields P~ P~ p

and coupling
constants gl, f), defined according to a second
normalization scheme:

(A22)

y3-"br= m2 2+I2 2 rx . A24
Z, =m; ),,=p

Finally we can directly compute Df1 by noting that
(kk, (k', m, (u) and (1/g)&kk '(k, m, il) can, by defini-
tion, differ only by a first-degree polynomial in
k', so that Eq. (A20) and current conservation
[n, (0, m, p. ) = 0] imply

k2+ 2 1
n, ,(k', m, il) = fk —

2
—6-'(O,m, il)

1
+ —a-'(k2, m, p) . (A25a)

This is the complete Callan-Symanzik equation
obeyed by the amputated time-ordered product of
2n spinor fields, p vector fields, and x electro-
magnetic currents,

(A23)

The quantities DZ, ~, DZ, z, and Dg~ can be identi-
fied with 2y„2y„and -P of Eq. (33), respectively,
while an argument similar to that given in the pre-
ceding pseudoscalar case shows that

S1-'(P', m, p,) i»
-- 0,

, (p, )„)()
(A21a)

Likewise,

n, ,(k, m, il) = -f,k ——,—a, - (0, )&„)&.,)

A, -'(k2, m, p, )i,2 „2=0;
-1; (k', x„x,)

(A21b)
1 1——(k „'(0,m, il)+—Al-'(k2, m, il),

(A25b)



LIGHT -CONE BEHAVIOR OF PER TURBATION THEOR Y 355't

where the coefficient of 0' is guaranteed by our
subtraction procedure to be independent of m and

p for fixed f~ and is therefore determined by the
condition (A21d). In analogy with Eq. (AV) of the
pseudoscalar case we have

r, ~(k', m, p) =Z, ~
~' a,(k', m, p), (A26a)

4„'(k', m, p.) =Z, ~ 'a '(k', m, p, ), (A26b)

S~ '(P, m, p) =Z, ~
'S '(P, m, y, ), (A26c)

r, „(p„p„m,v) =z, ,-~'z, ,-'r„(p„p„m, u).

(A26d)

Equations (A26c) and (A26d) together with the
Ward identities

reads

I a

~
I~

~~I 0
~?

~ j ~
~

8

8 2 8 8m, + p. , +P——2ny& - py2Bm Bp, Bg

=y, "Ar. (A31)

If I' is computed to lowest order in e, the depen-
dence on f is known, allowing the partial deriva-
tive with respect to f in Eq. (A31} to be explicitly
carried out. If we assume that each electromag-
netic current carries a momentum transfer
squared much greater than p. ', then Eq. (A25a) im-
plies that if each current Z„(x) is replaced by

1-(p, —p, )„r„(p„p,) =s-'(p, ) —s-'(p, ),
(A2V)

1 ~ 8 8f+, a-'(0, m, p) V„(x),
gjL(. Bx Bx

1—(p, —p,)„r,„(p„p,) =s,-'(p, ) —s, -'(p, ),

implied by current conservation and our normaliza-
tion procedures (A18) and (A21), yield

gy=Z3 y g ~ (A28)

Combining Eqs. (A25), (A26a), (A26b), and (A28)
we obtain

the Green's function I' is not changed. Thus,

1gf+ —,~-'(O, m, &)

is independent of f, and Eq. (A31) can be rewritten

(
8- 2 8 8

m 2 + p. 2 +P——2ny~ - py2+2zy2Bm Bp. Bg

or

z,q, , 1 a, -'(0, x„x,)
3,Z

A.2

g, A '(O, m, p)
3, X 2 p

(A29)
for

1 -1
y, = gf+ —,A-'(O, m, p)

(A32}

(A33)

a 1 a '(O, m, p}+fzlk =; k =p Y2f + Pa

(A30)

so that our complete Callan-Symanzik equation

which is just Eq. (33). In obtaining the form (A32}
we have used the relationship

(A34)

implied by Eq. (A28).

APPENDIX B

In this appendix a detailed calculation of a„' ' to order g' is presented for the pseudoscalar theory. Re-
call that

e*' ' "d'» d'ak(/), .(OIT(q. (y)o„"!..„(0)uy, (a))lo)l.2 .=(i)"a„''p p~+(terms containing 5„,„), (Bl)

for 1 ~a,. ~3. Since to lowest order in g' no counterterms must be added to make the operator 0„"...IXg ' 'Q

finite,
n

0„",.'. .+(x) = ——II+ (-1)"] gtj(x)s ~ y a~/(x)+ (terms containing 5,) .
j=1

(E2)

Figure 2(a} illustra. tes the three graphs contributing to a„' ' to order g'. In fact, to order g', a„' ' requires
no renormalization of any sort, either within the operator 0 ', ...~ or of propagators or other vertices.
Consequently, the effect of the operator u is simply to differentiate the order-g' matrix element of 0 '. ..~~y ''

n
represented by Fig. 2(b) with respect to the internal masses:
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I, I .
n

9'
(6 w n(n+ l)2

l, 2
0

/
/ 'IL

/
/

/

g' I

(6w n+ I

(b)

a
4m

/
/

2
I

FIG. 2. (a) Diagrams representing the matrix element
which determines a„' ~ to order g in the pseudoscalar
theory. The cross indicates insertion of the mass
operator u, while the two-photon-two-fermion vertex
represents the factor given in (C2). (b) The diagram
representing the order-g, two-fermion matrix element
of the operator specified by Eq. (82).

2 2.0

FIG. 3. The results of a calculation of a„"Jto order g2
in the pseudoscalar theory and those Feynman diagrams
described in Appendix C, from which their values were
obtained.

1 ~ g t 4 s s [P(tf+m)(k„~ ~ ~ y„~ ~ k„„)(g+m)]
4n ~(2v)' g Sm' S p,

' [k'+m' ie]'[(k —p)'+ iL' —iE']

+ (terms containing 5,.„.), (B3)

for p =0. [The quantities &, and 5 appearing in the definition (20) of u are both unity to lowest order in@'.]
It is useful to observe that the mass terms in the numerator do not contribute to the P,. ~ p~ term since,
if the differentiation m's/sm'+ p.'s/s p,

' were performed after the integration over k, then upon integration
such terms would yield finite functions of lL'/m' which would be annihilated by the derivatives.

The P ~ ~ -P „ term in the above integral can be easily evaluated if the integration variables are changed
1

to those of Sudakov. Let

and

P = (0, 0, P, iP), P = (0, 0, + P, -iP),

for

Imt' = (yP+PP+ k~,

ki = (k„k„0,0) .
In terms of the variables o.', P, k„k„Eq. (B3) becomes

(B4)

2+2 2 a) ce
8 8

(2w)' Sm' S p'[4P'nP, +k, '+m' ie]'[4P'o(P——I)+k, '+lL'-ie] '

where we have equated the coefficients of p p„and evaluated the trace in Eq. (B3) according to

tr(pgy„p) =-4ik~'p, + [terms with p,. or (k~)„.].
The integral over e can be evaluated using contour integration so that

(B6)
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2 r 1

2(2v)' ., „ sm' s p,
'

(1 —P)P" 'ki
lP p'+ (1 —P)m'+k, 'j'

a 'I I

0
8 s n{ n+ I )

g' "i g2 1
16& 16v' n(n+1)

'
+ g fl

4w j=2

APPENDIX C

We now give the results of a calculation of all
the constants a„" to order g' in both the pseudo-
scalar and vector theories. The values of a„'~
found for the pseudoscalar theory are shown in
Fig. 3. Also shown are Feynman diagrams repre-
senting those amplitudes which when differentiated
with respect to the internal masses give the adja-
cent values of a„'~. The vertex joining two photon
lines and two fermion lines represents the factor

2
0

2, I +
6w n{n+l){n+2)

fl + 0-+
+

(n - I) n {n+ I )
/

n

Z Poyrtxy Pn ~.
/=1

(Cl)

in the corresponding Feynman amplitudes, where

p is the four-momentum carried by the incoming'
fermion line. Likewise, the vertex connecting two
photon and two pseudoscalar lines represents the
factor

FIG. 4. The quantities a„" computed to order g in
the vector theory accompanied by the corresponding
graphs as described in Appendix C. Here the dashed
lines represent vector-particle propagators.

k~ . k~ (C2)

where k is the momentum carried by one of the pseudoscalar particles.
The results in the vector theory, shown with their corresponding graphs in Fig. 4, are somewhat more

complicated. The presence of the vector fields V, in the operator 0 ,'. .. defined in Eq. (37a) implies
that this operator not only contributes the two-photon-two-fermion vertex found in Fig. 4, representing
the factor (Cl), but also gives a two-photon-two-fermion-vector-particle vertex contribution to a' ' and
a„' '. This vertex represents the factor

Sg
2„(„1,Z Z(P+k), (0+k), ,6P, P.„, r, P„,. .

&=1/=1
jw 1

(C3)

where p and k are the momenta carried in by the spinor and vector particles, 'respectively, while p is the
vector particle's polarization index. Finally the two-photon-two-vector-particle vertex in Fig. 4 repre-
sents the factor

3 ff

, Q Q(k„, 6„,q 6„,„k„)(k„k,6,p+k'6p~6„—krak„6, „-k,k,6p„),'+(+ — j J

(C4)

where k is the momentum carried by the vector line and p, 0 are the vector particles poIarization indices.

APPENDIX D

Finally, we investigate the large-q' behavior of the solutions (78) to Eti. (V5). First the large-q' limit of
d„'~(q', g) is related to the large-p limit of A~(~(G(p)), B~"(G(p)), and E~„'~(qo', G(p)). Then we consider the
possibility, first identified by Gell-Mann and Low, that the function P(g) has a zero at g=g„. In that case,
if E„(q', g) is well defined and nonzero at g=g„, then the asymptotic behavior of E~"(q, g) for large q is
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determined by the functions A„'(g), B„"(g), and p(g). If in addition g„ is a simple zero of p and%„'(g),
B„"(g) are regular at g„, then a power behavior in q' for E'„"(q',g) is deduced for large q'.

First, q' is replaced by q,
' in Eq. (78) so that z = p(g), or g=G(z), and the resulting equation solved for

the functions v(„'(z):

1q"'(*) = —&'"(q) +g! (g (q)U!."(q) gt') q
' g(*))—)t "'(g(q))&'q(q)g. 't(q. ', &(q))},

(DI

qqt(q) = — —l!8 (q)+1!"(G( ))gt.'(q) g.q(q, ', g(q)) —gt"(&(q))gtq(q)g'„"(q, ', g(q))},
d

rvhere

~(z) = —L"'(z) I("(z) — —I("(z) L'"(z)
n n d n n

The equations can now be used to eliminate the functions v„'(z) from Eq. (78), yielding an expression for
E„'(q', g) in terms of E(„'(q,2, G(ln(q'/qo') + p(g))) so that the large-q' and the large-p behavior of E(„'(q', G(p))
are related:

E'"(q' g) = 2 2( "(z g)&"(q ' G(z)) (»)
j = 1,2

for z =ln(q'/q, ')+ p(g) and

"(q g)= —t.'"( )+&'"((:(q))g"(q) g"tg(g)) — —&'*'(*)+gt"w(:(q))gtq(q) gt( (g)g)}
I

t ~ ( ) d tt tt tt
g

tt dz n II

N!„"(z,g) =, I-'."(z)L'„"(P(g))—L'."(z)i-'."(P(g)) B'."(G(z)),j.

2('„'(z, g) = —L'„"(z)+&(„"(G(z))&(."(z) d—L'."(P(g))+&'."(g)I'."(P(g)) (D4)

d— —„ I(„"(.).~(„"(G(.))i(."(.) —„I' (p(g)).~(."(g)I( (p(g)) [B"'(g)J '

2,2( )
B2"'(G(z)) 2((p(g)) l,y ( ) G( ))tg B(2)Q) ( ) tt P

If we assume that p(g) has a root g„and that E„(q2 t g) is regular and nonzero at g=g„, then Eq. (D3) de-
termines the asymptotic form of E(„"(q',g), for g& g„, in terms of the functions A(„')(g), B(')(g), and p(g) ap-
pearing in our Eq. (75). In particular, if we assume that A(„')(g), B(')(g) are regular at g„and that g„ is a
simple zero of P(g), then a power behavior for E„'(q') is implied by Eq. (D3)." In order to show this, we

must determine the large-z behavior of L(„'(z) and hence of 20„'J(z, g). It is not difficult to see from Eq. (79)
that, under these conditions on A„'(g), B„'(g), and p(g), the functions I.„'(z) can be so chosen that

I.(„'(lny) - y"'[I + O(l/y) J,
for y large and

p(i) — 1[~(l)(g ) +g(2)(g )]+ (3f 3)P[g(1)(g ) ~(2)( )] 2 ~ B(ll(g )B(2)( )}Xf2

This asymptotic form for L(„')(z) can then be substituted into Eq. (D3), yielding

(D5)

(D8)

+'(q', g) = Z.(')B(')(g)i")(p(g))(g)-""
j =1,2

E'"(q' g) = Z '" —I"(p(g))+&'"(g)I."(p(g)) (q') '",
j=l,2

'
(D7)

,(.) (q.')'"' B("(g»(.')(q2', g ) -[~(')+&(.')(g.)]d.")(q.', g.)

z 2(g).(" () '"—) '")B"(g)
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g„)E„)(q,g„) —
~

( ++(„)(g„)~E(n(q,g
p(r) „(2) (p(a) p(&))II(&&(g)

This would imply that the operator

II(ai(g)L(J)(p(g)}0(n + L (J)(p(g)) +/(J)(g)L(J)(p(g)) 0(a) (D9)

has anomalous dimension

dO& „+2+2 (~)

for j=1,2.

(D10)

Note added t'n proof The .solution (D5) to Eq.
(79) implicitly assumes that the two roots v(') and
v(') defined in Eq. (D6) are different. If the quan-
tities v '~ and v'. ' happen to be equal then the solu-

tion need not have the form (D5) but may contain
an additional logarithmic singularity. This is the
case considered by Dell'Antonio"; we thank
B. Schroer for bringing this case to our attention.
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Two versions of a high-energy field-theoretic eikonal amplitude are examined in a special
limit of large internal mass, where infinite sums over all n-point, connected, eikonal graphs
become calculable. Both examples exhibit cancellations which tend to reduce the energy de-
pendence of 0& below the Froissart bound.

I. INTRODUCTION

Recent very-high-energy experiments displaying
a constant pp total cross section' have acted as a
spur to the estimation of O„and related multiplicity
distributions. In particular, one would like to
understand how the eikonal "tower graph" calcula-
tions of Cheng and Wu, 2 and the strong-coupling
eikonal Regge calculation of Chang and Yan, 3 which
generate o~-ln's, might be improved; and it has
been suggested" that neglected crossed-channel
multiparticle (connected) amplitudes can provide
sufficient cancellations to remove the unobserved
energy dependence. The purpose of this note is to
describe a special version of a field-theoretic
model previously discussed in an approximate
way'; and to exhibit in an exact way two distinct
forms of such cancellation in the special limit of
large vector-meson mass (while the mass of emit-
ted scalar "pions" remains finite). The first com-

putation displays deviations from the form of a
previous result of Aviv, Sugar, and Blankenbecler,
which arise from the inclusion of the next, more
complicated set of fundamental graphs employed
in the construction of the eikonal. The result of
the second calculation, exact in its model context,
sums over all contributing, nontrivial graphs, and
produces an eikonal function independent of inci-
dent particle energy. While this. does agree with
the experimental o ~-const, the main value of
these computations lies in the construction of ex-
plicit examples which exhibit eikonal cancellations.

The starting point of the analysis is the specifi-
cation of an interaction Lagrangian, coupling nu-

cleon, neutral vector meson (NVM), and scalar
pion fields,

g ' =igp g y& W& ip + z A,II Q W&

A formal construction of the eikonal amplitude in


